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S U M M A R Y
A new technique designed for generating multiple solutions to seismic tomography problems
using gradient based inversion is presented. The basic principle is to exploit information
gained from previous solutions to help drive the search for new models. This is achieved by
adding a feedback or evolution term to the objective function that creates a local maximum at
each point in parameter space occupied by the previously computed models. The advantage
of this approach is that it only needs to produce a relatively small ensemble of solutions,
since each model will substantially differ from all others to the extent permitted by the data.
Common features present across the ensemble are, therefore, likely to be well constrained. A
synthetic test using surface wave traveltimes and a highly irregular distribution of sources and
receivers shows that a range of different velocity models are produced by the new technique.
These models tend to be similar in regions of good path coverage, but can differ substantially
elsewhere. A simple measure of the variation across the solution ensemble, given by one
standard deviation of the velocity at each point, accurately reflects the robustness of the average
solution model. Comparison with a standard bootstrap inversion method unequivocally shows
that the new approach is superior in the presence of inhomogeneous data coverage that gives rise
to under or mixed-determined inverse problems. Estimates of posterior covariance from linear
theory correlate more closely with the dynamic objective function results, but require accurate
knowledge of a priori model uncertainty. Application of the new method to traveltimes derived
from long-term cross-correlations of ambient noise contained in passive seismic data recorded
in the Australian region demonstrates its effectiveness in practice, with results well corroborated
by prior information. The dynamic objective function scheme has several drawbacks, including
a somewhat arbitrary choice for the shape of the evolution term, and no guarantee of a thorough
exploration of parameter space. On the other hand, it is tolerant of non-linearity in the inverse
problem, is relatively straightforward to implement, and appears to work well in practice. For
many applications, it may be a useful addition to the suite of synthetic resolution tests that are
commonly used.
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1 I N T RO D U C T I O N

The under or mixed determined nature of the non-linear inverse

problem in seismic tomography usually means that an infinite num-

ber of different models satisfy the data. Monte Carlo direct search

methods, like the Metropolis algorithm, genetic algorithms and

Neighbourhood Algorithm, widely explore parameter space and

produce multiple solutions that can be interrogated for consis-

tent information using ensemble inference techniques (e.g. Lomax

& Snieder 1994; Sambridge 1998, 1999a,b; Koper et al. 1999;

Mosegaard & Sambridge 2002). However, the large number of un-

knowns present in most classes of seismic tomography makes a

fully non-linear approach computationally impractical. As a result,

iterative non-linear tomography based on using local gradient infor-

mation to direct the search remains the method of choice in many

applications (e.g. Farra & Madariaga 1988; Zelt & Smith 1992; Zelt

& Barton 1998; Graeber & Asch 1999; Bijwaard & Spakman 2000;

Rawlinson et al. 2001; Gorbatov & Kennett 2003; Bai & Greenhalgh

2005; Rawlinson et al. 2006).

The basic assumption underlying gradient based minimization

is that the inverse problem is locally linearizable, which requires

the objective function to be smooth, and the initial model m0

to be sufficiently close to the required minimum, for the tech-

nique to successfully converge. Backus & Gilbert (1970) refer to

a solution m obtained in this way as being ‘g-near’ to m0, since

the functional g(m) (e.g. traveltime predictions) is computed from
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g(m0) using first-order perturbation theory. If second or higher or-

der terms make a significant contribution to g(m) − g(m0), then

m is ‘g-far’ from m0. While it is feasible for iterative non-linear

inversion to produce ‘g-far’ solutions, both stability and solution

robustness will degrade as higher order terms become more dom-

inant. The wealth of new information on Earth structure and com-

position that has been revealed by seismic tomography over the

last several decades is testament to the validity of the ‘g-near’

assumption for many data sets (see Nolet 1987; Iyer & Hirahara

1993; Rawlinson & Sambridge 2003, for many examples). However,

since only a single model is usually produced by this technique,

the problem of solution non-uniqueness must still be addressed.

To date, a number of different approaches have been used to ex-

amine the robustness of solutions obtained using gradient based

tomography.

One of the most common schemes for assessing the validity of

a solution model is the synthetic resolution test, in which an in-

put model is used to generate an artificial data set using the same

source and receiver configuration as the data set recorded in the field.

The ability of the inversion scheme to recover the input model can

then be used to evaluate the robustness of the solution model. The

ubiquitous checkerboard resolution test, which uses an input model

consisting of an alternating pattern of fast and slow anomalies, is

an example of this class of numerical experiment (e.g. Walck 1988;

Glahn & Granet 1993; Ritsema et al. 1998; Day et al. 2001; Graeber

et al. 2002; Rawlinson & Urvoy 2006). Although useful, synthetic

resolution tests have a number of limitations, including that the re-

sults can vary according to the input structure used (e.g. Lévêque

et al. 1993).

Another means of assessing solution robustness comes from lin-

ear theory by way of formal estimates of posterior covariance and

resolution (Tarantola 1987; Menke 1989). Quantitative informa-

tion regarding model uncertainty is valuable, which explains the

widespread use of these measures in seismic tomography (e.g. Aki

et al. 1977; White 1989; Benz et al. 1992; Wang & Braile 1996;

Graeber & Asch 1999). Drawbacks of using posterior covariance and

resolution include that their validity decreases as the non-linearity of

the inverse problem increases; they require the inversion of a poten-

tially large M × M matrix, where M is the number of unknowns; and

errors in model representation are not taken into account (although

this problem is hard to overcome with most forms of robustness

analysis). Furthermore, the absolute values of the resolution and

covariance estimates can become rather meaningless when the a
priori model covariance and data uncertainties are poorly estimated.

In addition, regularized solutions, which by their very nature sup-

press noise propagation from the data, also suppress formal model

uncertainties in the least well-constrained parts of the model. Nev-

ertheless, their relative values can still be useful indicators of the

effect the data have in constraining the solution model. The prob-

lem of attempting to directly invert large sparse matrices when many

model parameters are involved has been mitigated in recent times by

modifying iterative approaches such as LSQR (Zhang & McMechan

1995; Yao et al. 1999) to approximate the generalized inverse, and

using sophisticated packages such as PROPACK, which accurately

estimate singular values and vectors for large sparse matrices (Zhang

& Thurber 2007).

A number of other techniques for analysing solution non-

uniqueness in seismic tomography have been investigated. Debayle

& Sambridge (2004) estimate the minimum length scale of resolv-

able structure as a function of location in the model using Voronoi

diagrams; the size and shape of Voronoi cells are constrained by a

quality criterion which is based on ray density and azimuthal cover-

age. This approach shares similarities with irregular mesh tomog-

raphy in which the distribution of grid points or cells which define

the model parametrization is adjusted according to some measure of

data constraint (Sambridge & Rawlinson 2005). Statistical methods

of error estimation based on multiple inversions with different com-

ponents of the data set, such as bootstrapping and jackknifing, have

also been used (Lees & Crosson 1989; Su & Dziewonski 1997; Zelt

1999; Gung & Romanowicz 2004). However, Nolet et al. (1999)

point out that both bootstrapping and jackknifing rely on overde-

termined inverse problems which don’t normally occur in seismic

tomography.

Direct search methods which generate multiple solution models,

and then apply some form of statistical analysis to decide which

features of the ensemble are significant, have much appeal. For in-

stance, they can obviate the need for static regularization that is often

used in gradient based tomography to tune the solution, and explore

parameter space more thoroughly. The question that is addressed in

this paper is whether it is feasible to generate a meaningful ensemble

of data satisfying solution models via iterative non-linear inversion.

One possibility that has been investigated previously is to use multi-

ple starting models (e.g. Vasco et al. 1996). Thus, the gradient-based

procedure is initialized from different points in model space, and

therefore, may converge to different solutions. Vasco et al. (1996)

apply cluster analysis to an ensemble of 1075 tomography models

generated in this way from cross-hole data. In theory, one could also

generate a family of solutions by identifying the model null space

vectors (using Singular Value Decomposition, SVD, for example),

and then varying a given solution model only in the null space,

such that the data fit remains unchanged. The so-called ‘nullspace

shuttle’ proposed by Deal & Nolet (1996) essentially follows this

principle, as it provides the ability to move from one solution to

another without compromising the data fit. The main drawback of

this technique is that it is strictly valid for linear inverse problems.

The new approach tested here is quite different, in that it modi-

fies the objective function after each model is produced in order

to prevent subsequent solutions from residing near the same point

in parameter space. The aim is to produce a relatively small num-

ber of acceptable models that are as different from one another as

possible.

After describing the dynamic objective function scheme, several

tests are carried out using a synthetic surface wave traveltime data

set that features a strongly heterogeneous path distribution. This

initial validation process allows the behaviour of the scheme and

its sensitivities with respect to data coverage and model complexity

to be examined. Information extracted from the solution ensem-

ble can also be directly compared to the true model. A bootstrap

analysis is performed with the same data set to enable comparison

with a standard statistical technique. Formal estimates of posterior

covariance from linear theory are also computed for the purposes

of comparison. Following the synthetic tests, the new scheme is

applied to surface wave traveltimes extracted from the long-term

cross-correlations of ambient noise data collected in the Australian

region.

2 M E T H O D

2.1 Formulation of the dynamic objective function

The inverse problem in seismic tomography can be posed in terms of

minimizing an objective function consisting of a data term and one

or more regularization terms. A common form of objective function
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used in gradient based inversion is:

S(m) = 1

2

{
[g(m) − dobs]

TC−1
d [g(m) − dobs]

+ ε(m − m0)TC−1
m (m − m0) + ηmTDTDm

}
, (1)

where m are the model parameters, g(m) the data predictions, dobs

the data observations, Cd the a priori data covariance matrix, m0

the reference model, Cm the a priori model covariance matrix

and D the second derivative smoothing operator (see Rawlinson &

Sambridge 2003, for a detailed discussion). ε and η are known as

the damping parameter and smoothing parameter, respectively and

govern the trade-off between how well the solution satisfies the data,

the proximity of the solution model to the starting model and the

smoothness of the solution model.

Damping and smoothing regularization are usually required in

gradient based tomography to tame the data term in eq. (1) so that the

objective function becomes smooth and well behaved, that is, more

locally quadratic so that for some initial model m0, there exists a

‘g-near’ solution m. However, they generally do not contribute

meaningful a priori information to the solution model, which is

why they are normally dispensed with when direct search meth-

ods are used (e.g. Lomax & Snieder 1994; Sambridge 1998). The

appeal of producing multiple solution models, discarding static reg-

ularization, yet retaining a gradient based inversion framework,

gave rise to the idea of continuously modifying the shape of the

misfit surface defined by S(m) in response to information ex-

tracted from the data. The basic principle is that once a point in

model space has been sampled, then there is little to be gained

from revisiting its neighbourhood in future searches unless the

data constraints are particularly compelling. This can be formal-

ized in an objective function by the cumulative addition of an

explicit evolution or feedback term that is a maximum at each

point in parameter space occupied by previously generated mod-

els (see Fig. 1). Thus, by beginning at some point m0 in parameter

space, each successive solution model will be distinct from all of its

predecessors.

The feedback or evolution term �(m) that is added to S(m) could

potentially take many forms, but it is important that it does not

strongly influence the objective function in regions of model space

distant from any of the previously generated solutions. Therefore,

simply setting:

� j (m) = −
j∑

i=1

(m − mi )
T(m − mi ) j = 1, . . . , N , (2)

where N is the total number of models generated, would be un-

satisfactory, for while it is a maximum where m = mi , it de-

creases quadratically away from this point to −∞. A better choice

is:

� j (m) =
j∑

i=1

1

λ[(m − mi )T(m − mi )]p + ζ
j = 1, . . . , N ,

(3)

where λ, p and ζ are free parameters. In this case, �(m) is maximum

when m = mi , and deceases to zero away from this point. The factor

ζ determines the maximum value of �(m), λ the width of �(m),

and p the curvature of �(m) (see Fig. 2). By adjusting the values

of these free parameters, the influence of the evolution term on

the objective function can be effectively controlled. Ultimately, the

values of ζ , λ and p are chosen by trial and insight, but it turns out

that cogent choices can be made based on the character of the data

misfit function (see next section).
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Figure 1. Schematic illustration of the dynamic objective function approach for generating multiple solution models. In this case, the objective function S(m)

is simply a function of a single model parameter m. (a) No feedback term is present when the first solution is found; (b) when the second solution m2 is

computed, the minimization is influenced by the presence of a feedback term due to the first model m1; (c) the third solution m3 is deterred from converging to

the previous two solutions by the presence of two feedback terms centred at m1 and m2.
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Figure 2. Demonstration of how the geometry of the evolution term varies as a function of each of the free parameters (a) λ, (b) ζ and (c) p.
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In the following treatment, the damping and smoothing terms in

eq. (1) are discarded so that the objective function becomes:

Sj (m) = 1

2

{
[g(m) − dobs]

TC−1
d [g(m) − dobs]

+
j∑

i=1

1

λ
[
(m − mi )T(m − mi )

]p + ζ

}
j = 1, . . . , N .

(4)

The first solution that is generated has the evolution term set to

zero, since no model has yet been produced. Alternatively, one

could set m0 = m1 and use the starting model as the first so-

lution model that is fed back into the objective function, but the

former approach is used here. The scheme progresses by feeding

each solution model that is produced back into the objective func-

tion, which is subsequently minimized to produce a new model.

This iterative process continues until N models are generated (see

Fig. 1). The lack of explicit regularization, at least in the first itera-

tion of the scheme, may well destabilize a gradient-based minimiza-

tion process. However, it turns out that the implicit regularization

imposed by the cubic B-spline parametrization and subspace in-

version method used in the later examples mitigates this potential

hazard.

In comparing eqs (1) and (4), it is worth noting that both tech-

niques rely on regularization to produce a model from a non-unique

problem. However, in the case of eq. (1), the regularization is static

and a single solution is produced. By contrast, eq. (4) recognizes

the presence of multiple solutions, and dynamically adjusts the reg-

ularization in order to generate a family of dissimilar data fitting

solutions.

Gradient-based inversion methods make use of the derivatives of

S(m) at a specified point in model space, and require S(m) to be

sufficiently smooth to permit a local quadratic approximation:

S(m + δm) ≈ S(m) + γ̂m + 1

2
δmTĤδm, (5)

where δm is a perturbation to the current model and γ̂ = ∂S/∂m
and Ĥ = ∂2 S/∂m2 are the gradient vector and Hessian matrix,

respectively. Evaluating these partial derivatives for the above form

of S(m) yields:

γ̂ = GTC−1
d [g(m) − dobs] −

j∑
i=1

ai (m − mi ) (6)

Ĥ = GTC−1
d G + ∇mGTC−1

d [g(m) − dobs]

+
j∑

i=1

bi (m − mi )(m − mi )
T, (7)

where G = ∂g/∂m is the Fréchet matrix of partial derivatives calcu-

lated during the solution of the forward problem, and the coefficients

ai and bi are given by:

ai = λpq p−1
i[

λq p
i + ζ

]2
(8)

bi = 2λpq p−2
i

(
λq p

i + ζ
)[

λq p
i (p + 1) − ζ (p − 1)

][
λq p

i + ζ
]4

, (9)

where q i = (m − mi )
T (m − mi ). Note that ai and bi depend non-

linearly on the model m and act as weights in the gradient vector

and Hessian matrix.

Fig. 1 illustrates how the dynamic objective function scheme can

explore parameter space when the data term is characterized by

a broad minimum, as might occur in a very underdetermined in-

verse problem. If the functional g(m) is sufficiently non-linear, it is

also possible that multiple minima exist, in which case there may be

more than one distinct solution. Direct search techniques such as the

niching genetic algorithm (Koper et al. 1999) and Neighbourhood

algorithm (Sambridge 1999a) are able to target and explore these

favourable regions of model space. In contrast, iterative non-linear

schemes will converge to a single solution with the aid of suitable

regularization, as they are not designed to explore multimodal ob-

jective functions. Using a dynamic objective function approach, it is

possible to explore multimodal landscapes, as illustrated in Fig. 3,

but it would be difficult to ensure that a thorough search is performed

when g(m) is highly non-linear.

2.2 Minimization of the dynamic objective function

In the examples that follow, surface wave traveltime tomography

will be used to evaluate the new technique for generating multi-

ple models and assessing solution robustness. The forward problem

of computing source–receiver traveltimes in order to evaluate the

data prediction vector g(m) is solved using a grid based eikonal

solver known as the fast marching method or FMM (Sethian 1996;

Popovici & Sethian 2002; Rawlinson & Sambridge 2004a,b; de Kool

et al. 2006). The scheme works by implicitly tracking the first-arrival

wave front along an evolving narrow band of grid points, the trav-

eltimes of which are updated by solving the eikonal equation using

upwind entropy satisfying operators. Here, the finite difference op-

erators are defined for 2-D spherical shell coordinates (constant

radius, but variable latitude and longitude). The Fréchet matrix of

partial derivatives G is computed by integration along each ray path,

which can be located by following the traveltime gradient from the

receiver, through the traveltime field, back to the source. Source
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Figure 3. A simple example showing how the dynamic objective function scheme could work in a multimodal landscape. (a) First iteration with no feedback

term; (b) second iteration in which the feedback term produced by the first solution enables the remaining minima to be explored and (c) third iteration.
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grid refinement (Rawlinson & Sambridge 2004b) is implemented to

account for the undersampling of the traveltime field in the source

neighbourhood; ultimately, this leads to significant improvements

in accuracy with little additional computational cost.

An iterative non-linear procedure is used to minimize the objec-

tive function, which successively applies the FMM scheme to solve

the forward problem, and a subspace inversion method to solve the

linearized inverse problem. Thus, for some current model mk , a new

model mk+1 = mk + δmk is produced where the model perturba-

tion δmk is supplied by the subspace inversion method. The scheme

progresses until the observed data are satisfied or when the change

in S(m) with iteration gets sufficiently small.

The subspace inversion method works by projecting the quadratic

approximation of S(m) onto an n-dimensional subspace of the model

space (Kennett et al. 1988; Sambridge 1990; Williamson 1990). For

the dynamic objective function defined above (eq. 4), the perturba-

tion δm is given by

δm = −A

{
AT

[
GTC−1

d G +
j∑

i=1

bi (m − mi )(m − mi )
T

]
A

}−1

ATγ̂,

(10)

where A = [al ] is the M × n projection matrix (for M unknowns), G
is the matrix of Fréchet derivatives and γ̂ is the gradient vector (γ̂ =
∂S/∂m). The basis vectors that span the n-dimensional subspace are

in our case based on the gradient vector in model space γ = Cmγ̂
and the model space Hessian H = CmĤ, where Ĥ = ∂2 S/∂m2

(note that for eq. 4, γ = γ̂ and H = Ĥ). The first search direction

is given by a1 = γ, the direction of steepest ascent. All subsequent

search directions are given by al+1 = Hal (for l = 2, . . . .), which

means that al+1 is based on the rate of change of al . In order to avoid

linear dependence between different al , SVD is used to produce an

orthonormal basis. For large n, the set of al may not completely span

all n dimensions. In such cases, SVD can identify the unnecessary

basis vectors so that they can be removed from A. In all subsequent

calculations, we use a subspace dimension of 10, but allow our SVD

algorithm to dynamically remove unnecessary basis vectors at each

iteration. Therefore, in practice, the subspace dimension tends to

vary between 7 and 10 from iteration to iteration.

Once the iterative non-linear process converges, or produces a

model which adequately satisfies the data, it is then fed back into

the objective function (eq. 4) and the process is repeated starting

from the same initial model. If N solutions are required, then the

iterative non-linear scheme is applied N times. Rather than initiate

each new search for a data satisfying model from the same initial

model, another possibility is to begin at the point in parameter space

occupied by the most recent solution.

At this point, it is worth noting the regularization assumptions

that are inherent to the subspace inversion scheme. The subspace in

which the function minimization takes place is spanned by a family

of orthogonal vectors that are defined in terms of the gradient vector

in model space γ and its rate of change. This means that any model

parameter m L for which ∂g/∂m L = 0 (i.e. all traveltimes are unaf-

fected by changes in m L ) will not vary from the initial model to the

first solution model (i.e. only those regions of a model with adequate

ray path coverage will be perturbed during the inversion process).

Subsequent inversions with the evolution term in place will also

not vary these parameters as its contribution to the corresponding

elements of the gradient vector (see eq. 6) is zero, that is, the ob-

jective function defines a local maximum in these dimensions of

parameter space. In order to generate a family of distinct solutions,

it is generally undesirable to have any parameters of the starting

model located near a local maximum of the evolution term. Here,

the problem is overcome by randomly perturbing the gradient of

the evolution term if the difference between model parameters from

successive generations falls below a given tolerance. In effect, this

gives a ‘kick start’ to those parameters stuck near a local maximum

of S(m). Although in one sense this added step is undesirable in

that it introduces additional free parameters to the problem, it turns

out that a wide range of values for the model tolerance and stan-

dard deviation of the random perturbation can be chosen without

the technique breaking down.

3 R E S U LT S

Two tomography examples are presented below. Synthetic tests that

feature a highly variable path distribution are first performed to

examine the validity of the new technique. This is followed by an

application that exploits high frequency Rayleigh wave empirical

Green’s functions extracted from ambient noise data in order to

image the Australian crust. In both cases, structure is represented

by smooth variations in wave speed on a spherical shell. A mosaic

of cubic B-spline functions (see Rawlinson & Sambridge 2003, for

more details) defined by a grid of control nodes is used to describe

the velocity continuum; the values of these control nodes constitute

the unknowns in the inversion. The use of cubic B-splines in the

velocity parametrization imposes implicit smoothing regularization

on the inverse problem, as it helps to suppress sharp variations in

the shape of the misfit surface.

3.1 Synthetic tests

A synthetic data set is constructed by using FMM to compute trav-

eltimes for seismic energy propagating across a spherical shell be-

tween 14 sources and 17 receivers in the presence of velocity hetero-

geneity. This scenario, therefore, mimics the propagation of surface

waves between earthquake sources and receivers in the Earth. The

model was generated by specifying a grid of 26 × 30 control points

in latitude and longitude, respectively (resulting in a total of 780

unknowns), setting them to a constant value of 5.0 km s−1, and then

superimposing a checkerboard pattern with a maximum amplitude

of 0.8 km s−1. The resultant smooth velocity model, sources, re-

ceivers and associated ray paths are shown in Fig. 4(a). Clearly,

the chosen configuration of sources and receivers produces a highly

heterogeneous data coverage, and ray paths bend significantly in re-

sponse to wave speed variations. Overall, this scenario represents a

good test for the new scheme, as the resolving power of the data set

varies considerably across the model, and is not always correlated

with path density. For instance, in the region between the two clus-

ters of sources and receivers (longitude 130◦ to 140◦, latitude −20◦

to −30◦), there is dense path coverage, but little change in azimuth

between the adjacent rays. To simulate realistic levels of noise in

the data, Gaussian noise with a standard deviation of 2.0 s is added

to the synthetic traveltimes.

Prior to testing the new scheme, a reference inversion is car-

ried out using a standard bootstrap analysis (e.g. Efron & Tibshirani

1993). The bootstrap is a method of statistical inference that exploits

the power of modern computers to produce estimates of probabilistic

phenomena (e.g. variance, bias, coverage) from large and complex

data sets without the need for explicit formulae (unlike formal mea-

sures of covariance and resolution). It works by performing repeat

inversions with a re-sampled data set and examining the characteris-

tics of the model ensemble that is produced. Here, the data set used

to generate each new model is obtained by randomly sampling the
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Figure 4. (a) Velocity model, sources (red stars), receivers (blue triangles) and ray paths associated with the synthetic data set; (b) average model produced

from 50 iterations of the bootstrap technique; (c) spread of the solution ensemble as defined by one standard deviation of the distribution and (d) absolute value

of the error associated with the average solution model.

pool of synthetic traveltimes with replacement. A single traveltime

can be used more than once, and the size of the new data set equals

that of the original. In seismic tomography, the mean of the solution

ensemble and its standard deviation are the most commonly used

pieces of summary information (e.g. Calvert et al. 2000; Gung &

Romanowicz 2004). Although it was pointed out earlier that the ap-

propriateness of bootstrapping for under or mix-determined inverse

problems is questionable, it is one of the few techniques available

that allows ensemble analysis to be carried out with large seismic

data sets.

Figs 4(b)–(d) show the result of a 50 iteration bootstrap scheme

applied to the synthetic data set shown in Fig. 4(a). The starting

model used to produce each solution comprises a simple medium

with a constant velocity of 5.0 km s−1 (i.e. the background model).

The pattern of recovered anomalies exhibited by the average solu-

tion model (Fig. 4b) closely matches that of the true model (Fig. 4a)

in regions of good angular path coverage. In the corridor between the

two receiver clusters, significant smearing is produced by the large

number of paths with similar azimuths. The standard deviation of

the solution ensemble (Fig. 4c) shows that much of the model vari-

ability occurs in regions with the highest concentrations of sources

and receivers, which is opposite to the actual error trend seen in

Fig. 4(d). It is important to note that the solution spread (Fig. 4c)

is not expected to emulate the actual error (Fig. 4d); the checker-

board pattern evident in the latter case is due largely to the choice

of initial model, which exactly matches the true model along the

zero lines of the checkerboard. However, the solution spread, which

is principally a function of data coverage and uncertainty, should

provide an indication of the maximum variability of each parameter

as permitted by the data constraints.

The potentially misleading result of the bootstrap method stems

from the underdetermined nature of the inverse problem, which

requires regularization in order to generate a solution. Here, regu-

larization is imposed implicitly using the subspace scheme, which

causes the solution model to remain largely unperturbed from its

original state in regions of poor data coverage. Gradient based in-

version techniques such as the subspace method will not adjust

parameters that have zero Fréchet derivatives. Therefore, Fig. 4(c)

only has meaning in regions of good path coverage, which can be

found principally in the top right and bottom left sectors of the im-

age. Although underestimated, the pattern of model variability in

these locations appears reasonable—for instance, the largest val-

ues of σ , which occur at 120◦E, 42◦S, coincide with a small re-

gion of poor azimuthal ray coverage. On the other hand, the zone

between the two receiver clusters, where many rays bundle to-

gether (Fig. 4a), does not cause significant variablity in the solution
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ensemble. The explanation for this phenomenon reveals a weak-

ness in the bootstrap method in the presence of inhomogeneous

data coverage. The number of rays that get bundled together define

approximately half the total number of traveltimes in the complete

data set, so random selections from the pool of traveltimes will in-

variably include a significant number of these paths. Consequently,

the structure in this region will always be the same smeared out

anomaly.

Although the bootstrap comparison is instructive, many studies

that deal with large tomographic problems opt for either synthetic

reconstruction tests or formal estimates of posterior covariance and

resolution in order to assess solution non-uniqueness. In the lat-

ter case, local linearity is usually assumed to make the problem

tractable. For eq. (1) with η = 0, the posterior model covariance

matrix can be expressed (Menke 1989):

CM = (
GTC−1

d G + εC−1
m

)−1
. (11)

As pointed out by Rawlinson & Sambridge (2003), posterior covari-

ance and resolution are really only meaningful in a Bayesian context,

where the error statistics associated with the a priori model are well

known, thus allowing the data and prior constraints to be combined to

yield a more accurate posterior model distribution. In such circum-

stances ε = 1, and Cm represents the true a priori model covariance.

Fig. 5(a) shows the solution model produced using a static inversion

(i.e. no model feedback) with ε = 1 and the diagonal elements of Cm

set to (0.5)2; thus, uncertainties in the initial model are assumed to be

uncorrelated and have a uniform value of 0.5 km s−1. Six iterations

of a 10-D subspace inversion scheme are applied to obtain the solu-

tion. Fig. 5(b) is the associated posterior model covariance obtained

by solving eq. (6) using LU decomposition with G computed at the

solution point. Regions of low uncertainty generally match areas of

good pattern recovery, where the error in the solution model is low

(Fig. 5c). High path density does not necessarily yield low posterior

covariance, as shown in the corridor between the two receiver arrays

in Fig. 5(b) (cf. Fig. 4a). Overall, this result is promising, and clearly

superior to the bootstrap test results, which is why posterior covari-

ance estimates remain popular in seismic tomography (Rawlinson

& Sambridge 2003).

The need for accurate a priori information in the computation of

CM is starkly revealed in Fig. 5(d), which is the same as Fig. 5(b), ex-

cept that ε = 2, which is equivalent to setting the a priori uncertainty

to 0.25 km s−1. Since the posterior uncertainty can never exceed the

prior uncertainty, σ in Fig. 5(d) is approximately half that of σ in

Fig. 5(b). In cases where good a priori information is unavailable

(which is often the case), the absolute values of CM, therefore, have

little meaning. If ε = 0, which corresponds to no a priori constraints,

then CM cannot be computed for underdetermined problems since

GT C−1
d G will be a singular matrix.

Figure 5. (a) Velocity model obtained using a static inversion with a damping value of ε = 1; (b) estimate of posterior covariance with ε = 1; (c) absolute

value of the error associated with the solution model shown in (a) and (d) estimate of posterior covariance with ε = 2.
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Following on from the bootstrap and posterior covariance results,

we generate an ensemble of 10 solution models using the dynamic

objective function minimization procedure. The free parameters λ,

p and ζ are set to 7 × 10−5, 1 and 1 × 10−4, respectively. When each

new model is generated, the starting model used on each occasion

is the 5.0 km s−1 constant velocity background model. In this case,

ζ has little effect on the evolution term, so it is just set to a small

number. Tests show that the optimum choice for λ produces solution

models that satisfy the data, but are as different from one another

as possible. As λ decreases from this threshold value (evolution

term increases in magnitude), the solution models become more

dissimilar, but no longer satisfy the data; as λ increases (evolution

term decreases in magnitude), the solution models still satisfy the

data, but become more similar. In practice, it turns out that relatively

few trial and error iterations are usually required to find the optimum

λ value. The parameter p tends to trade off with λ to some extent,

and it was found that little appears to be gained from using p values

other than unity.

The average model of the 10 member ensemble is shown in

Fig. 6(a); the corresponding standard deviation is shown in Fig. 6(b);

and the error between the average model (Fig. 6a) and the true model

(Fig. 4a) is shown in Fig. 6(c). In regions of good path coverage,

the average solution model recovers the pattern of anomalies quite

accurately (cf. Figs 6a and c), although there does appear to be some

‘noisiness’ in the final image. The spread of the solution model, as

given by one standard deviation of the ensemble (Fig. 6b), clearly

distinguishes between well constrained and poorly constrained re-

gions of the model. In contrast to the unrealistic bootstrap error

map (Fig. 4c), the error measure from the dynamic approach shows

a consistent and more believable pattern—in particular, maximum

variability occurs in areas of low or absent path coverage. Notably,

the zone between the two receiver clusters in which rays bunch to-

gether (Fig. 4a) has a high standard deviation, correctly indicating

that these paths poorly resolve structure. Regions in which path

coverage is totally absent (e.g. near the edge of the model) have a

finite standard deviation (Fig. 6b), the value of which is arbitrar-

ily controlled by the choice of λ, and to a lesser extent p and ζ .

Strictly speaking, the uncertainty in these regions should be large,

but in the absence of prior information, cannot be quantified. There-

fore, the spread of the solution model in areas of no ray cover-

age should be viewed as a lower bounds on the possible range of

error.

Figure 6. (a) Average solution model from 10 generations of the dynamic objective function scheme; (b) spread of solution ensemble as defined by one standard

deviation of the distribution; (c) absolute value of the error associated with the average solution model and (d) two measures of misfit reduction for each solution

in the ensemble relative to the starting model. The solid black line denotes the rms traveltime misfit reduction and the dashed line denotes the misfit reduction

of the evolution term in eq. (4). The horizontal dotted line corresponds to the rms traveltime misfit reduction required to satisfy the data to the level of the

imposed noise (i.e. one standard deviation of the Gaussian noise).
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Fig. 6(d) plots the behaviour of the rms traveltime residual and

evolution term (see eq. 4) as a function of model number in the

ensemble. There is little point in keeping track of the value of the

objective function from one solution to the next due to presence of

the evolution term, which changes after each new model is produced.

All 10 solution models approximately satisfy the data to the level of

the noise, and the behaviour of the evolution term indicates that each

new solution model is much more distant in parameter space from

all preceding generations than the initial model, which is a desirable

result. Note that the misfit reduction of the evolution term is not

defined for the first model produced. The almost monotonic decrease

of the evolution term misfit reduction with solution generation is due

to the increasing number of data satisfying solutions that populate

parameter space, that is, it becomes harder to find points in parameter

space that are distant from other solutions.

A final test is performed to investigate whether the properties

of the solution ensemble change significantly if a larger number of

dynamic iterations is used. Exactly the same scenario as Fig. 6 is

adopted, but now the dynamic objective function procedure is al-

lowed to run for 50 iterations. The results are summarized in Fig. 7.

Compared to Fig. 6(a), the average solution model (Fig. 7a) differs

mainly in that the amplitude of anomalies is much smaller in re-

gions of poor data coverage; this is reflected in the checkerboard

error pattern which has become more coherent (cf. Figs 6c and 5c).

Another desirable feature is that the spread of solution models has

become more bimodal (cf. Figs 7b and 6b): in the neighbourhood

of the two source–receiver clusters, σ is small, and elsewhere, σ is

much more uniformly large. This suggests that the 10 models used to

generate Fig. 6 was arguably an insufficient population from which

to infer reliable statistics. The progressive decrease of the evolution

term misfit reduction with iteration (Fig. 7d) is expected due to the

increasing population of distinct solution models. In most cases, the

rms traveltime misfit of the solution models approximately satisfies

the data, which is a desirable outcome.

3.2 Application to ambient noise data from Australia

Over the past 15 years, the passive broad-band station coverage of

Australia has gradually improved, with a cumulative total of over 200

instruments to date (see Kennett 2006, for a recent overview). The

availability of these data permit a wide variety of studies to be un-

dertaken, including surface wave tomography (Debayle & Kennett

2000; Fishwick et al. 2005), body wave tomography (Kennett 2003),

receiver function analysis (Clitheroe et al. 2000; Reading & Kennett

2003) and shear wave splitting (Heintz & Kennett 2005). The emer-

gence of virtual source seismology over the last few years (Campillo

& Paul 2003; Shapiro & Campillo 2004) has given rise to a new class

of seismic tomography that exploits the long-term cross-correlations

of ambient noise data between station pairs (Shapiro et al. 2005;

Kang & Shin 2006; Yang et al. 2007).

Figure 7. Same as Fig. 6, but now using 50 iterations of the dynamic objective function procedure.
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Figure 8. (a) Stations used in the cross-correlation of ambient noise data; (b) path coverage through the initial model; (c) average solution model computed

from an ensemble of 25. V R denotes Rayleigh wave group velocity and (d) variation of the model ensemble as represented by one standard deviation of the

distribution.

In a recent study (Saygin 2007), high frequency Rayleigh wave

empirical Green’s functions were extracted from the records of

208 seismometers covering the Australian region using a cross-

correlation procedure. The traveltimes of these coherent energy

packets were subsequently inverted to produce tomographic im-

ages of the mid-shallow crust beneath Australia. In this example,

traveltimes associated with 6.7 s period Rayleigh waves are used

to investigate the potential benefits of the new dynamic objective

function scheme when applied in an observational context.

The location of the 208 broad-band recorders is shown in Fig. 8(a);

note that traveltime data do not exist for every station pair, as se-

quential array deployments were used to achieve the cumulative

coverage. The total number of traveltimes used to constrain struc-

ture is, therefore, 2332. The initial model is described by a grid of

30 × 30 control points in latitude and longitude, with the velocity

at each node set to 2.8 km s−1. Fig. 8(b) shows the path coverage

through the initial model; clearly some regions will be better con-

strained by the data than others. The free parameters λ, p and ζ

used in the dynamic objective function to construct the solution en-

semble are set to 5 × 10−6, 1 and 5 × 10−6, respectively. Here, a

total of 25 solutions are generated—increasing this number has only

a negligible effect on the average solution model that is produced

(Fig. 8c). The variation of the solution ensemble as a function of

geographical location (Fig. 8d) suggests that the average solution

model is generally well constrained within the Australian mainland,

which is consistent with the path coverage (Fig. 8b). However, there

are regions, particularly in western Australia, where the data con-

straints appear to be relatively poor. Although difficult to discern in

Fig. 8(b), these areas tend to have lower path density and/or poorer

azimuthal path coverage.

The behaviour of the data and evolution terms during the model

generation process is summarized in Fig. 9. On average, the travel-

time misfit reduction exhibited in this example is less than the syn-

thetic test examples, but this is probably largely due to the greater

level of noise present in the observations. Unfortunately, no quanti-

tative estimates of the data uncertainty are available for this data set,

although the final rms misfit of around 10 s for all of the solution

models implies that it may be in the vicinity of this value (assum-

ing data noise is the principle contributor to the misfit). As in the

synthetic test examples, the evolution term misfit reduction tends

to decrease monotonically as more solution models are produced.

This is an almost inevitable consequence, as it only takes two so-

lutions in the same proximity to increase the size of the evolution

term substantially.

In order to help validate the results produced in this test, a conven-

tional checkerboard resolution analysis is performed. Traveltimes

are computed in the presence of an alternating pattern of fast and

slow anomalies using the same source and receiver configuration

as the observational data set. The synthetic traveltimes are then in-

verted in an attempt to recover the pattern. Gaussian noise with a

standard deviation of 5 s is added to the synthetic traveltimes to

simulate the noise content of the observations. Fig. 10(a) shows the
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Figure 9. Two measures of misfit reduction for each solution in the ensemble

(see Fig. 8) relative to the starting model. The solid black line denotes the rms

traveltime misfit reduction and the dashed line denotes the misfit reduction

of the evolution term in eq. (4).

input checkerboard pattern used to create the data set, and Fig. 10(b)

shows the corresponding output pattern generated by the inversion.

Although frequently used to analyse the robustness of tomo-

graphic images, checkerboard resolution tests are not a universally

acclaimed technique; for example, Lévêque et al. (1993) point out

their propensity to retrieve small scale patterns of alternating wave

speed, even though larger scale structure may not be well resolved

by the data. Also, if the non-linearity of the inverse problem is ac-

counted for, checkerboard tests have an added model dependence,

which could be significant in the presence of strong wave speed

heterogeneity such as that exhibited in Fig. 8(c). Despite these rec-

ognized limitations, the regions of good pattern recovery (Fig. 10b)

seem to correspond to regions of low model ensemble variability

(Fig. 8d). Likewise, where smearing of the anomalies is evident,

such as in eastern Queensland and Western Australia, the models in

the ensemble become less similar. Overall, there does not appear to

be any major discrepancy between the results of the two techniques,

which is reassuring.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this study, a dynamic objective function approach to generating

multiple solution models in seismic tomography is formulated and

applied to both synthetic and field data. The aim of the technique

is to modify the topography of the objective function surface based

on information provided by previously computed solutions. This

is accomplished via the introduction of an evolution or feedback

term in the objective function, which creates a local maximum in

parameter space at all points occupied by previous generations of

solution model. Consequently, any new model that is generated is

penalized if it becomes too close to these regions of parameter space.

Provided the objective function remains reasonably well behaved,

gradient based minimization procedures can be used to generate an

ensemble of solutions. Clearly, this is a potential advantage, as it

means that large inverse problems can be addressed.

A series of synthetic tests (Figs 4–7) using a data set featuring

highly variable path coverage shows that the new method is capa-

ble of producing an ensemble of different data-satisfying models

that yield meaningful information on both seismic structure and the

degree to which it is constrained by the data. Simply taking the

average of the ensemble produces a model which generally repli-

cates the true wave speed patterns in regions of good angular path

coverage. Mapping the variation of the ensemble, as measured by

the standard deviation of all solutions, correctly shows which re-

gions are reliably recovered. Bootstrapping, a standard numerical

technique for statistical inference, is used to produce a family of

models by repeat random sampling and inversion of the original

data set with replacement. The reliance of this technique on overde-

termined inverse problems is clearly exposed in this case as the

standard deviation of the model ensemble poorly reflects the actual

error associated with the average model. In particular, low model

variability in regions of sparse data coverage and ray bundling (high

ray density but narrow angular distribution), stands in stark contrast

to the dynamic objective function results.

Bootstrapping and dynamic regularization share some similar-

ities, namely that they can be applied to large non-linear inverse

problems, produce an ensemble of models that can be interrogated

for common features, and use stochastic processes to help drive the

search for new models. In the case of bootstrapping, each solution

is produced by inverting a data set obtained by random selection

from a pool of values. The dynamic objective function technique

Figure 10. Checkerboard resolution test results for the Australian ambient noise data set. The associated path coverage is shown in Fig. 7(b). Note that the

implicit regularization imposed by the subspace inversion scheme means that the solution model does not deviate from the starting model (2.8 km s−1) in

regions of no path coverage.
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randomly perturbs the gradient of the evolution term in order to

prevent model parameters from becoming stuck near local maxima

of the misfit surface from one solution generation to the next. This

helps to ensure that poorly constrained regions exhibit large ensem-

ble variability. An additional benefit of the new technique compared

to bootstrapping is reduced computation time. This occurs due to

the need for fewer solution models in order to obtain a stable esti-

mate of model uncertainty. For very large data sets, the need to solve

the full inverse problem for each model produced (and at least 10 are

required) may mean that dynamic regularization is computationally

prohibitive, but for most forms of tomography, this is unlikely to be

the case.

Application of the dynamic objective function technique to sur-

face wave traveltimes derived from long-term cross-correlations of

the ambient noise data collected in Australia reveals an intriguing

pattern of wave speed variation (see Fig. 8c) that can be correlated

with the surface geology. Fig. 11 shows the average solution model

plotted as in Fig. 8(c), but with several of the outstanding features

highlighted. The zones of elevated wave speed in western Australia

correspond very closely with the surface expressions of the Pilbara

(region 1) and Yilgarn (region 2) cratons (Betts et al. 2002), which

represent fragments of ancient Archean lithosphere. The low veloc-

ity anomalies that characterize regions 3, 4 and 5 have a remarkable

correspondence to regions of thick sedimentary cover and/or ele-

vated heat flow (Chopra & Holgate 2005). In the case of region 3,

the north to south pattern of slow-fast-slow anomalies correlates

closely with the presence of the Officer Basin, Musgrave Block

(preserved Proterozoic orogen) and Amadeus Basin. However, it

should be noted that this sector of the model is not very well con-

strained by the data set (Fig. 8d). Region 4 approximately overlies

the Cooper-Eromanga Basin, and Region 5 overlies the Gippsland,

Bass and Otway Basins. Finally, the zone of elevated wave speed in

northern Queensland (region 6) coincides with the location of the

Proterozoic Georgetown inlier, which contrasts with the younger

Phanerozoic terrane that characterizes much of the Tasmanides fur-

ther south (Betts et al. 2002). Although our analysis of the geological

implications of Fig. 11 is rather limited, the aim here is to argue that

the average solution model produced by the new technique stands

up to scrutiny against a priori information. For further details on

the interpretation, refer to Saygin (2007).

Figure 11. Same as Fig. 8(c), but with several features of interest high-

lighted.

The variation between models in the ambient noise solution en-

semble, as summarized in Fig. 8(d), appears to indicate that the av-

erage solution model is optimally constrained in southeast Australia

and the western half of Western Australia. A synthetic checkerboard

resolution test (Fig. 10) using the same source and receiver geome-

try appears to supports this result. Although it is difficult to directly

compare robustness estimates produced by these two methods, there

does not appear to be any major discrepancies between the maps in

Figs 8(d) and 10(b). This is a reassuring result, particularly consid-

ering the amplitude of the velocity heterogeneity that is recovered

(±30 per cent).

The dynamic objective function scheme proposed in this paper

is not free from ‘tuning’ parameters. The most obvious are λ, p
and ζ (see eq. 4), which control the shape of the local maximum

inserted into the misfit landscape. Indeed, the function used to define

the evolution term itself was chosen arbitrarily; the only requirement

was that it is a maximum at a given point in model space, and decays

to zero away from that point. Many other penalty functions could

be used including quadratic, exponential and logcosh (Pierro 1995),

although in the case of quadratic functions, the global influence on

the misfit surface is undesirable (see Section 2.1). However, any

function that exhibits a central maximum and decays to zero will

contain free parameters that control its shape. Ideally, if one could

use the data to help constrain these parameters in the inversion rather

than choose them via trial and error, the scheme would be much

more appealing. Ultimately, we have only just started to explore the

possibilities of this dynamic regularization technique, and it may be

that other ways of modifying the misfit landscape in response to the

generation of successive solutions will turn out to be superior. On

the other hand, we have clearly shown that our approach can work

effectively, and sensible choices for the free parameters can be made

by taking into account the behaviour of the data misfit and model

evolution term. While it will never be able to explore parameter

space as extensively or thoroughly as Monte Carlo direct search

methods, the clear advantage of the gradient-based technique is that

it can deal with very large tomographic problems, and does not need

to produce a highly populated solution ensemble in order to make

meaningful inferences.

In conclusion, the results of this study suggest that the new gra-

dient based technique is capable of revealing robustly constrained

information contained in noisy and inhomogeneous data sets, and

offers a viable alternative to the various classes of synthetic reso-

lution tests and linear error analyses that are currently in use. The

modifications required to implement the method with pre-existing

gradient based codes should be minimal, which is an added incen-

tive for its use. Although the scheme advocated in this paper has

shown itself to be practicable, it may well be improved by further

work into the choice of evolution term and starting model used to

generate each new solution in the ensemble.
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