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S U M M A R Y
A new theory for the calculation of later seismic arrivals in heterogeneous media is presented.
We introduce the concept of a ‘raylet’, which is a segment of a later arriving ray path between
source and receiver defined by joint properties of forward and reciprocal traveltime fields. We
show that all rays between a single source and receiver in arbitrary heterogeneous media can
be divided into a unique set of raylets, any one of which can be used to construct the complete
two-point path. A particularly useful property of raylets is that they correspond to stationary
curves in the summed (forward and reciprocal) traveltime fields, i.e. adding the first (or second,
or even later) arriving traveltime field from some point A to the first (or second, or even later)
arriving traveltime field from some point B. We show that many raylets, each corresponding
to a later arriving phase, require only earlier arrival traveltime fields for their construction.
The theory describing the properties of raylets is the primary result of the paper. One practical
consequence is that many later arrivals between source and receiver in heterogeneous media
can be found from just two first-arrival traveltime fields, one from the source and the other
(the reciprocal field) from the receiver.

The theory and a method for constructing later arrivals is demonstrated though numerical
experiments in 2-D but holds without change in 3-D. We use a simple grid-based eikonal
solver to compute forward and reciprocal first-arrival traveltime fields, and validate our results
with a ray-based wave front construction (WFC) technique. In one test involving a simple
wave front triplication (or swallowtail), all three arrivals are retrieved. In another example
featuring severe velocity heterogeneities, 16 out of a total of 37 arrivals are found. The theory
shows that combining second and higher order traveltime fields from source and receiver
yields all raylets and hence all later arrivals. In practice only first-arrival traveltime fields
are usually available and for this case we describe a simple procedure to find any remaining
arrivals using intermediate artificial sources together with their first-arrival traveltime fields.
The properties of raylets and their manifestation in the joint traveltime field appears to be a
previously unrecognized feature and provides a novel new approach to the calculation of later
arrivals.

Key words: Numerical solutions; Computational seismology; Theoretical seismology; Wave
propagation.

1 I N T RO D U C T I O N

In geometric ray theory, multipathing can be simply defined as
the existence of more than one ray path connecting two points
in a medium. The term is usually applied when smooth velocity
variations cause propagating wave fronts to focus and eventually
self-intersect (or triplicate), thus producing later arriving rays. This
phenomenon is distinct from the production of multiple phases
by reflection and transmission at velocity discontinuities, although
undulations in interface topography can also cause wave front fo-
cusing, and hence multipathing. In seismology, the effects of multi-
pathing can be observed in seismograms (e.g. Capon 1971): wave-
trains tend to become longer and more convoluted, but it is difficult

to discriminate between different arrivals, and separate geometric
spreading effects from finite frequency effects like scattering. Partly
for these reason, many applications that use geometric ray theory for
data prediction, such as seismic tomography, reflection migration,
and earthquake location, do not exploit later arriving information.
An added complication is that the computation of multiple two-
point paths is a nontrivial problem that is much more difficult to
solve than the problem of simply locating first-arrivals.

Due to the important role played by geometric ray theory in
modern seismology, a wide variety of techniques and algorithms
have been proposed to solve the two point problem of finding a
path and associated traveltime between a source and a receiver in
heterogeneous media. These can generally be classified as either ray
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based or grid-based (see Červený 2001; Rawlinson et al. 2007, for
comprehensive descriptions and reviews). The ray based approaches
can be split into those that solve an initial value problem and those
that solve a boundary value problem. The former include shooting
methods (e.g. Julian & Gubbins 1977; Farra & Madariaga 1988;
Sambridge 1990; Velis & Ulrych 1996; Rawlinson et al. 2001), in
which the trajectory of some initial path is iteratively adjusted until it
hits the receiver, and the latter include bending methods (e.g. Julian
& Gubbins 1977; Pereyra et al. 1980; Um & Thurber 1987; Zhao
et al. 1992; Koketsu & Sekine 1998), in which the geometry of an
arbitrary curve connecting source and receiver is iteratively adjusted
until it satisfies Fermat’s principle of stationary time. Both classes
of technique are widely used, and can in theory locate more than
one arrival in continuous media. However, the severe nonlinearity
of the two-point problem in the presence of structure that gives rise
to multipathing means that ray shooting and bending methods are
not practical for tracking later arrivals.

An alternative approach to ray tracing is to compute traveltimes to
a grid of points that span the medium. Implicitly, the complete trav-
eltime field contains the wave front geometry as a function of time,
and all possible ray trajectories. Two common grid-based schemes
include finite difference solution of the eikonal equation and short-
est path ray tracing (SPR). Eikonal solvers use finite difference
stencils and causality to propagate a computational front outward
from the source, either as an expanding square (Vidale 1988, 1990;
Hole & Zelt 1995; Afnimar & Koketsu 2000) or in the shape of
the first-arriving wave front (Qin et al. 1992; Cao & Greenhalgh
1994; Sethian & Popovici 1999; Rawlinson & Sambridge 2004b).
Instead of solving a differential equation, SPR uses a network or
graph formed by connecting neighbouring nodes with traveltime
path segments. The traveltime field is computed by tracking first-
arrival ray paths outward from the source using Djikstra-like algo-
rithms (Nakanishi & Yamaguchi 1986; Moser 1991; Fischer & Lees
1993; Cheng & House 1996; Zhao et al. 2004). Eikonal solvers and
SPR can be very robust and efficient in the presence of significant
heterogeneity, but cannot track later arrivals in continuous media.

The first successful schemes capable of computing all arrivals
were published nearly two decades ago (Sun 1992; Vinje et al. 1993),
and involve the progressive advance of a wave front, described by
a set of points, though smoothly varying 2-D media. Initial value
ray tracing is used to update the points by a given time step, and
new points are introduced where necessary using interpolation to
avoid under-sampling of the evolving wave front. This basic idea,
often called wavefront construction or WFC, has been extended
and applied to 3-D continuous models (Vinje et al. 1996; Lucio
et al. 1996; Chambers & Kendall 2008) and more complex models
that include interfaces (Vinje et al. 1999). The introduction of a
phase-space criterion for interpolating new points (Lambaré et al.
1996; Hauser et al. 2008) greatly improves the robustness of the
scheme. To date, WFC has proven to be the most practical scheme
developed so far for tracking multi-arrivals. It is commonly used in
the exploration industry, including for migration of reflection data
(Ettrich & Gajewski 1996; Xu & Lambaré 2004; Xu et al. 2004),
and has been used as the forward solver in multi-arrival traveltime
tomography (Hauser et al. 2008).

In the last decade or so, the development of grid-based multi-
arrival schemes has rapidly expanded, due largely to the efforts
of the computational mathematics community. One approach is
to partition the multivalued traveltime field into a series of single
valued domains, in which fast and efficient first-arrival solvers can
be applied (Benamou 1996; Bevc 1997; Benamou 1999; Symes

& Qian 2003). The main difficulty is to identify a robust splitting
strategy for isolating single-valued domains, because there is no
prior knowledge of the structure of the multivalued field. Level set
methods (Osher & Sethian 1988), commonly used in fluid dynamics
(Mulder et al. 1992; Chang et al. 1996), can also be applied to track
multi-arrivals (Osher et al. 2002; Leung et al. 2004; Cockburn
et al. 2005), although the wave front needs to be represented by the
projection of the intersection between two zero level set surfaces in
3-D reduced phase space, which is potentially time consuming (and
this is only for 2-D problems). Despite this, recent work by Cheng
(2007) indicates that it is on the verge of being computationally
feasible in seismic tomography.

Other grid-based multi-arrival techniques include the ‘fast-phase
space’ method of Fomel & Sethian (2002) who solve a system
of time independent partial differential equations derived from the
Liouville formulation of the kinematic ray tracing equations; the
‘segment projection’ method of Engquist et al. (2002) which ex-
plicitly tracks a wave front described by a contiguous set of line
segments in reduced phase space; and dynamic surface extension
(DSE) (Steinhoff et al. 2000), which implicitly tracks wave front
evolution on a grid of points, each of which carry the coordinate
of the closest point on the wave front. Other methods also exist
(see Benamou 2003; Engquist & Runborg 2003, for comprehensive
reviews), but so far, none have proven to be as robust and efficient
as WFC.

The focus of this paper is not on computational techniques for
later arrivals per se, but rather on how information on later arrivals
is contained in the combination of forward and reciprocal traveltime
fields. In particular, we show how every path connecting a source
and receiver in smoothly varying media can be broken down into
a unique set of segments, that we call ‘raylets’. Each raylet is a
consequence of the overlap of two traveltime fields, one emanating
from the source and another from the receiver. First, second or later
arriving traveltime fields may be combined with each other to form
raylets. The key point is that each raylet corresponds to a short valley
or ridge along which the summed forward and reciprocal travel field
is stationary with respect to position. These stationary raylets can be
identified from the corresponding traveltime fields and as a result
the entire ray path constructed. As will be shown, a convenient
property is that all arrivals between a fixed source and receiver are
built from raylets that require only ‘lower’ order (or earlier arrival)
traveltime fields. We show 2-D examples where the combination of
two first-arrival traveltime fields, obtained with a standard eikonal
solver, may be used to generate multiple arrivals—in one case with
a complex medium, up to 16 are obtained. A WFC technique is used
to validate our results. To our knowledge the properties of raylets
have not been previously recognized, but allow a novel approach to
the calculation of multiple arrivals. Although presented in a seismic
context, this theory will be equally applicable to other fields that
use geometric ray theory, for example ocean acoustics, infrasound
and helioseismology.

2 R E C I P RO C A L T R AV E LT I M E F I E L D S
A N D R AY L E T S

A wave front that emanates from a source point will initially de-
scribe a single-valued traveltime field, but as it evolves and interacts
with velocity heterogeneity, it may begin to self-intersect, hence pro-
ducing multipathing. Thus every ray path, regardless of how many
other rays might arrive before it at some given receiver, begins as
a first-arrival. This is demonstrated in Fig. 1, which shows three
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Figure 1. The anatomy of multipathing rays in the presence of velocity
heterogeneity. First-arrival wave fronts, contoured at 20 s intervals, are also
shown for reference. The first-arrival ray is everywhere perpendicular to
the wave front. Later arriving rays begin as first-arrivals, but are eventually
overtaken by another portion of the wave front. This can be observed for
both the second and third-arrivals—the ray is initially perpendicular to the
first-arrival wave front, but then switches to an acute angle when it begins
to arrive later.

ray paths emanating from a source point and separately interacting
with three low velocity anomalies. One path is clearly a first-arrival
along its complete trajectory, as it is everywhere perpendicular to
the first-arrival wave front that is also included in the figure as a
series of snapshots in time. The two remaining rays begin as first-
arrivals, but eventually become later arrivals as other paths begin
to arrive along its trajectory at earlier times. This occurs due to the
wave front triplicating and forming a swallowtail. The first-arrival
wave front shown in Fig. 1 discards all later arrivals, and instead ex-
hibits sharp discontinuities in place of the growing triplication. The
ray that becomes a second-arrival clearly passes across one of these
discontinuities, at which point it ceases to be perpendicular to the
first-arrival wave front. The ray that appears to jump directly from
a first to a third-arrival passes though a caustic, which represents a
point in space where a triplication initiates (i.e. a focal point). The
main concept illustrated in Fig. 1 is that all later arriving rays begin
as first-arrivals, and progressively become later as the wave front
evolves.

The logical extension of what we observe in Fig. 1 is that an
N th-arrival [where N > 1] at some receiver will have begun as
a first-arrival, before gradually becoming later and later. In fact,
at any point along the two point path, the ray will be an M th-
arrival, where M = 1, 2, . . . , N . Of course, as shown in Fig. 1, it
is possible for a ray to jump from an M th-arrival to an M + 2th-
arrival, with no intermediate M + 1 stage, but this only occurs in
the special case of a ray passing through a caustic. Now consider
the simple situation illustrated in Fig. 2 (top), which schematically
shows a ray path emanating from point A and propagating until it
reaches point B. It begins as a first-arrival (A1), eventually switches
to a second arrival (A2), before switching to a third-arrival (A3),
which is what is detected at point B. The two ‘switch’ points occur
when another part of the wave front starts to arrive earlier than the
wave front segment associated with the ray (these are denoted by
vertical green bars along the ray). If we now apply the principle
of reciprocity—that the path traced out by a ray travelling from a
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Figure 2. Schematic diagram showing the relationship between reciprocal
ray paths (top and middle) propagated between two points A and B. A raylet
is defined as a segment of the two-point ray path that contains parts of the
forward and reciprocal path that do not switch arrival number (bottom).
In this case, the complete two-point path comprises raylets A1B3, A1B2,
A1B1, A2B1 and A3B1. Vertical green tick marks denote arrival number
switch points along forward and reciprocal rays (e.g. when the ray goes from
first to second-arrival—see Fig. 1).

source to a receiver is identical to that of a ray travelling from the
receiver to the source—it is clear that an N th-arrival ray traced from
A to B will have an identical path to an N th-arrival ray traced from
B to A. This ray will undergo the same evolution in terms of later
arrival status (i.e. first-arrival, second-arrival, . . . , N th-arrival), but
obviously, these stages will occur at different places along the path
compared to the ray traced from A to B [cf. Fig. 2 (middle)]. This
is because the (green) change-over points are only a function of the
source position at A, and not the receiver position at B.

We introduce the term ‘raylet’ to facilitate description of the
joint properties of spatially identical forward and reciprocal ray
paths between a source and a receiver. We define a raylet as a curve
in space along which both the forward and reciprocal ray paths
do not switch from an earlier to a later arrival type. Raylets are
shown schematically in Fig. 2 (bottom), where the path from A
to B contains raylets A1B3, A1B2, A1B1, A2B1, A3B1. A raylet,
therefore, contains information about the evolution of the forward
and reciprocal wave front (or traveltime fields), of which a ray path
describes only the trajectory of a single point. It will be convenient
to label raylets according to the latest arrival of the contributing
segments from the forward and reciprocal rays; thus, A1B1 is a
first-order raylet, A1B2 is a second-order raylet and A1B3 is a
third-order raylet. In general, an N th-arrival path is composed of up
to 2N − 1 raylets, since a change from one raylet type to another
occurs at every switch point of the forward and reciprocal ray.

3 R AY L E T E X T R A C T I O N
A N D M U LT I PAT H I N G

A simple test is performed to show that first-order raylets can be
readily extracted from first-arrival traveltime fields which in this
case are computed using an eikonal solver known as the fast march-
ing method or FMM (see Sethian 1996; Sethian & Popovici 1999;
Popovici & Sethian 2002; Rawlinson & Sambridge 2004b; de Kool
et al. 2006, for more details). Here FMM is implemented in 2-D
spherical shell coordinates (where velocity is a function of latitude
and longitude), with radius fixed at 6371 km. Smooth variations in
velocity are defined by a mosaic of cubic B-spline velocity patches,
the values of which are controlled by a regular grid of velocity
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vertices. Although implementation in 3-D would be straightforward,
it is much easier to visualize the results in 2-D, and hence clearly
demonstrate the principles involved. Furthermore, comparison with
other techniques is much simpler to facilitate in 2-D.

Figs 3(a) and (b) shows the first-arrival traveltime field generated
from both a source and a receiver in a medium defined by a solitary
low velocity anomaly superimposed on a constant background ve-
locity of 4.0 km s−1. In both cases, evidence of a triplication can been
seen by the formation of a wave front discontinuity in the neighbour-
hood of the anomaly, thus indicating the presence of a swallowtail.
If we now take the sum of the forward and reciprocal fields (Fig. 3c),
a remarkable phenomenon is observed: the joint traveltime surface
contains three stationary segments (Fig. 3d), which correspond to
three separate first-order raylets. Each first-order raylet is associ-
ated with one of three different paths between source and receiver

(Fig. 4). Although it is well known that the first arrival will cor-
respond to a minimum curve in the joint traveltime field, to our
knowledge, the appearance of other stationary segments has not
been previously recognized in the literature. Raylets generally span
only a short segment of a ray path, but it is a simple matter to re-
construct the entire path by beginning at any point on the raylet and
following the traveltime gradient back to the source and receiver
using the forward and reciprocal time fields, respectively. Rawlin-
son & Sambridge (2004a) describe how this can be done to obtain a
source-receiver ray for a single time field; the procedure used here
is exactly the same except that it now starts from a point along the
raylet and is applied twice. Fig. 4 shows the result of this process,
which produces three separate paths, all of which are continuous
in gradient at their join points. We refer to this simple scheme for
producing later arrivals as the first-order raylet method (FORM).

Figure 3. Application of FORM in the presence of a single low velocity anomaly. (a) Source time field; (b) reciprocal time field generated from the receiver
point; (c) sum of the source and reciprocal time fields; (d) first-order raylets. The source is denoted by a red star and the receiver by a blue triangle. Wave fronts
in (a) and (b) are contoured at 20 s intervals and the sum of the two traveltime fields shown in (c) is contoured at 5 s intervals.
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Figure 4. Complete two-point paths obtained by picking a point (magenta
dots) along each of the first-order raylets and following the traveltime gra-
dient back to the source and receiver through the forward and reciprocal
traveltime fields, respectively.

The intriguing results contained in Figs 3 and 4 are verified using
the WFC method of Hauser et al. (2008), which is based on local
ray tracing and interpolation in phase space. WFC is robust and
computationally efficient in 2-D media, and is capable of predict-
ing all arrivals. Fig. 5a shows the complete triplicating wave front
generated by the low velocity anomaly, as calculated by WFC. As
expected, the wave front passes through the receiver three times,
and the ray paths correspond exactly to what is predicted by using
raylets (Fig. 5b). WFC is also used to track the evolution of rays
from the source to the receiver (Fig. 5c) and the receiver to the
source (Fig. 5d) in terms of their arrival status in the source and re-
ciprocal traveltime field, respectively (cf. Fig. 2). The superposition
of these two sets of rays (Figs 5e and f) clearly reveals the presence
of three first-order raylets, all of which correspond exactly to those
in Fig. 3(d).

3.1 The stationarity of raylets

The aforementioned example demonstrates that first-order raylets
can be found with just two first-arrival traveltime fields. This can
be generalized by considering the following situation. Let A and
B be two separate points in a smooth velocity medium of arbitrary
complexity. Now consider two rays, one emanating from A and the
other emanating from B, and let C be their point of intersection (see
Fig. 6a). The two path segments AC and CB are true ray paths in the
sense that they satisfy Fermat’s principle of stationary time and may
be first or later arrivals. However, the complete path ACB will not
automatically be a ray path because stationarity is not guaranteed
for point C. If TAC and TBC are the traveltimes along segments AC
and CB, respectively, then the total traveltime is simply given by

TAB = TAC + TC B . (1)

According to Fermat’s principle, the path ACB will be stationary
provided:

∂TAB

∂xC
= ∇xC TAB = ∇xC [TAC + TC B] = 0, (2)

where xC is the position of C. If we have traveltimes computed from
A and B to all points in the medium, then any point C that satisfies
Equation 2 must correspond to extrema of the summed fields TAC +
TCB. Since this argument does not specify which traveltime field

from A is summed with that from B, any pair of fields may be
used, for example first-arrival field from A may be summed with
the second-arrival field from B and so on. In each case, all stationary
points must lie on rays between A and B, and it turns out that they
delineate segments corresponding to where ∇TAC = −∇TCB, that
is where the forward and reciprocal paths overlap. Hence we arrive
at the main conclusion which is that each raylet corresponds to a
stationary segment of the summed traveltime field.

In the simple triplication example shown in Fig. 3, all the sta-
tionary points C trace out three first-order raylets. As the argument
above implies, two first-arrival traveltime fields can only yield first-
order raylets (but all associated later arrivals), because they exist
only when the first-arrival wave fronts of the forward (Fig. 3a) and
reciprocal (Fig. 3b) fields are parallel (Fig. 3d). The first-order raylet
for the first-arrival path is a global minimum curve which connects
the source and receiver for the simple reason that the correspond-
ing forward and reciprocal rays never become later arrivals. For the
second and third arrivals, this is not the case, which is why their
first-order raylets are much shorter.

4 T OWA R D S T H E L O C AT I O N
O F A L L A R R I VA L S

Using two first-arrival traveltime fields, we have shown that it is
possible to extract all first-order raylets and their associated later
arrival paths. However, in media of arbitrary complexity, it is not
clear how many later arrivals might contain first-order raylets. To
gain insight into this problem, we repeat the numerical experiments
carried out earlier (Figs 3–5) using a model containing two low
velocity anomalies instead of one (see Fig. 7). The position of these
anomalies relative to the source and receiver result in two traveltime
field discontinuities forming for both the forward and reciprocal
traveltime fields (Figs 7a and b). The summed time fields (Fig. 7c)
reveals the location of six stationary segments which correspond to
the presence of six first-order raylets (Fig. 7d). The associated ray
paths are shown in Fig. 8. Using WFC, the complex nature of the
evolving wave front (Fig. 9a) can be explained by the fact that each
branch of the initial triplication, formed as a result of interaction
with the anomaly closest to the source, is then triplicated again to
produce a total of nine arrivals (Fig. 9b). Since only six of the nine
paths correspond to stationary segments in the summed first-arrival
field, this implies that three of the arrivals do not contain first-order
raylets.

Figs 10 and 11 show the arrival evolution of all nine forward and
reciprocal rays using WFC. Fig. 10 clearly reveals the presence of
first-order raylets in the first six arrivals (cf. Fig. 7d), and Fig. 11
shows the absence of first-order raylets for the last three arrivals.
In the case of arrivals seven and eight, the lowest-order raylets are
second-order (A1B2 and A2B1, respectively), and hence to find
these arrivals a first-arrival traveltime field from A must be added
to a second-arrival traveltime field from B or vice versa. The ninth-
arrival requires calculation of a third-arrival traveltime field from
either A or B in addition to a reciprocal first-arrival traveltime field,
since the lowest order raylets are third-order (A3B1 and A1B3).

In the absence of a practical grid-based approach for generating
later-arriving traveltime fields (and hence readily computing higher-
order raylets) the question arises as to whether it is possible to locate
all arrivals using only first-arrival traveltime fields. If we return to
the idea, encapsulated in Equation 2, of forming a composite ray
from two separate rays by applying Fermat’s principle of stationary
time, then it is quite straightforward to see that this can be applied
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Figure 5. Application of WFC in the presence of a single low velocity anomaly. (a) Snapshots of the complete multi-valued wave front (at 200 s intervals); (b)
FORM ray paths (yellow) from Fig. 4 superimposed on WFC ray paths (black); (c) rays propagated from the source; (d) rays propagated from the receiver; (e)
reciprocal rays superimposed on the source rays; (f) magnified region of (e) showing the presence of first-order raylets in the second and third-arrival paths.
The source is denoted by a red star and the receiver by a blue triangle.

to any number of ray segments. For instance, if we insert a point Q
between A and C and a point P between C and B (see Fig. 6b), then
the path AQCPB would be a valid ray path provided:

∇xQ [TAQ + TQC ] = ∇xP [TC P + TP B] = ∇xC [TQC + TC P ] = 0.

(3)

This extension to the theory could be used to address a situation
like that schematically illustrated in Fig. 12(a). which shows a path
between A and B with no first-order raylet. If a point C along the ray
path can be found (Fig. 12b), then computing forward and reciprocal

traveltime fields between A and C and C and B may yield raylets
A1C1 and C1B1. The ‘trick’, of course, is to find the point C. A
simple but rather time consuming way of doing this is to compute
traveltime fields from sources placed at every point in the grid.
By doing so, forward and reciprocal fields will exist between A,
B and all candidate points C. For a particular point on the grid, a
valid traveltime to both A and B could be obtained by summing the
traveltime field generated from that point with the A field and B
field, respectively, and searching for stationary curves. If these two
traveltimes were then summed and gridded throughout the medium,
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Figure 6. Schematic illustration of how independently computed ray seg-
ments can be stitched together by applying Fermat’s principle of stationary
time to their intersection points. (a) The path ACB is a valid ray path pro-
vided TAC + TBC is stationary for some point C; (b) the path AQCPB is
a valid ray path provided TAQ + TQC , TCP + TPB and TQC + TCP are all
stationary.

then stationary curves of the new field would correspond to valid
C points. Thus, whereas no A1B1 raylet may exist, the two-point
path could be reconstructed from raylets A1C1 and C1B1. If the
addition of a single point between A and B is not sufficient to detect
all arrivals, then extra points could be inserted between A and C
and C and B, and the same procedure followed. Ultimately, any
number of points could be inserted in this fashion. In principle,
this recursive approach must eventually detect all two point arrivals
between A and B, because any ray path can be divided up into a
series of first-arrival paths.

Fig. 13 demonstrates how the ninth-arrival from the double trip-
lication example (Figs 7–11) can be constructed in this manner. The
central point C can be found using a simple grid search, which must
assess all combinations of traveltime fields between A and C and B
and C (nine in the case of Fig. 13) to find a stationary point. This
is equivalent to matching the gradients of each path in Fig. 13 (left)
with each path in Fig. 13 (right) at the join point C. The complete
two-point path between source and receiver is composed of four

Figure 7. Application of FORM in the presence of two low-velocity anomalies. Refer to the Fig. 3 caption for a description of each plot.
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Figure 8. Complete two-point paths obtained from the reciprocal traveltime
fields (see Fig. 4 caption for more details).

first-arrival segments. The development of a more efficient scheme
for locating multiple stationary points is beyond the scope of this
paper, although the matter will be considered further in Section 7.

5 A P P L I C AT I O N O F T H E F O R M T O A
S T RO N G LY H E T E RO G E N E O U S M O D E L

The preceding examples have shown how first-order raylets can be
used to find later arrivals in relatively simple velocity media. We
now apply FORM to a strongly heterogeneous model to see what
proportion of arrivals are found. The model setup is similar to the
previous examples, except that now the background model has a
value of 5.0 km s−1, and random perturbations of up to ±2 km s−1

(or ±40 per cent) are used to generate a large number of multiple
arrivals between a single source and receiver. The source (Fig. 14a)
and reciprocal (Fig. 14b) traveltime fields both exhibit numerous
wave front discontinuities which imply the presence of multiple
triplications. Summing together the two fields (Fig. 14c) reveals a

complex pattern of first-order raylets (Fig. 14d). By locating points
along each of these raylets and tracking back through the time fields
as in the previous examples, we recover a total of 16 two-point ray
paths (Fig. 15). These span a time range of 56.3 s, from 958.5 s to
1014.8 s.

The complexity of the complete wave front propagated from
the source using WFC is shown in Fig. 16a; multiple swallowtails
are clearly evident, and the intense folding of the wave front in
the neighbourhood of the receiver explains the large number of
arrivals. In this case, 37 two-point paths are located (Fig. 16b),
21 of which must contain only higher order raylets. A comparison
of the ray paths (Fig. 16d) indicates that the two methods closely
agree when equivalent arrivals are considered. The range of all
37 arrivals is 60.9 s, from 958.5 s to 1019.4 s. In general, the
arrivals appear to cluster in time (usually in threes) separated by
very small traveltimes (less than 0.5 s), which probably correspond
to the arrival of triplications formed near the receiver or triplications
created by fine-scale anomalies. As such, FORM tends to identify
the first branch but not the others, as they correspond to triplicated
triplications. One could therefore argue from a finite frequency point
of view that the subsequent branches of the triplication could not be
detected on realistic seismograms. Of course, whereas this appears
to apply quite well to this example, it may not apply generally.

In this example, first-order raylets are used to locate 43 per cent
of the arrivals found by WFC, which is designed to find all arrivals.
However, as Fig. 16d shows, there is one arrival found by FORM
that appears to have eluded WFC. Examination of where this ray
lies with respect to the propagating wave front reveals that it is at the
very edge of a triplication (i.e. where the second and third-arrival
branches intersect). Significantly increasing the number of initial
points used by WFC to define the wave front leads to the recovery
of this path, but at significant extra computational cost.

6 A C C U R A C Y A N D C O M P U T E T I M E

A simple comparison is made between WFC and FORM (as imple-
mented in the aforementioned examples) in terms of accuracy and

Figure 9. Application of WFC in the presence of two low-velocity anomalies. (a) Snapshots of the complete multi-valued wave front (at 200 s intervals); (b)
FORM ray paths (yellow) from Fig. 8 superimposed on WFC ray paths (black).
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Figure 10. Raylet structure of arrivals 1–3 (top) and 4–6 (bottom) corresponding to the twin low velocity anomalies. The magnified plots (d and h) highlight
the presence of first-order raylets contained in arrivals 1–6 (cf. Fig. 7d).

compute time. We emphasize that the aim of the paper is to explain
the properties of raylets and show that they can be extracted from
reciprocal traveltime fields; a raylet-based multi-arrival method is
merely a by-product of this goal. Therefore, the purpose of this
section is to demonstrate that FORM is a potentially useful way of
exploiting raylets, rather than to make a comprehensive comparison
with a particular wave front tracking scheme such as WFC. In any
case, a fair comparison is difficult because the strengths of the two
approaches lie in different areas. WFC can find all arrivals, and only
requires one wave front to be propagated to cover a medium with a
grid of multivalued traveltimes. On the other hand, extension to 3-D
is nontrivial and the traveltime field is irregularly sampled, making
it more difficult to compute arrival times at a receiver and their as-

sociated two-point paths. FORM uses a regular grid of traveltimes,
is straightforward to implement in 3-D, and ray paths are simple
to compute retrospectively; however, in its current implementation,
the location of all later arrivals is not guaranteed, and one time field
must be computed for each source and receiver.

FORM uses mixed-order finite differences (up to second-order) to
compute traveltimes, and grid refinement is implemented to account
for strong wave front curvature in the neighbourhood of the source
(Rawlinson & Sambridge 2004b). Both accuracy and compute time
are a function of the total number of grid points used to define
the medium. WFC uses a fourth-order Runge–Kutta scheme to
locally trace rays from each wave front surface, and a weighted
average scheme to interpolate new points in phase space (Hauser
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Figure 11. Same as Fig. 10 but now showing arrivals 7–9. The absence of first-order raylets explains why FORM does not recover these rays. The magnified
plots (d, h and l) show segments of the ray containing raylets of the lowest arrival number. A and B denote the source and receiver locations, respectively.
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Figure 12. Schematic diagram showing the relationship between reciprocal
ray paths propagated between two points A and B (cf. Fig. 2). (a) A fifth-
arrival that contains no first-order raylet. The earliest arrival raylet is A2B2,
which implies that a second-arrival traveltime field is needed to construct a
fifth-arrival ray. (b) Computing a new traveltime field from a point C inserted
along the ray allows the complete path to be constructed from two first-order
raylets (A1C1 and C1B1).

et al. 2008). In this case, accuracy and compute time are largely a
function of time step (the time interval between which wave fronts
are constructed), and the number of points used to describe the wave
front at the source.

We compare the two schemes using the double triplication ex-
ample shown in Figs 7 to 11. Although nine arrivals are present,
only the traveltimes of the first six are used, due to FORM exploit-
ing first-order raylets only. Table 1 shows a comparison between
three FORM runs and three WFC runs using different parameter
values (see right column of table). In the case of FORM, grid size
is progressively halved, which results in CPU time increasing by
approximately a factor of four each time. The WFC parameters are
chosen to produce approximately equivalent CPU times, which can
be achieved by progressively halving the time step and doubling
(approximately) the number of points sampling the wave front at
the source. All traveltimes are expressed in differential terms using
the traveltimes from a WFC run with very small time step and a
large number of initial points as a reference (see bottom line of
Table 1).

Clearly, FORM1 that uses the coarsest grid, has much smaller
traveltime differences than WFC1 (implying much greater accu-
racy), even though they have similar CPU times. This is also true
of FORM2 (compared to WFC2) and to a lesser extent FORM3
(compared to WFC3). The fact that the FORM results do not mono-
tonically converge in all cases can probably be attributed to the fact
that the reference times are not an ideal proxy to the exact solutions.
The stability of the FORM is a function of the stability of FMM,
and previous papers (e.g. Rawlinson & Sambridge 2004a) clearly
demonstrate the monotonically convergent behaviour of FMM even
in highly heterogeneous media. WFC may not be as stable, and given
the small differences between FORM1 and the reference time, it ap-
pears that they share a similar level of accuracy. Regardless of the
reason for the traveltime behaviour seen in Table 1, it is clear that
our simple FORM scheme is capable of producing very accurate
results—more accurate in many cases than WFC and with less CPU
time.

Figure 13. Example showing how additional traveltime fields can be used to obtain more later arrivals. In this case, a traveltime field computed from a point
inserted between the source and receiver is summed with traveltime fields computed at the receiver and source. Stationary curves obtained from each of these
processes gives rise to three paths. The slowest ray in each case is tangent at the new point (denoted by a red star), thus recovering the ninth-arrival featured in
Fig. 11.
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Figure 14. Application of FORM in the presence of a complex velocity model. Refer to the Fig. 3 caption for more details.

7 D I S C U S S I O N A N D C O N C LU S I O N S

The main result of this paper is the concept of a raylet, which is
a segment of a two-point path that contains information on the
multivalued nature of both the forward and reciprocal traveltime
fields, and can be used to locate later-arrivals in heterogeneous
media. For an N th-arrival traveltime, the associated path can be
decomposed into as many as 2N − 1 raylets. Each raylet contains
overlapping segments of the forward and reciprocal ray path whose
arrival numbers, in the context of the evolving traveltime field, are
invariant. In general, an M th-order raylet [where M ≤ N ] must
contain at least one ray segment that is an M th-arrival, the other
being of less or equal arrival number. The significance of raylets is
that they provide sufficient information about later arrivals that it
is possible to recover them using earlier arrival information from
forward and reciprocal traveltime fields. Thus, if a third-arrival

path evolves from source A to receiver B as A1, A2, A3, and the
reciprocal path as B1, B2, B3 and the first-order raylet A1B1 exists,
then the complete ray path from A to B can be computed with only a
knowledge of first arrival ray-fields (or traveltime fields) generated
at A and B.

Motivated by this phenomenon, we develop a simple raylet-based
scheme which uses a first-arrival eikonal solver to compute the
forward and reciprocal traveltime fields. Although this automat-
ically limits us to the detection of first-order raylets, it is suffi-
cient to demonstrate the basic principles involved. Using a sim-
ple model featuring a solitary low velocity anomaly, we show that
the stationary curves present in the summed forward and recip-
rocal traveltime fields correspond exactly to all first-order raylets
(Figs 3–5). Beginning at any point along these raylets, we show
that it is possible to obtain the complete ray path by following
the traveltime gradient back to the source and receiver through the
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Figure 15. Complete two-point paths obtained from the reciprocal travel-
time fields (see Fig. 4 caption for more details).

forward and reciprocal fields, respectively, thus yielding all three
arrivals.

In more complex models, not all arrivals can be found in this
way for the simple reason that first-order raylets appear not to ex-
ist for paths that experience multiple triplications. We demonstrate
(Fig. 13) that even in this case, it is possible to recover the complete
ray path by using the reciprocity principle with only first-arrival
traveltime fields. The basic idea is to introduce new points along the
ray path, found using a grid search for example, from which travel-
time fields are generated and coupled with those already computed
from the source and receiver. This branch decomposition approach
allows rays to be pieced together from a series of first-arrival seg-
ments. A basic grid-search approach for finding all arrivals with
first-order raylets is simple to implement, but has the potential to
become computationally prohibitive if many levels of triplication
occur. Although the development of more efficient schemes is be-
yond the scope of this paper, it may be possible to drastically re-
duce the search area (for example, higher levels of triplications in
the source and reciprocal fields are unlikely to occur in the vicin-
ity of the source and receiver, respectively) or use more efficient
spatial sampling techniques like the Neighbourhood Algorithm or
NA (Sambridge 1999a,b). Even so, we have shown that a simple
FMM-based FORM can capture a significant portion of later ar-
rivals with an efficiency and accuracy that in some cases exceeds
WFC—currently the state-of-the-art method for computing seismic
multipathing.

The idea of using reciprocity to find later arrivals has been consid-
ered previously in seismology; for example, it is quite well known
in the literature that later arriving reflections can be found by com-
puting traveltimes from the source to the interface and from the
receiver to the interface, adding the results, and then locating sta-
tionary points (e.g. Williamson 1990; Matsuoka & Ezaka 1992;
Riahi & Juhlin 1994). In fact, Matsuoka & Ezaka (1992) also rec-
ognize that summing together a source and a reciprocal first-arrival
traveltime field in smooth velocity media yields the first-arrival
path as a global minimum curve. However, they do not recognize
that stationary curve segments, which appear when two-point mul-
tipathing is present, can be used to compute later arrivals. In media
with discontinuities, a raylet-based method could be readily applied

to find multipathing phases which reflect or refract at interfaces.
This scenario is similar to that of inserting an additional point in
the medium between source and receiver to locate later arrivals
that do not contain first-order raylets (see Fig. 12b). However, the
reflection or refraction case is less computationally demanding, be-
cause intermediate points are constrained to lie on the interface.
Mode conversions could also be found using this approach; for in-
stance, using a P-wave velocity structure for the incident path and an
S-wave velocity structure for the reflected path will produce a P–S
conversion.

The use of reciprocal traveltime fields to extract raylets and hence
later arrivals has the added benefit of providing information on
Fresnel volumes. In the simple case of Fig. 3(c), the contours that
encapsulate the first-arrival can be viewed as the bounds of the first
Fresnel volume for waves of different frequency. The later-arrivals
also exhibit this feature, but since first-arrival traveltime fields are
used, the Fresnel volumes are incomplete. Later-arrival traveltime
fields are required to build the full Fresnel volumes for these rays.
In previous work, Husen & Kissling (2001) use the contours of
reciprocal traveltime fields, calculated using the eikonal solver of
Podvin & Lecomte (1991), to locate so-called ‘fat-rays’, which
are rays of finite-width defined by the first Fresnel volume. Husen
& Kissling (2001) apply the new technique to local earthquake
tomography to account for the finite frequency effects of wave
propagation. This approach represents an interesting alternative to
the more common methods for estimating Fresnel volumes such as
paraxial ray theory (e.g. Červený & Soares 1992).

Another area in which forward and reciprocal rays are used is in
applications of Kirchhoff theory, such as the migration of reflection
data or the computation of synthetic seismograms. For example,
Haddon & Buchen (1981) compute global body wave seismograms
using a scheme based on the Kirchhoff integral representation of
scalar waves. This requires rays to be traced from a source and
receiver to an intervening surface over which an integration is per-
formed based on traveltime isochrons. The traveltime surface is
essentially a slice through the summed source and reciprocal trav-
eltime fields, and stationary points on this surface can be viewed
as raylet cross-sections. Cao & Kennett (1989) develop a similar
scheme to Haddon & Buchen (1981) for reflection seismograms.
In this case, traveltime isochrons are contoured on reflector sur-
faces by shooting rays from both the source and receiver to the
reflector.

Although we have applied FORM in 2-D, the extension to 3-D
is straightforward, as none of the principles involved or proofs are
dependent on the dimensionality of the model. Raylets are delin-
eated in exactly the same manner and remain stationary paths within
the summed traveltime field. One simply needs a 3-D grid-based
traveltime solver to compute the source time field and reciprocal
time field throughout the model volume. Stationary curves and path
segments can then be located in exactly the same way as before.
The compute cost would essentially scale with the number of points
used to describe the medium. This stands in stark contrast to WFC,
which needs sophisticated surface evolution algorithms to properly
track an evolving wave front in 3-D (e.g. Vinje et al. 1999) with
computational demands increasing accordingly.

From a practical implementation point of view, a raylet-based
scheme can in principle use any method to calculate the first-arrival
traveltime field, be it an eikonal solver, shortest path method or
some other approach. Minimal changes should be required to adapt
any of the currently available techniques. Of course, further work is
required to develop a practical scheme that can find all arrivals. Al-
though seismology is one obvious area of application, raylet theory
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Figure 16. Application of WFC in the presence of a complex velocity model. (a) Snapshots of the complete multi-valued wave front (at 200 s intervals);
(b) all WFC ray paths; (c) all FORM ray paths; (d) all FORM ray paths (yellow) superimposed on all WFC ray paths (black).

Table 1. Comparison of WFC and FORM multiarrival traveltimes.

Traveltime difference (×10−3% or parts in 105) Sampling parameters

Scheme CPU time (s) Arrival 1 Arrival 2 Arrival 3 Arrival 4 Arrival 5 Arrival 6 No. of FMM grid points

FORM1 0.89 6.41 0.50 4.10 0.56 3.36 1.90 337,561
FORM2 3.45 1.88 0.12 1.13 0.03 1.45 10.54 1,347,921
FORM3 14.84 0.57 0.35 0.35 0.20 0.57 17.20 5,387,041

Time step (s) No. points

WFC1 1.13 20.96 259.98 252.05 15.95 52.47 230.89 2.00 60
WFC2 3.68 7.46 21.05 37.65 5.82 5.28 36.30 1.00 150
WFC3 15.31 2.45 9.04 9.46 2.41 0.45 12.26 0.50 250

Reference time (s) 1060.852 1183.481 1192.245 1196.191 1205.793 1214.862 0.05 1000

Note: The “No. points” label at the bottom right-hand corner of the table refers to the number of points used to describe the wave front at the source point.
Calculations are made on an Intel Core i7 workstation with 6 Gb RAM and a 64-bit Linux Operating system. gfortran is used to compile both codes, which
are written in Fortran 90.
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applies to any area of the physical sciences in which geometric ray
theory is a valid approximation.
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