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[1] Multivalued traveltimes have traditionally not been used in seismic imaging, with only a handful of
notable exceptions in the field of exploration geophysics. For studies at local and regional scales (e.g., local
earthquake/teleseismic tomography), the focus has largely been on first arrivals, with numerous ray- and
grid-based schemes developed for their calculation. However, later arrivals often contribute to the length
and shape of a recorded wave train, particularly in regions of complex geology. These arrivals are likely to
contain additional information about seismic structure, as their two point path differs from that of the first
arrival; in particular, they are more amenable to sampling regions of lower velocity. In this work the
wavefront construction principle is used as the basis of a new scheme for computing multivalued
traveltimes that arise from smooth variations in both velocity structure and interface geometry. The idea is
to represent the wavefront as a set of points in reduced phase space and use local ray tracing and
interpolation to advance the wavefront in a series of time steps. The scheme is robust in the presence of
strong velocity heterogeneity and interface curvature, with phases comprising multiple reflections,
refractions, and triplications successfully tracked. Outside the field of exploration seismology wavefront
construction techniques are rarely used, yet they hold great potential for addressing problems in other areas
of seismology. This paper demonstrates the viability of the new wavefront construction scheme by
applying it to a range of scenarios, including multiarrival body and surface wave tomography, teleseismic
receiver function prediction using Gaussian beams, and the tracking of global phases such as PcP.
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cation [e.g., Thurber, 1983; Gray and May, 1994;
Hammer et al., 1994; Steck et al., 1998]. Despite
many decades of technique development [e.g.,

1. Introduction

[2] The calculation of ray traveltimes through a

medium with a heterogeneous velocity distribution
still remains the foundation of many applications
that rely on the high-frequency component of
seismic records, such as body wave tomography,
migration of reflection data, and earthquake relo-

Copyright 2008 by the American Geophysical Union

Julian and Gubbins, 1977; Vidale, 1988; Sethian
and Popovici, 1999], there is still no single method
that can accurately, efficiently, and robustly over-
come the nonlinearity of the two point problem and
compute multiarrivals in complex media. The aim
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Schematic diagram showing ray paths for a medium containing a slow velocity anomaly. The wavefront

triplicates and three arrivals are observed. The ray path for the first, second, and third arrivals are shown in red, green,

and blue, respectively.

of this paper is to advance the current state of
the art in seismic wavefront tracking in two
dimensions for heterogeneous media and to inves-
tigate the potential of multiarrival information for
improving various seismic applications including
tomography.

[3] Both continuous and discontinuous variations
in wave speed can cause seismic energy to travel to
a receiver along more than one path, a phenome-
non commonly referred to as multipathing. This is
illustrated in Figure 1 where a wavefront triplicates
due to the presence of a low-velocity anomaly,
resulting in the detection of three separate arrivals
at the receiver. The shape of the self-intersecting
wavefront at time ¢ + At resembles what is often
described as a swallowtail. The first arrival path
avoids the low-velocity anomaly, which is subse-
quently sampled by the second and third arrival.
Clearly, later arrivals sample different parts of the
medium and therefore should carry additional
structural information. However, most practical
algorithms for tracking wavefronts can only
provide the traveltimes of first arrivals [e.g.,
Rawlinson and Sambridge, 2004a; Buske and
Kidstner, 2004; de Kool et al., 2006]. While it is
true that standard ray tracing methods can locate
later arrivals, their reliability in doing so rapidly
decreases as the complexity of the medium increases
(for an effective demonstration, see Figure 32 of
Rawlinson et al. [2007]). As such, they cannot be
viewed as viable techniques for the routine predic-
tion of multipathing. The development of advanced
and computationally practical schemes for tracking

multiple arrivals through complex two- and three-
dimensional media would allow the prediction
of many more observable phases, which has the
potential to benefit many areas of seismology.

[4] Traditionally, the method of choice for the
computation of traveltimes has been ray tracing,
i.e., computing the characteristics of the eikonal
equation. [e.g., Julian and Gubbins, 1977; Pereyra
et al., 1980; Zelt and Ellis, 1988; Virieux and
Farra, 1991; Cerveny, 2001]. Ray tracing between
a source and receiver can be achieved by shooting
or bending rays. The shooting method relies on
repeated solution of an initial value problem in
order to locate two point paths. Rays are initiated at
the source point with different initial directions and
tracked through the medium by solving the appro-
priate initial value formulation of the ray tracing
equation [e.g., Cerveny et al., 1977; Cerveny,
2001]. This step is highly accurate and efficient,
even in the presence of interfaces, and allows
various seismic wave properties, like geometrical
spreading, attenuation, and amplitudes, to be pre-
dicted. It is also possible to compute synthetic
seismograms, based on seismic properties calculated
along the rays, using techniques like the Gaussian
beam method [Cerveny and Psencik, 1984] or
Maslov integration [Chapman, 1985].

[s] The challenge, however, is to determine the
initial direction vector of the ray that will hit a
particular receiver. This two point problem of
finding a source-receiver ray path can be formu-
lated as an optimization problem, in which the
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unknown is the initial direction vector of the ray,
and the function to be minimized is a measure of
the distance between the ray endpoint and receiver.
Since the optimization problem is nonlinear, a
range of iterative nonlinear and fully nonlinear
schemes have been employed [e.g., Julian and
Gubbins, 1977; Sambridge and Kennett, 1990;
Virieux and Farra, 1991; Velis and Ulrych, 1996].

[¢] A common alternative to tracing rays is to
compute the first arrival traveltime to all nodes of
a grid which spans the medium [e.g., Vidale, 1988;
van Trier and Symes, 1991; Kim and Cook, 1999;
Sethian and Popovici, 1999]. The resulting
traveltime field implicitly contains the wavefront
location as a function of time (i.e., isochrons of the
traveltime field), and all possible first arrival ray
paths are given by the gradient of the traveltime
field. In these Eulerian schemes the wavefront is
tracked implicitly. Grid-based methods have
evolved to the point where many can guarantee
to locate the first arrival traveltime and ray path to
all points of the medium [e.g., Rawlinson and
Sambridge, 2004a; Buske and Kdstner, 2004], even
for highly heterogeneous media, where boundary
value ray tracing is likely to perform poorly.

[7] The question of whether or not first arrivals are
sufficient for imaging complex structures was
posed soon after the appearance of first arrival
finite difference techniques. In the context of
exploration geophysics, Geoltrain and Brac
[1993] conjectured that most of the wavefield
energy is contained in later arrivals and therefore
first arrival traveltimes are not sufficient to give a
good migration image. There have been attempts to
compute multivalued traveltime fields using only a
first arrival solver. However, these schemes often
include a rather ad hoc procedure for dividing the
computational domain into single valued subre-
gions, followed by application of a first arrival
solver in each subregion. The solutions for the
different subregions are then superimposed to con-
struct the multivalued traveltime field [e.g., Fatemi
et al., 1995; Benamou, 1999].

[s] In this work wavefront tracking refers to
schemes in which the wavefront is described ex-
plicitly (i.e., by a set of points and not as the
isochron of a traveltime field). These Lagrangian
approaches to the problem of seismic wavefront
tracking were introduced in two dimensions by
Lambaré et al. [1992] and Vinje et al. [1993] and
in three dimensions by Vinje et al. [1999]. The
advantage of explicit wavefront tracking is that it
can be used to track all arrivals of a wavefront. The

basic principle is that a wavefront can be evolved
by repeated applications of local ray tracing to a set
of points lying on the wavefront. New points can
be interpolated at each step to overcome the under-
sampling problems that may arise as the wavefront
expands and distorts due to velocity heterogeneity.
Redundant points could also be removed to im-
prove efficiency, but to date, no published wave-
front tracking scheme has implemented such a
procedure.

[v] We begin by introducing the concept of a
reduced phase space distance criteria for maintain-
ing a fixed density of points on the wavefront. In
reduced phase space, a triplicating wavefront
unravels into a smooth curve, which makes adding
and removing points a much more straightforward
task. This forms the core of our multiarrival wave-
front tracking algorithm. We then discuss how
arrival times and ray paths can be extracted once
the wavefront tracking is completed. Multiarrival
wavefront tracking is then combined with the
Gaussian beam method, which traditionally relies
on ray tracing to compute all arrivals. We conclude
by discussing the potential of multiarrival tomog-
raphy using body wave or surface wave data sets.

2. Method

[10] The idea of explicitly tracking a wavefront by
advancing a set of points using local ray tracing
and interpolation has been investigated over the
last decade and half, mainly in the exploration
seismology field [e.g., Vinje et al., 1993; Lambaré
et al., 1996; Buske and Kdstner, 2004]. However,
in these earlier studies, ray density has been
defined only in normal space, for example,
the metric distance between neighboring rays
[Lambaré et al., 1992; Vinje et al., 1993; Ettrich
and Gajewski, 1996] or the angular distance [Sun,
1992]. These definitions of ray density tend to
encounter difficulties if the wavefront starts to
develop a swallowtail pattern; they are only loosely
correlated to the complexity of the ray field. In this
work ray density is measured using a metric
defined in reduced phase space.

2.1. Reduced Phase Space

[11] Wavefront tracking in phase space using a
Lagrangian framework has been done previously
by Lambaré et al. [1996] and Lucio et al. [1996]
using the Hamiltonian formulation of ray theory.
For a wavefront in two-dimensional real space (or
normal space) a four-dimensional phase space can
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Figure 2. Reduced phase space representation of a two-dimensional wavefront. (a) Ray trajectory from the
wavefront supplies third dimension 6. (b) Wavefront in normal space (black line) and corresponding bicharacteristic

strip (red line) in reduced phase space.

be constructed where the four coordinates are the
two components of the position vector and the
slowness vector. The characteristics of the eikonal
equation in phase space are given by [e.g.,
Cerveny, 2001; Chapman, 2004]

dx p

=,

de p| (1)
® o jpve

dt - p C>

where p = VT is the slowness vector, x is the
position vector in real space, c is the speed, and ¢ is
the time. This is the Hamiltonian formulation of
ray theory, where the rays are the bicharacteristics
in (x, VT) (or just characteristics in x) and the
wavefront is generally known as the bicharacter-
istic strip [e.g., Chapman, 1985; Osher et al.,
2002]. It defines the direction and location of the
wavefront.

[12] Instead of using four-dimensional phase space
it is also possible to define a reduced phase space
[e.g., Osher et al. 2002] which is three-dimensional
for a wavefront in two-dimensional real space. The
third component is defined by the angle the slow-
ness vector forms with the x axis (see Figure 2).
The two components of the slowness vector de-
scribing the motion of a node on the wavefront 7,
and T, are essentially combined into ¢, the direc-
tion of the local wavefront normal or slowness
vector, using the relationship tan 0 = (7,/T,).

[13] To transform a wavefront from two-dimen-
sional real space into three-dimensional reduced
phase space, one can calculate the direction 6 of the
local wavefront normal and use it as the third

coordinate. The bicharacteristic strip will therefore
not self-intersect as two intersecting rays will
always propagate in different directions, i.e., have
different # values. The other advantage of reduced
phase space is that wavefronts containing sharp
corners will be described by a locally smooth
bicharacteristic strip (see Figure 3). Whenever the
position of the wavefront is required, the bichar-
acteristic strip is mapped back into normal space.
The use of a phase space distance metric is a key
element of the Lagrangian method employed here
and is superior to the alternative of using a metric
defined in normal space. Lambaré et al. [1996] use
a similar criterion for the ray density in phase space
within their Hamiltonian formulation of ray theory.

[14] The bicharacteristic strip is evolved through
the medium in a series of discrete time steps. For a
given time step At, the strip is updated using a
two-stage procedure. In the first stage, all points
are evolved in time by using a fourth-order Runge
Kutta solver [e.g., Press et al., 1992] for the
following initial value formulation of the kinematic
ray tracing equation [e.g., Cerveny, 2001]:

dx

Fri ccos b,

d

d—);:csine, (2)
% = ¢, sinf — ¢, cos 0,

where c(x, y) defines the wave speed, ¢, and ¢, are
its derivatives in the x and y direction, respectively,
and @ is the inclination angle of the ray at (x, y).
Surface waves can be tracked by using the system
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Figure 3. Swallowtail pattern of a wavefront. The
sharp corners in normal space (green segments) are
given by a smooth representation in reduced phase
space. The intersecting segments in normal space (red
lines) do not intersect each other in reduced phase space.

of equations for kinematic ray tracing on a sphere
[e.g., Cerveny, 2001; Aki and Richards, 2002;
Bukchin et al., 2006].

[15] Smooth variations in wave speed c(x, y) are
defined by a mosaic of cubic B-spline area ele-
ments, the values of which are determined by a
regular mesh of control vertices. The benefit of
cubic B-spline functions is that the first and second
derivatives of the resulting field are continuous and
given by an analytical expression.

[16] Once all points along the bicharacteristic strip
at time ¢ have been updated to the new strip at time
t + At, points can then be added or removed
depending on their separation in reduced phase
space. The aim is to keep a fixed density of points
along the bicharacteristic strip in order to minimize
the loss of detail as the wavefront progresses
through the medium. As the evolving wavefront
distorts in response to velocity heterogeneity,
points may also cluster together, resulting in over-
sampling. It is therefore desirable to allow points to
be removed, as it will increase the accuracy to
computation time ratio.

[17] If o represents the initial distance between
adjacent points along the bicharacteristic strip, then
a new point is added if the distance between two
neighboring points exceeds 20, and an existing
point is removed if the distance falls below o/2.
The position of a new point in reduced phase space
is determined using linear or higher-order interpo-

lation between its two neighbors. Using a factor of
2 means that the point density will stay close to the
initial value during the propagation of the bichar-
acteristic strip. For the calculation of the distance
between two neighboring points, the two metric
coordinates x and y are normalized to lie in the
same range as 0 (i.e., in [—m, +x]). This scaling
allows the norm distance measure in reduced phase
space to be defined and hence the point density.

[18] Figure 4 illustrates the advantage of using the
concept of a phase space distance for the refine-
ment compared to angular or metric distance used
in normal space. Here a plane wave enters the
medium from the bottom and propagates to the
top. Clearly, the endpoints of the swallowtail are
distorted when the metric distance is used to
decide when to add or remove points but well
represented when the reduced phase space distance
is employed.

2.2. Interfaces

[19] Discontinuities in the velocity field, for exam-
ple the boundary of a salt dome or the Moho, give
rise to another class of phase in the form of
reflected and refracted wavefronts. These wave-
fronts may be multivalued, if the impinging wave-
front is multivalued, or if the geometry of the
interface is such that significant focusing or defo-

metric distance

!

phase space distance

)

[
o

s RS

x (km)

y (km)

0
0
X (km)
Figure 4. A plane wave parallel to the x axis at y = 0
propagates in the positive y direction. The wavefront
begins to triplicate and forms a swallowtail due to the
low velocity in the center. (right) When the reduced
phase space distance is used as a criterion for adding
points, the swallowtail pattern is better recovered
compared to when (left) the metric distance is used.
The initial plane wave is in both cases represented using
25 points.
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cusing occurs. In the following treatment, the
Lagrangian scheme is extended so that it can be
used to compute multivalued traveltimes in the
presence of interfaces.

2.2.1. Interface Representation

[20] In this work, interfaces are defined by a set of
control points with cubic B-splines used to de-
scribe the position of the interface as a function of
incremental path length. This allows overturning
boundaries and isolated bodies to be represented.

[21] A regular grid of nodes coupled with cubic B-
splines is used to describe smoothly varying ve-
locity fields within both layers and isolated bodies.
This concept of assigning an individual velocity
grid to each layer can be extended by using two
velocity grids for each layer, one for P waves and
one for S waves, which allows mode conversions.

2.2.2. Wavefront Propagation in the

Presence of Interfaces

[22] If there are multiple layers present, a natural
approach for tracking the wavefront is to consider
its propagation in each layer separately. Such a
multistage method for computing traveltimes in a
layered model has also been used by Rawlinson
and Sambridge [2004b], in the context of implicit
wavefront tracking with the fast marching method.

[23] Figure 5 illustrates the multistage approach
used in this work. When the position of a point
on the bicharacteristic strip is updated for a given
time step, a check is made to see whether a portion
of the path between its current and previous
position lies in a grid cell which contains an
interface. If the ray crosses the interface, an inter-
section point is calculated. Having finished the
propagation of a wavefront in a given layer, all
the points have either left the computational do-
main or are lying on an interface. In the latter case
the arrival time, angle of incidence, and local
direction of the interface normal are known, so a
reflected or refracted wave can be initialized.
Following application of Snell’s law, the starting
position and time of each point of the departing
bicharacteristic strip is now known.

[24] In practical applications traveltimes and rays
are needed for a limited set of paths. In our scheme
a path is defined by a set of segments, where each
segment contains information about the wavefront
to be tracked in a given layer, i.e., the origin of the
wavefront (source point or an interface), the type of
wave (P, SV, or SH and direct, reflected, or

refracted), and its destination (an interface identi-
fier). In conventional ray tracing methods this type
of phase identification is often referred to as a path
signature or a ray code [e.g., Cerveny, 2001]. For
any path signature the new scheme computes first
and later arrivals if they exist. This means that a
path signature may represent a family of rays
between source and receiver, as illustrated in
Figure 5 where the three red rays have the same
path signature but different arrival times and
propagation paths.

[2s] When several path signatures are specified for
a particular source, the paths often differ from each
other only after a number of reinitialization steps.
Every path will, for example, require the wavefront
which propagates through the region in which the
source is located. In order to avoid having to
recompute wavefronts, a tree structure containing
all the wavefronts needed for the different path
signatures is built (see Figure 5). As shown in
Figure 5, the wavefront for certain path signatures
may have gaps (i.e., a shadow zone). In this case,
not every point on the surface can be reached by a
ray which bounces off the lower boundary and then
refracts at the upper boundary of the middle layer
(see Figure 5, stage 2b).

2.3. Extracting Arrival Information

[26] In most practical applications, the source-re-
ceiver traveltime, and in many cases the associated
ray paths, are needed rather than the wavefronts.
The main challenge in extracting this information
is to locate the receiver in an irregular and poten-
tially multivalued traveltime field. Since the wave-
front is explicitly defined at each time step, it is
possible to identify the two consecutive wavefronts
at times ¢ and ¢ + At and the adjacent ray paths that
together bound a receiver. Using the two wave-
fronts and the associated ray path segments be-
tween the points on the wavefront a set of adjacent
polygons can be defined. The problem of calculat-
ing an arrival time at a receiver then becomes one
of identifying the polygon in which a receiver is
located.

[27] Testing whether a point lies inside a polygon is
a basic operation in computer graphics. The ap-
proach adopted in this work is the so-called cross-
ing method [Haines, 1994], where one traces a line
from the receiver horizontally (increasing x and
constant ) and counts how many edges it crosses.
If the number of edges crossed is even, the point
lies outside the polygon; if it is odd, the point lies
inside the polygon. If it has been determined that a
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(i.e. refraction)

bottom interface
(i.e. reflection)

track wavefront to all
boundaries of layer two
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refracted wave
(rays 1,2 and 3)

stage 2b
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i reinitialise into
(i.e. refraction)
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refracted wave
(ray 4)

Figure 5. The steps of a multistage approach for the computation of ray paths for a direct wave (red rays) and a
wave reflected from the bottom interface (green ray). Velocities (in km/s) for the three layers are given in the top
diagram. Both path signatures share the wavefront emanating from the source in the middle layer. Note how the
reflected and refracted wavefronts triplicate due to the shape of the interfaces and how the triplications can be
propagated across interfaces. The interfaces from which the wavefront starts are highlighted in orange. The wavefront
computed in stage 3 shows a gap due to the overturning middle interface, which splits the upcoming wavefront.

receiver lies inside the polygon, an arrival time
needs to be calculated. The time and position of the
two wavefront segments of the polygon is known
and so the shortest distance from the receiver to
each wavefront can be calculated. Using these two
distances, an arrival time can be linearly interpo-
lated. This scheme is similar to an approach
advocated by Vinje et al. [1993].

[28] For applications such as seismic tomography
the ray path has to be located for each arrival. A
source-receiver ray path can be constructed in
normal space by following the wavefronts back
from the receiver to the source, once the wavefront
propagation is finished. In order to backtrack rays
across interfaces, the origin of the wavefront is

needed. It may emanate from the source or be a
reflection or refraction from an interface. This
information can be obtained from the tree structure
used to propagate the different wavefronts. The
approach described here is capable of extracting a
variety of ray paths for complex models, as shown
in Figure 6. In this example, ray paths of multiply
reflected and refracted waves are extracted for a
structure which contains an overturning interface, a
layer pinch-out, and an isolated body.

3. Potential Applications

[20] Multivalued traveltimes have the potential to
benefit areas of seismology where traditionally
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Figure 6. Complex model with a layer pinch-out, an
isolated body, and an overturning interface. For three
separate sources, ray paths with different path signatures
are given in red, blue, and green.

only first arrival traveltimes have been used, for
example traveltime tomography and migration of
reflection data. Here, the emphasis is on applica-
tions in seismology outside the field of exploration,
where wavefront construction is rarely used. A
number of examples are presented which demon-
strate the power of wavefront tracking, including
body and surface wave tomography, global phase
prediction, and synthetic seismogram generation
using Gaussian beams. All computation times in
this section are given for a Pentium 4 CPU running
at 3.2 Ghz with 3 Gb of memory and a GNU/Linux
operating system.

3.1. Gaussian Beams and Receiver
Functions

[30] The Gaussian beam method [e.g., Popov,
1982; Cerveny and Psencik, 1984] is an asymptotic
approach for the computation of seismograms in
homogeneous and inhomogeneous media based on
a combination of geometric ray concepts and
elements of wave theory. Since high-frequency
energy is considered to propagate along a ray, the
wave equation can be solved in ray-centered coor-
dinates. A parabolic approximation can be used to
find the asymptotic local solution in the neighbor-
hood of each ray. The wavefield at a receiver is
then given by a superposition of the displacement
field computed for the family of rays that pass near
the receiver. One advantage of this technique is that
Gaussian beams have no singularities at caustics in
the spatial domain or pseudo-caustics in the wave
number domain [Nowack, 2003] and therefore can
automatically deal with phase distortions.

[31] Stacy and Nowack [2002] use the Gaussian
beam method in two dimensions to model seismic
attributes in a wide angle refraction study. In the
field of reflection seismology, Hill [2001] discusses
a Gaussian beam migration method, which is based

on reversing the steps of Gaussian beam forward
modeling. Dunn and Forsyth [2003] use a Gauss-
ian beam method to predict observed packets of
Love waves. It has also been used for modeling
teleseismic P waves in three-dimensional structures
[Cormier, 1987].

[32] Detailed descriptions of the Gaussian beam
method for two-dimensional heterogeneous struc-
tures with interfaces have been given by Cerveny
and PsSencik [1984], Cerveny et al. [1982], and
Cerveny et al. [1977]. In this work the focus is only
on the enhancement of the Gaussian beam method
by using wavefront tracking to identify the com-
plete set of paths.

[33] The wavefront tracking approach allows the
width of the ray fans in the Gaussian beam method
to be precisely controlled (see Figure 7). Having
extracted the ray paths for each arrival at a receiver,
we know the ray parameters of rays hitting the
surface close to the receiver. Since it is only these
rays that contribute to the displacement field, one
can shoot a narrow fan of rays and therefore avoid
solving the dynamic and kinematic ray tracing
equations for redundant rays. This also helps to
avoid interference between the rays but still allows
a waveform at the receiver to be constructed based
on more than just the information along the kine-
matic ray path between source and receiver.

[34] In the following, a simple two-layered model
is used to show that later arrivals contain additional
information about structure and illustrate how this
information influences the waveform. Figure 8a
shows a structure with two layers and ray paths
associated with an incoming plane wave. The P
and S wave velocity increases linearly with depth
in the upper layer and is constant in the lower layer.

[35] An incoming teleseismic P wave is repre-
sented by a plane wave with 200 nodes on the
bicharacteristic strip and 250 x 250 nodes on
the interface grid. A time step of 0.025 s is used.
The incoming P wave is split at the interface into a
P and S wave. In addition to the direct P wave and
the P to S conversion, all reverberations of the
incoming P wave which bounce once between the
surface and the interface are computed. This means
that in total 10 different phases are simulated.
Owing to the velocity structure the wavefronts
triplicate, and in addition to the 10 first arrivals
associated with the 10 different phases, 30 later
arrivals are also generated. Figure 8b illustrates, for
the P to S conversion of the incoming plane wave,
how later arrivals are generated due to the shape of

8 of 20



. Geosystems

v

r 5 Geochemistry 7
e Geophysics ( |j HAUSER ET AL.: MULTIARRIVAL WAVEFRONT TRACKING

10.1029/2008GC002069

depth (km)

0 20 40 60 80

100 120

horizontal distance (km)

Figure 7.

km/s

- N WhOoo N O

0O 20 40 60 80

100 120
horizontal distance (km)

(left) Ray path information obtained by the wavefront tracking is used in the Gaussian beam method to

(left) shoot only those rays that hit the surface in the vicinity of the receiver. Note that for illustration purposes, the ray
fans are wider than those actually used for the computation of a synthetic seismogram.

the interface and the velocity contrast. The wave-
front triplicates for this phase and three arrivals are
generated.

[36] The Gaussian beam method is used to compute
synthetic seismograms with an initial beam width of
0.005 km'? and a peak angular frequency for the
Ricker wavelet of wye,r = 0.5 rad s . The compu-
tation time for the wavefront tracking and the calcu-
lation of a synthetic seismogram is 22 s. Figure 9a
shows the resulting synthetic seismogram.

[37] In order to demonstrate how including later
arrivals in the computation of the synthetic seismo-
grams makes the waveform more sensitive to small
changes in structure, the shape of the valley in the
interface is perturbed. The bottom of the valley in
the interface is defined by the depth of the control
node at a horizontal distance of 25 km. Synthetic
seismograms are now computed for different
depths of the central interface node. Figure 9b
shows the horizontal component of the waveform

horizontal distance (km)

depth (km)

if only first arrivals of the different phases are used,
and Figure 9c shows the horizontal component of
the waveform if first and later arrivals are used. As
the direct P wave does not triplicate, the wave
packages associated with the first arrivals in the
two seismograms have the same shape. The shape
of the P to S conversion is, however, significantly
different depending on whether first arrivals only
or first and later arrivals are used, due to the
triplication. Clearly, the waveform is more sensi-
tive to changes in structure when both first and
later arrivals are included, and hence the later
arrivals contain additional structural information.
This example suggests that the new technique may
have potential in receiver function studies, where
lateral heterogeneity can cause multipathing.

[38] Traditional Gaussian beam synthetics are com-
puted using paths provided by initial value ray
tracing, as it is usually argued that two-point ray
tracing is not required [e.g., Nowack, 2003] due to

horizontal distance (km)

b)
km/s
6.0
€ 5.5
<
s 5.0
o
[0}
° 4.5
4.0
3.5

Figure 8. Ray paths for an incoming plane wave and its reverberations in the upper layer. (a) The first arrival ray
paths for the different phases are plotted in red, and the ray paths for the later arrivals in green. (b) Ray paths and
wavefronts for the P to S conversion of the incoming plane wave. The wavefront triplicates due to the shape of the
interface and the velocity contrast. The velocity values shown in the figure are the P wave speed in the lower layer
and the S wave speed in the upper layer. The ray path for the first arrival is red, for the second arrival is green, and for
the third arrival is blue.
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Figure 9. Gaussian beam synthetic seismograms for the structure shown in Figure 8. The components of the
seismogram have been normalized. (a) Horizontal and vertical component of the synthetic seismogram. Horizontal
component of the synthetic seismogram for different depths of the central interface control node (b) when only first
arrivals of the different phases are used (i.e., red ray paths in in Figure 8a) and (c) when first and later arrivals of the
different phases are used (i.e., red and green ray paths in Figure 8a).

finite beam width. However, in media exhibiting
significant heterogeneity, the ability to adequately
cover a region with initial value rays is much more
challenging, and it is likely that only partial infor-
mation will be used to construct the synthetic
seismogram. Therefore, while the example of
first-arrival synthetics in Figure 9b may not be
what is normally arrived at in practice, it does
represent one end-member solution possibility and
contrasts significantly with the full multiarrival
synthetic (Figure 9c).

3.2. Global Traveltime Example

[39] The ak135 model [Kennett et al., 1995] is a
one-dimensional reference model of the Earth.

Accurate tables of arrival times (http://rses.anu.
edu.au/seismology/ttsoft.html) are compared with
solutions calculated using the wavefront tracking
approach presented in this work. The computations
are performed on a spherical Earth. This implies
that no corrections for ellipticity are applied to
either the reference values for the traveltime or the
solutions computed using the wavefront tracking
scheme. The model parameterization that is used
allows for the description of complex models as
illustrated earlier (Figure 6) in a Cartesian frame-
work. To mimic a spherical medium, the basic idea
is to sample the ak135 model on a Cartesian grid
and describe the layered Earth using isolated bod-
ies and overturning interfaces. Provided a high
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Figure 10. Ray paths, wavefronts, and relative traveltime error (a) for the direct P phase in the ak135 global model
(computation time is 116 s) and (b) for the PcS phase (computation time is 99 s) in the ak135 global model.

enough grid resolution for the underlying Cartesian
grid is used, the error associated with the conver-
sion of the model from polar to Cartesian coordi-
nates should be negligible. For an intermediate
depth event (300 km) the traveltimes and ray paths
for different global phases are computed. The
traveltimes are compared with the reference trav-
eltimes for the ak135 model. The core mantle
boundary and the inner-outer core boundary are
represented by explicit interfaces, and the grid
spacing for the underlying velocity field is 5 km.
Mantle discontinuities are not expressed by explicit
interfaces. The time step is set to 0.2 s and 100
points are used to represent the bicharacteristic
strip at the source. In this example the interface
grid used in the tracking scheme is set at 1000 x
1000 nodes.

[40] The ray paths, wavefronts, and relative trav-
eltime error for the direct P and PcS phases are
shown in Figure 10. The relative traveltime error
for the reflections from the core mantle boundary is
slightly larger. In Figure 11, Gaussian distributed
random numbers with a standard deviation of
2.5 km/s are created on a grid with a spacing of
400 km and then added to the ak135 Cartesian
velocity grid using cubic B-splines. The position of

the core mantle boundary is also perturbed in
the depth direction using Gaussian random
numbers with a standard deviation of 100 km. P
and PcP phases are computed for this model. The
structure gives rise to several occurrences of multi-
pathing (see Figure 11) due to the shape of the core
mantle boundary and velocity heterogeneities in
the mantle.

[41] This example serves to demonstrate that wave-
front tracking is not limited to computing travel-
times for local or regional models. One potential
application might be in the imaging of the deep
mantle near the boundary with the core, where the
complex heterogeneity associated with the D”
zone can produce multipathing. Another possibility
is the prediction of later arrivals associated with
sharp velocity gradients in the vicinity of upper
mantle discontinuities [Song et al., 2004]. The
accuracy of the technique for the above examples
is of the order of 0.1 s which is comparable to the
accuracy achieved for global seismic phases when
a graph and perturbation method are used [e.g.,
Bijwaard and Spakman, 1999]. Compared to
conventional ray methods that account for lateral
heterogeneity in the Earth [e.g., Julian and
Gubbins, 1977; Thurber and Ellsworth, 1980] this
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Figure 11. Wavefronts and ray paths for P and PcP

phases computed for the ak135 model with Gaussian-
distributed random noise added to the velocity field and
core mantle boundary geometry. While the heterogene-
ity is unrealistically large it serves to demonstrate the
robustness of the technique. The computation time
required to predict the traveltimes alone is 77 s.

new approach has the advantage of robustness (as
shown in Figure 11), and potentially, efficiency.

3.3. Multiarrival Tomography

[42] The inversion of first arrival traveltimes is
undoubtedly the most popular technique for
imaging subsurface seismic structure at all scales
[e.g., Nolet, 1987; Bregman et al., 1989; Toomey et
al., 1998; Rawlinson et al., 2006; Conder and
Wiens, 2006]. A comprehensive review of the
methodology and its application has been given
by Rawlinson and Sambridge [2003]. As discussed
previously, later arrivals sample different parts of
a structure when compared with first arrivals and
therefore have the potential to contain additional
information. This means that if they are used in
seismic tomography, improved images should re-
sult. To investigate this possibility, two numerical
tests are performed in which the results of first and
multiarrival tomography are compared. The first
test is a body wave example that attempts to
recover velocity and interface structure simulta-
neously. In the second test, a smooth velocity
model is reconstructed from surface wave travel-
times. A nonlinear iterative inversion procedure is
used to solve the multiarrival tomography problem.
The model perturbation is computed in this work
using the subspace method, which has the advan-
tage that the pseudo-inverse has to be computed for
only a small matrix [e.g., Kennett et al., 1988;
Williamson, 1990; Rawlinson and Sambridge,
2003].

[43] It is important to emphasize that the existence
of later arrivals is highly dependent on the charac-
ter of the velocity structure. In a smooth velocity
model, there is always a first arrival ray path
between a source and a receiver, but later arrivals
only exist if velocity gradients cause the wavefront
to form a swallowtail. Here, later arrivals refer to
the multipathing of transmissions and reflections
and not just the first arrivals of reflections and
refractions at discontinuities, which are sometimes
used in tomography and also referred to as later
arrivals [e.g., Rawlinson and Sambridge, 2003].

[44] In seismic tomography one typically begins
with a simple, often one-dimensional, starting
model [e.g., Graeber et al., 2002; Conder and
Wiens, 2006; Rawlinson et al., 2006]. These mod-
els are unlikely to generate the multipathing ob-
served in real data because of their simplicity.
However, as the iterative inversion progresses
and the model becomes more complex, later arriv-
als will gradually appear and be used to refine the
solution. This means that during the iterative in-
version procedure, the number of ray paths and
hence data is not constant. As a consequence, the
RMS (root mean square) data prediction error can
actually increase as later arrivals appear for the first
time and, at least initially, are not well described by
the model.

[4s] Once later arrivals start to be predicted during
the iterative inversion procedure, they have to be
correctly matched with observations. For example,
given a particular source-receiver combination with
five observed and three predicted arrivals, it may
not be clear which two of the four observed later
arrivals actually correspond to the predicted later
arrivals. They are therefore matched according to
their number, which means that the first predicted
later arrival is assigned to the first observed later
arrival and so on until there are no predictions or
observations left. Although this may result in
incorrect phase associations in some cases, the
underlying improvement of the model at each
iteration should gradually reduce this possibility.
In the early stages of an iterative inversion proce-
dure one would also expect the first arrivals to be
the dominant influence in the reconstruction of
model perturbations. Therefore a few mismatched
later arrivals should not have a significant influ-
ence. As the solution converges toward the true
model, additional later arrivals may appear, but
they are more likely to be matched correctly.

[46] The main obstacle for multiarrival tomography
is the correct identification of later arrivals in an
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Figure 12.

(a) Layered velocity model and associated paths used in the inversion test involving later arrivals. Ray

paths corresponding to the first, second, and remaining later arrivals are plotted as red, green, and blue lines,
respectively. Point sources are denoted by stars and receivers by triangles. Note that paths also emanate from two
impinging plane wavefronts. (b) The interface perturbation and velocity anomalies that define the true model. The

contour lines are plotted at 5% intervals.

observed seismogram. The Lagrangian solver used
in this work can calculate the traveltime and the
direction of the incoming ray for each arrival at a
receiver. Using Gaussian beams, one can also
compute synthetic seismograms for body waves.
Considering that multipathing of surface waves is a
frequently observed phenomenon [e.g., Capon,
1971], the most feasible step might be the use of
a multiarrival scheme in surface wave tomography,
or ambient noise tomography.

3.3.1. Body Wave Tomography Example

[47] In this numerical test the inversion is per-
formed simultaneously for the velocity and inter-
face structure of a two-layered model using (1)
only first arrivals and (2) first and later arrivals.
The true model (i.e., the model we try to recover)
and the ray paths are shown in Figure 12a. Note
how the later arrivals are clustered in the valley
structure created by the downward deflection of the
interface. For the two sources in the upper layer,
the direct wave and the reflection from the inter-
face are used, and for the two sources in the lower
layer, the refracted wave and the associated multi-
ple (i.e., reflected once between free surface and

interface) are used. Two incoming plane waves
which refract at the interface are also included.
The number of observed arrivals is provided in
Table 1. This forms our set of observed traveltimes
for the synthetic model, which we will try to
recover in an iterative inversion procedure.

[48] The synthetic test model is based on a depth-
dependent background velocity field. In the upper
layer the velocity at the surface is 3.0 km/s and
increases with depth at a rate of 0.05 s™'. In the
lower layer, the velocity increases at a rate of 0.01

s™! to 8.2 km/s at the bottom. The interface is

Table 1. Number of Observed Arrivals for the Test
Problem Shown in Figure 12

Observed Arrivals

First arrivals 170
Second arrivals 32
Third arrivals 32
Total (first, second, and third) 234
Fourth arrivals 12
Fifth arrivals 12

Sixth arrivals 2
Total (fourth, fifth, and sixth)
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(a) Number of later arrivals as a function of iteration when only first arrivals are used during the iterative

inversion procedure. (b) Number of later arrivals when first and later arrivals are used during the iterative inversion
procedure. (c¢) RMS traveltime residuals for the two solutions. (d) RMS traveltime residuals for the different arrivals
when first and later arrivals are used in the iterative inversion procedure.

given by a horizontal line. The spacing of the
velocity grids is 10 km and the interface is defined
using nine control nodes. A perturbation to both
interface and velocity structure is then superim-
posed on the background model as shown in
Figure 12b. There are two low-velocity anomalies
(15% perturbation) in the upper layer and the
central interface node is perturbed so that a valley
is formed. The background velocity distribution is
used as the initial model for the inversion proce-
dure. A 12-dimensional subspace is used to com-
pute the model perturbation and the iterative
inversion procedure is stopped if the RMS value
of the traveltime residuals falls below 0.02 s.

[49] When only first arrivals are used in the inver-
sion, the final model does not generate any fourth,
fifth, or sixth arrivals. In Figure 13a, second and
third arrivals appear gradually up to the ninth step
of the iterative inversion procedure. After the ninth
iteration, the number of second and third arrivals is
constant (32). It is interesting to note that the model

used at iteration 11 generates two fourth and fifth
arrivals. Figure 13b shows the number of later
arrivals as a function of iteration when first and
later arrivals are used in the inversion. Second and
third arrivals appear after the first iteration, and
once the perturbations are large enough, fourth,
fifth, and sixth arrivals start to appear. The intro-
duction or removal of later arrivals tends to be
gradual rather than dramatic. The 60 predicted
second and third arrivals are close to the observed
number of 64. The 18 predicted fourth and fifth
arrivals is also close to the observed number of 20;
the two observed sixth arrivals are also predicted.

[s0] The computation time for the iterative inver-
sion procedure when only first arrivals are used is
20 min; this compares to 55 min when first and
later arrivals are used. The multiarrival tomography
takes significantly longer because of the larger
number of iterations and the greater number of
arrivals for which ray paths and Fréchet derivatives
have to be computed.
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Figure 14. Relative error in percent between the true model and the inversion result (a) based on first arrivals and
(b) based on first and later arrivals. Contour lines are plotted at 1.5% intervals.

[s1] Figure 13c shows the RMS traveltime resid-
uals or error for the two solution classes. When
only first arrivals are used, the RMS value
decreases monotonically. On the other hand, when
first and later arrivals are used, the RMS error
initially decreases, then increases as fourth, fifth,
and sixth arrivals appear, before undulating for a
few iterations and finally decreasing. This behavior
is due to the appearance of fourth, fifth, and sixth
arrivals, to which the structure has yet to be
adjusted. In Figure 13d the RMS traveltime resid-
uals for the different arrivals are plotted. It is
important to note that the RMS value of the first
arrivals decreases within the first 10 iterations and
then stays relatively constant. Also in the first 10
iterations, the RMS value of the second arrivals
decreases initially but then stays at a relatively
large value. For the third arrivals the RMS value
also decreases in the first 10 iterations but is
smaller than for the second arrivals. When the
fourth, fifth, and sixth arrivals are predicted for
the first time, they show relatively large traveltime
residuals. As they are taken into account during
later steps of the iterative inversion procedure, the

RMS value for second and third arrivals increases.
Adjusting the structure for one class of later
arrivals therefore appears to increase the misfit
for another class. This behavior of the RMS value
could also be due to a mismatch between the
observed and predicted later arrivals for several
source-receiver pairs (i.e., when the number of
predicted arrivals is not equal to the number of
observed arrivals, as discussed earlier). Only after
the 20th step does the RMS value decrease for all
later arrivals. Note that in Figure 13a fourth and
fifth arrivals are predicted at the 10th and 11th
iteration. They, however, do not appear in the plot
of the RMS value (Figure 13d) of the different
arrivals, due to the fact that there are no observa-
tions for these later arrivals.

[s2] Figure 14a shows the difference between the
inversion result and the true structure when only
first arrivals are used in the inversion. The tradeoff
between interface geometry and velocity anomaly
is clearly not as well resolved compared to when
both first and later arrivals are used (Figure 14b). If
first arrivals are used, it takes 12 iterations to
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Figure 15. True velocity model and associated ray
paths for surface wave tomography example. Ray paths
corresponding to first, second, and remaining arrivals
are plotted as red, green, and blue lines, respectively.
Note how the later arrivals sample the low-velocity
anomalies.

reduce the RMS value of the traveltime residual to
less than 0.02 s, compared with 24 iterations, when
first and later arrivals are used.

[53] In general it turns out that adding later arrivals
makes the inverse problem much more nonlinear,
which means that care must be taken to avoid
instabilities in an iterative nonlinear approach.

3.3.2. Surface Wave Tomography Example

[s4] The following example demonstrates the po-
tential of multiarrival surface wave tomography.
This is arguably a more realistic application than
the previous example as surface wave multipathing
is more readily identifiable in seismic records and
ambient noise cross-correlations.

[ss] The model is constructed using a background
velocity of 5 km/s. Three distinct low-velocity
anomalies (Figure 15) are then superimposed.
One can see from Figure 15 that the first arrival
ray paths are guided away from the large-amplitude
low-velocity anomalies, compared to later arrivals.
The structure generates 221 first and 66 later
arrivals. Gaussian distributed random noise with
a standard deviation of 0.15 s is added to the
synthetic traveltimes to simulate the effects of
observational uncertainty. These traveltimes are
then used to recover the structure using the same
nonlinear iterative inversion procedure described in
the previous section. A model with a constant
velocity of 5 km/s is used as the starting model.
In the case of the first arrival tomography, the
nonlinear iterative inversion is stopped when the
RMS value for the traveltime residuals is below
0.15 s (i.e., the standard deviation of the Gaussian
distributed random noise). The first arrival tomog-
raphy requires 457 s of CPU time for 32 iterations.
In the multiarrival tomography the iterative non-
linear inversion is stopped after the same number
of iterations and requires 698 s of CPU time. The
RMS value of the traveltime residuals is 0.196 s.
An additional 30 iterations would decrease the
RMS value by only 0.009 s.

[s6] The differences between the inversion results
and the true model are plotted for first arrival
tomography in Figure 16a and for multiarrival
tomography in Figure 16b. As is the case for the
body wave tomography, multiarrival tomography
leads to a better recovery of the low-velocity
anomalies compared with first arrival tomography.
This is especially the case near the westernmost

Figure 16. Relative difference (true model minus inversion result) (a) when only first arrivals and (b) when first and
later arrivals are used to recover structure. Contour lines are plotted at 2.5% intervals.
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Figure 17. Rayleigh wave group velocity with a
frequency of 0.2 Hz obtained from ambient noise first
arrival tomography [Saygin, 2007]. For the given source
receiver pair up to 7 arrivals are predicted by multi-
arrival wavefront tracking.

anomaly, where using first arrivals introduces spu-
rious fast anomalies surrounding the low-velocity
anomaly. The error amplitude in the center of the
model is slightly higher for multiarrival tomogra-
phy. A possible explanation for this is that due to
the increased nonlinearity the iterative nonlinear
inversion scheme has found only a local minimum
of the objective function and not the global mini-
mum. In summary multiarrival tomography leads
overall to a better recovery of structure given the
same number of iterations despite a slightly larger
RMS value for the traveltime residuals.

[57] Figure 17 shows multipathing between two
stations in a velocity model for Rayleigh waves
with a frequency of 0.2 Hz obtained from ambient
noise data. The velocity model was obtained using
only first arrival paths between stations [Saygin,
2007]. Figure 18 shows the long-term cross-
correlation of the ambient noise between the two
stations. The predicted traveltime for the first,
second, third, and later arrivals are marked. Rela-
tive amplitudes due to geometrical spreading have
been predicted for each arrival by keeping track of
the change in distance between each node and its
neighbors as the wavefront propagates. In the
cross-correlated noise one can clearly recognize
the second arrival (green), which fits the data
surprisingly well compared to the first arrival.
Predicted third and later arrivals show a lower
amplitude than the corresponding observations
and arrive earlier than the maximum amplitude of
the last wave packages. However, considering the
clustering of these arrivals it is probable that
interference between the wavelets for each arrival
is responsible for this effect. In addition to relative
amplitudes, the direction of the incoming wave

package could also be used to identify later arrivals
for three component recordings. This example
clearly demonstrates that it is possible to discrim-
inate between later arrivals in an observational data
set, thereby making multiarrival tomography a
realistic proposition for some classes of study.

4. Discussion and Conclusions

[ss] The scheme presented in this work for wave-
front tracking in two dimensions can be used as
an alternative to first arrival schemes for the
computation of traveltimes in heterogeneous two-
dimensional media, with the added benefit that
later arrivals are included. Although Lagrangian
wavefront tracking techniques in two dimensions
have been developed previously [e.g., Lambaré et
al., 1992; Vinje et al., 1993], our scheme is
different in that the wavefront is unfolded into
reduced phase space, where it stays locally smooth.
The ability to remove points dynamically during
the propagation process leads to greater efficiency
and further distinguishes the new scheme from
previous work in the field. While we have extended
the method to three-dimensional continuous media
using sophisticated surface refinement techniques
that were developed in computer graphics [e.g.,
Zorin et al., 1996; Garland and Heckbert, 1997],
it is beyond the scope of this paper to consider
such techniques here. Besides, the particular appli-
cations in seismology that we have presented do
not require three-dimensional wavefront tracking.

[so] In addition to improving the basic wavefront
tracking technique, a variety of application in solid
earth seismology are investigated for the first time.
Previously the focus has been on applications in
the field of exploration geophysics [e.g., Vinje et
al., 1993; Lambaré et al., 1996; Vinje et al., 1999;
Xu and Lambaré, 2004]. The suite of examples
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Figure 18. The extracted Green’s function for Ray-
leigh waves. The different arrivals predicted by multi-
pathing are marked by the red (first arrival), green
(second arrival), and blue (third and later arrivals) lines.
The points mark the relative amplitudes based on
geometrical spreading.
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presented here show that wavefront tracking can be
a valuable tool at local, regional, and global scales.
In the latter case multipathing global phases (P,
PcP, etc.) were efficiently tracked through a het-
erogeneous Earth.

[60] The structure sampled by a later arriving ray
path not only influences the traveltime but also
manifests in the amplitude and phase shifts across
interfaces. All this information can be incorporated
into a synthetic seismogram using the Gaussian
beam method. The ray paths obtained by the
Lagrangian wavefront tracker are used to aim
narrow fans of rays at the surface near the receiver.
These rays are used in the Gaussian beam method
to compute synthetic seismograms and the impulse
response of structure beneath a receiver from tele-
seismic arrivals (i.e., a receiver function).

[61] Synthetic tests clearly show that velocity and
interface structure can be recovered more accurate-
ly when later arrivals are exploited in addition to
first arrivals. However, if later arrivals are used in
seismic tomography, the inverse problem becomes
much more nonlinear. An iterative nonlinear pro-
cedure may therefore fail to find the global mini-
mum. On the other hand, if later arrivals are used,
the global minimum of the misfit function is likely
to be better defined. A two step procedure, in
which the solution model is initially obtained using
only first arrivals, before adding later arrivals in a
second inversion step, may be the best approach. In
general it is still possible that the solution obtained
from first arrivals only may not be sufficiently
close to the global minimum to allow the effective
inclusion of later arrivals. The solution to the
nonlinearity of the multiarrival seismic tomogra-
phy problem therefore might lie in the use of a
direct search method [e.g., Gill et al., 1981; Kirk-
patrick et al., 1983; Whitley, 1994]. One benefit of
these nonlinear techniques is that there would be
no need to calculate ray paths, which would
decrease the computation time of the forward
problem. Even so, they would only be practical
for problems with up to several hundred
unknowns; beyond this, direct search methods
become computationally unfeasible. Observations
of surface wave multipathing are common [e.g.,
Capon, 1971] and given that the number of
unknowns in surface wave tomography can be
relatively small [e.g., Fishwick et al., 2005], it
might be easier to exploit surface wave rather than
body wave data.

[62] The next logical step with the two-dimensional
wavefront construction technique is to use it in

conjunction with real data. Two promising appli-
cations are receiver function analysis and surface
wave tomography/ambient noise tomography. In
receiver function analysis, the impulse response
function may contain later arrivals due to lateral
variations in structure. If these later arrivals can
be predicted, they could be used as additional
constraints. Ambient noise tomography results for
the Australian continent suggest that there is
severe multipathing for certain station pairs. This
multipathing can be observed in the long term
cross-correlation of the array data [Saygin, 2007],
as shown in Figure 18. If this information could be
extracted routinely, then it would present an ideal
opportunity to evaluate the new multiarrival
tomography technique with observational data.
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