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ABSTRACT

Most body wave seismic imaging schemes only exploit 
information contained in the first arrival of a seismic record. Later 
arrivals in the wavetrain, however, contain additional structural 
information, as the corresponding rays tend to sample slower 
regions of a medium that are often avoided by first-arrival raypaths. 
Here we investigate a Lagrangian (ray-based) and an Eulerian (grid-
based) approach for the calculation of later arrivals. The Eulerian 
approach is based on the level set method, which implicitly evolves 
a wavefront by solving a pair of PDEs over a gridded velocity field 
in phase space. Our Lagrangian solver also uses phase space and 
represents the wavefront by a set of points, which are progressively 
moved through the velocity field using local ray tracing, with linear 
interpolation used to maintain a constant density of points. We 
compare the two methods using a velocity model of the subduction 
zone in the Tonga region. In theory both approaches can provide 
traveltimes for later arrivals. Our results clearly show that the 
Lagrangian approach is currently superior to the Eulerian scheme 
for the prediction of multi-arrival traveltimes when computation 
speed, ease of implementation, and accuracy are considered. In 
our experiments the Lagrangian solver is up to 6000 times faster, 
and successfully predicts later arrivals for our source receiver 
configuration in the subduction zone example. We then demonstrate 
the robustness and efficiency of the Lagrangian solver by tracking 
later arrivals in a smoothed version of the Marmousi model. By 
placing source points in certain parts of this model, we are able to 
find more than 60 secondary arrivals at surface receivers.

INTRODUCTION

Both continuous and discontinuous variations in wavespeed can 
cause a seismic wave to travel to a receiver by more than one path, 
a phenomenon commonly referred to as multipathing. First-arrival 
raypaths tend to avoid slow anomalies; later arrivals do not avoid 
slow regions and hence contain additional information on seismic 
structure. Over the past few decades there has been a strong focus 
on the development of methods for the fast and reliable calculation 
of first-arrival traveltimes. These traveltimes have been computed 
either by ray tracing (e.g., Julian and Gubbins, 1977; Pereyra et 
al., 1980; Zelt and Ellis, 1988) or by wavefront tracking (e.g., 
Sun, 1992; Lambaré et al., 1992; Vinje et al., 1993). More recently 
implicit wavefront-tracking algorithms, such as those which use 
finite difference solutions of the eikonal equation, have also been 
employed (e.g., Vidale, 1988; Kim and Cook, 1999; Qian and 
Symes, 2002).

The traditional approach for the calculation of traveltimes 
has been ray tracing between a source and receiver, which can 
be achieved by shooting or bending rays (Julian and Gubbins, 
1977). In the shooting method, rays are initiated at the source 
point with different initial directions and propagated through 
the medium by solving an initial value formulation of the ray-
tracing equation. The initial trajectories of rays are then updated 
until they hit the receiver within a given tolerance. In the 
bending method an initial path between source and receiver is 
updated using a boundary value formulation of the ray equation 
until it corresponds to a stationary path (i.e., satisfies Fermat’s 
Principle). However, the raypath calculated by ray tracing is not 
necessarily the first-arrival raypath.

Since the late 1980s there has been considerable interest in and 
development of numerous grid-based algorithms for the efficient 
calculation of arrival times using various finite-difference methods. 
One of the first attempts to compute the first-arrival traveltime field 
using such a technique was made in two dimensions by Vidale 
(1988), who later extended it to three dimensions (Vidale, 1990). 
The scheme involves progressively integrating the traveltimes 
along an expanding square in two dimensions or an expanding 
cube in three dimensions. In an alternative approach Moser (1991) 
computes seismic raypaths by tracking the shortest traveltime path 
through a predefined network, which links the nodes of a gridded 
velocity medium. In the shortest path method, all paths from one 
point are constructed simultaneously.

Essentially non-oscillatory schemes (ENO) (Harten et al., 
1987; Shu and Osher, 1988; Shu and Osher, 1989), and weighted 
essentially non-oscillatory schemes (WENO) (Liu et al., 1994; 
Jiang and Shu, 1996; Jiang and Peng, 2000), are algorithms for 
solving Hamilton-Jacobi type equations, for example hyperbolic 
conservation laws. The eikonal equation has the form of such a 
conservation law, which means that first-arrival traveltimes can be 
computed using, for example, second and third order WENO and 
ENO schemes (e.g., Kim and Cook, 1999; Qian and Symes, 2002; 
Buske and Kaestner, 2004).

Another eikonal equation based technique for computing first-
arrival traveltimes is the Fast Marching Method (e.g., Sethian 
and Popovici, 1999) or FMM, which is a grid-based wavefront 
evolution method capable of tracking first arrivals. FMM can 
be implemented with unconditional stability and has recently 
been extended to allow for the tracking of refracted and reflected 
wavefronts in layered media (Rawlinson and Sambridge, 2004). 
Important advantages of these finite-difference approaches, and in 
particular of FMM, compared to traditional ray tracing, are their 
computational efficiency, algorithmic simplicity, robustness, and 
solution completeness for first arrivals.

However, the fundamental limitation of these solvers is 
that they cannot track later arrivals of a wavefront within a 
continuous medium. There have been attempts to compute 
multivalued traveltime fields using only a first-arrival solver, 
but these approaches often include a rather ad hoc procedure 
for dividing the domain into subregions, followed by use of 
a first-arrival technique in each subregion. The solutions for 
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the different subregions are then superimposed to provide 
multivalued traveltimes for the whole computational domain 
(e.g., Fatemi et al., 1995; Benamou, 1999).

Lagrangian approaches to the problem of seismic wavefront 
tracking were introduced by Lambaré et al. (1992) and Vinje et 
al. (1993). Here a set of points is used to represent the wavefront, 
which is iteratively evolved by using local ray tracing with 
a given time step. After each iteration, the density of points 
is evaluated, and interpolation is used to add points (using a 
metric distance criterion) to regions of the wavefront that are 
undersampled. Sun (1992) recognised that the angular distance 
and therefore curvature should also be taken into consideration 
when adding points to the wavefront. Lambaré et al. (1996), in 
two dimensions, and Lucio et al. (1996), in three dimensions, 
used the Hamiltonian formulation of ray theory for their 
wavefront-tracking algorithm. In the Hamiltonian formulation 
(Chapman, 1985) the rays in normal space are replaced by 
bicharacteristics in phase space.

Osher and Sethian (1988) pioneered the field of interface 
tracking. They developed the level set method, which keeps 
track of an interface by expressing it as the zero level set (zero 
contour line) of a function representing the signed distance to the 
interface. The interface is then evolved implicitly as the signed 
distance function is updated on an Eulerian grid. The level set 
method cannot track self-intersecting interfaces and as a result 
cannot be used directly to track later-arriving wavefronts. Osher 
et al. (2002) therefore create a three-dimensional phase space 
from two-dimensional normal space by simply using the local 
normal direction to the wavefront as the third coordinate. In 
phase space, a self-intersecting wavefront unravels to become 
a non-self-intersecting line, which in the level set literature 
is known as the bicharacteristic strip. This strip can then be 
tracked in phase space and projected back into normal space 
to provide the multivalued geometrical optics solution of the 
eikonal equation. In short they describe the bicharacteristic strip 
in phase space as the intersection of the zero level sets of two 
three-dimensional signed distance functions. Computing the 
multivalued geometrical solution of the eikonal equation has 
always been a driving force in the level set community (e.g., 
Osher et al., 2002; Fomel and Sethian, 2002; Cockburn et al., 
2005), and these attempts by applied mathematicians stand in 
stark contrast to decades of ray tracing in seismology. Level set 
proponents claim that their approach is superior to a Lagrangian 
approach for the computation of multi-arrival traveltimes due to 
the implicit representation of the wavefront. In these schemes, 
however, the spatial resolution of the wavefront is always 
controlled by the resolution of the underlying grid.

To date, no significant applications of these techniques have 
emerged in geophysics (Benamou, 2003). Wavefront tracking 
in phase space has also not been extensively investigated in 
seismology, particularly in applications outside the exploration 
field. In addition, many of the suggested algorithms have only 
been tested in relatively simple two- or three-dimensional media, 
that is, in media with smoothly varying velocities and restricted 
peak to peak amplitudes. In the following we will compare an 
Eulerian and a Lagrangian algorithm for the computation of 
traveltimes in two-dimensional media. First we introduce the 
concept of phase space and show how three-dimensional phase 
space can be constructed from two-dimensional normal space. 
After describing both solvers, we test their accuracy using a 
one-dimensional model with a constant velocity gradient and 
then apply them to a model of the subduction zone in the Tonga 
region. We then demonstrate the power of our Lagrangian solver 
by using it to track large numbers of arrivals in the strongly 
heterogeneous Marmousi model.

METHOD

Eulerian Scheme

Fast marching and level set methods are techniques for 
solving interface propagation problems. The basic theory has 
been developed and summarised in books by Sethian (1999) and 
Osher and Fedkiw (2003). In the level set method the interface is 
described as the zero level set (the zero contour line) of a higher-
dimensional function (i.e., a signed distance function). The signed 
distance function is defined as the distance from a point of the 
underlying grid to the closest point on the interface, and is negative 
if the grid point is on one side of the interface and positive if the 
grid point is on the other side of the interface. The zero contour or 
zero level set of the signed distance function φ then corresponds to 
the original interface and can be written as

(x(t),t) = 0  ,  (1)

where x(t) is the position of the interface (i.e., the zero level set) at 
the time t. The time derivative of (1) is found with the chain rule

t + (x(t),t) x t (t) = 0  ,  (2)

where φt and xt denote derivatives with respect to time. The scalar 
speed function F is defined as the speed in the outward normal 
direction:

F = x t (t) n  ,  (3)

where

n =  .  (4)

Hence the evolution equation for the signed distance function 
φ is:

t + F = 0 given x,t = 0( )  .  (5)

This is the level set equation given by Osher and Sethian (1988), 
and corresponds to equations describing advective transport in an 
incompressible fluid. From a conservation law point of view, 
equation (5) states that for a given point the change of a property 
in time (for example, the concentration of a substance in a 
fluid) is equal to the flux of this property in the direction of the 
gradient. The signed distance function is well behaved when the 
absolute value of the gradient is equal to one for every point of the 
computational domain. In this situation equation (5) reduces to 

t = F , and the values of φ either increase or decrease, depending 
on the sign of F. When F > 0 , the interface moves in the outward 
normal direction, and when F < 0 the interface moves in the inward 
normal direction. When F = 0 the equation reduces to t = 0, and 
hence φ is not updated and the interface does not move.

For nodes of the grid that are equidistant from at least two 
points on the front the gradient of the signed distance function is 
discontinuous. This means that any numerical method used for 
evolving the signed distance function has to show a reasonable 
behaviour at the occasional kinks where the gradient fails to exist. 
If φ is not a well-behaved smooth signed distance function, the 
level set equation (5) must be solved numerically by treating it 
as a Hamilton-Jacobi equation. The literature contains a large 
number of numerical schemes for solving hyperbolic conservation 
laws and especially Hamilton-Jacobi type equations (e.g., Liu et 
al., 1994; Jiang and Shu, 1996; Jiang and Peng, 2000). In these 
schemes an approximation to the gradient is used in cases where it 
breaks down, often based on the smoothest set of nodes.
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The level set method has the advantage that there is no need to 
add or remove points from the interface as it evolves. Topological 
changes like breaking and merging of the evolving front are 
handled naturally. Geometrical properties of the interface like the 
normal to the front can be defined using the gradient of the signed 
distance function φ. The signed distance function also specifies on 
which side of the interface a point of the underlying grid lies.

For an external velocity field v, the level set equation (5) can 
be written as

t + v = 0  ,  (6)

where F = v .

The level set method cannot describe a self-intersecting 
interface. This is because of the fundamental principle underlying 
the level set method, which requires that the minimum entropy or 
viscous solution is found. However, a wavefront passing through 
a low-velocity region may develop a self-intersecting swallowtail 
pattern. Osher et al. (2002) therefore unfolds the self-intersecting 
wavefront into phase space. For seismic wavefront propagation 
in two dimensions, each point (x, y) on the wavefront can be 
represented in a three-dimensional phase space by simply using 
the local normal direction θ as the third coordinate (Figure 1(a)). 
An example is shown in Figure 1(b), where the circular wavefront 
at the base of the cube becomes the three-dimensional spiral 
strip, which is periodic in the θ direction and referred to as the 
bicharacteristic strip. The velocity field for the motion in phase 
space is given by the following equation, where c is the scalar 
velocity in normal space, cx the derivative of the velocity in the 
x direction and cy the derivative in the y direction:

v =

c cos
c sin

cx sin cy cos
 . 

 

(7)

Equation (7) can also be viewed as an initial value formulation 
of the ray-tracing equation (cf. equation (8)). We represent the 
velocity field using B-splines because equation (7) contains the 
derivatives of the velocity field and a B-spline representation 
provides smooth first derivatives.

In general the level set method can be formulated for the 
evolution of an m-1 dimensional manifold in an m-dimensional 
space. This means we can evolve a line in two dimensions or a 
surface in three dimensions. Therefore Osher et al. (2002) describe 
the wavefront in phase space (i.e., the bicharacteristic strip) as 
the intersection of two implicit surfaces (Figure 1(c)). The two 
implicit surfaces are then independently evolved using the level 
set method. We solve the level set equation using the fifth-order 
WENO scheme described by Jiang and Peng (2000). When the 
wavefront for a given moment in time needs to be extracted, the 
intersection of the two surfaces is computed and mapped back into 
normal space.

For a point source the bicharacteristic strip in phase space is 
given by a line with constant x and y, and θ varies between –π and 
+π. The two surfaces are then given by planes of constant x and 
constant y. The signed distance at a node of the underlying grid 
with position (x, y) to the surface are is defined by x – xs and y – ys, 
with (xs, ys) being the source location.

The level set method can generally only represent features of 
a surface that extend over more than one grid cell (e.g., Qian and 

Fig. 1. Phase space representation of a two-dimensional wavefront. 
(a) Ray trajectory from the wavefront (local wavefront normal) 
supplies third dimension θ. (b) Wavefront in normal space (black 
line) and corresponding bicharacteristic strip (red line) in phase 
space. (c) Representing the bicharacteristic strip as the intersection of 
two surfaces.
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Leung, 2004). However increasing the grid resolution by a factor of 
two increases the computation time by a factor of sixteen because 
of the requirement that the interface does not move more than one 
grid cell per time step. This inherent level of scaling means that 
the available memory and computation time will always limit the 
accuracy of the method.

Lagrangian Scheme

Within a Lagrangian framework, the bicharacteristic strip is 
represented by a finite set of points. As noted above, for a point 
source the bicharacteristic strip in phase space is given by a line 
with constant x and y, and θ between -π and +π, where x and y 
are the source location. We then represent this line in phase space 
by a uniformly distributed set of points. The bicharacteristic strip 
is evolved through the medium in a set of discrete time steps. 
For a given time step δt, the strip is updated using a two-stage 
procedure. In the first stage all points are evolved in time by 
solving the initial value formulation of the ray-tracing equation 
(see Rawlinson and Sambridge, 2004) using a fourth-order 
Runge Kutta solver:

dx
dt
dy
dt
d
dt

=

c cos
c sin

cx sin cy cos
 , 

 

(8)

where cx is the derivative of the velocity in the x direction, cy the 
derivative in the y direction, and the position of the point in phase 
space is given by (x, y, θ). In the second stage, points are added 
or removed from the bicharacteristic strip, depending on their 
distance apart in phase space (Figure 2). The aim is to keep a 
fixed density of points along the bicharacteristic strip in order to 
minimise the loss of detail. Increasing the number of points on the 
bicharacteristic strip by a factor of two increases the computation 
time and memory requirements by a factor of two only. For the 
calculation of the distance between two neighbouring points we 
scale phase space so that the two metric coordinates x and y also 
lie in [−π, +π]. This scaling defines the norm distance measure 
in phase space and hence a definition of point density. A point is 
added if the spacing between two neighbouring points becomes 
larger than twice the initial distance, and a point is removed if the 
distance between the two neighbours of a given point is smaller 
than half the initial separation. We add points to the bicharacteristic 
strip using linear interpolation. Although higher order interpolation 
could be used, our results for the constant velocity gradient will 
show that the accuracy achieved by using a linear interpolation is 
already sufficient for practical applications.

Removing points can decrease accuracy but will invariably 
increase the efficiency of the scheme. In earlier studies, ray density 
has been defined only in normal space – for example, the metric 
distance between neighbouring rays (Lambaré et al., 1992; Vinje 
et al., 1993) or the angular distance (Sun, 1992). These definitions 
of ray density tend to encounter difficulties if the wavefront starts 
to develop a swallowtail pattern; they are only loosely correlated to 
the complexity of the ray field. The use of a phase space distance 
metric is a key element of our Lagrangian method and is superior to 
the alternative of using a metric defined in normal space. Lambaré 

Fig. 2. Lagrangian scheme. (a) Wavefronts in normal space. (b) 
Corresponding bicharacteristic strip in phase space. A point (green) is 
inserted if the phase space distance between two neighbouring points is 
above a certain threshold.

Fig. 3. Swallowtail pattern of a wavefront. The intersecting segments in 
normal space (red lines) do not intersect each other in phase space. The 
sharp corners in normal space (green segments) are given by a smooth 
representation in phase space.
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et al. (1996) use a similar criterion for the ray density in the phase 
space within their Hamiltonian formulation of ray theory.

Figure 3 illustrates how the bicharacteristic strip stays non-self-
intersecting and piecewise smooth for a self-intersecting wavefront 
with sharp corners. The two intersecting segments of the wavefront 
are mapped to different positions in phase space because the 
directions of their local wavefront normals differ substantially 
from each other (red segments in Figure 3). If points are added to 
the wavefront in normal space near the sharp corner in the green 
region, a linear interpolation cannot provide adequate results. In 
phase space however a linear interpolation is simple to apply along 
the smooth bicharacteristic strip (green segment in Figure 3).

Extracting Arrival Time Information

So far we have shown how the Eulerian and the Lagrangian 
solver can be used to calculate the position of the wavefront for a 
given moment in time. However, in seismology we often want to 
know the traveltime, and the raypath to a receiver is more useful 
information. We extract this arrival-time information in a post-
processing step once all the wavefronts have been calculated.

A point receiver in real space projects into a line in phase 
space. In the Eulerian approach the square of the distance to the 
closest point on the wavefront is given by the minimum of the 
sum of the squares of the two signed distance functions along the 
line in phase space representing the receiver. This information 
is stored for each time step and each receiver. The recorded 
distance forms a local minimum if a wavefront has passed a 
receiver. Fitting a parabola through the three points defining 

the local minimum allows an arrival time to be interpolated. 
However two arrivals can only be distinguished from each other 
if their temporal separation is bigger than the size of the time 
step. The squared distance is also only measured for a limited 
number of points on the wavefront, and therefore not all the 

Fig. 4. Determination of a raypath using the wavefronts calculated 
by the Lagrangian solver. Given the green and black points on the 
wavefront and the corresponding raypath segments, a raypath (red 
line) for a receiver is interpolated back to the source between the green 
known neighbouring raypath segments.

Fig. 5. Comparison of the accuracy of the Lagrangian and Eulerian solvers in a medium described by a constant velocity gradient. In the top figure 
the relative difference between the computed and analytical traveltime is plotted as a function of receiver position in blue for the Eulerian solver and 
red for the Lagrangian approach. The velocity model is plotted at the bottom and the velocity increases linearly with depth and is 2.4 km/s at the 
surface and 3.9 km/s at the bottom. The raypaths in the figure at the bottom were computed using the Lagrangian solver.
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local minima of the squared distance are equal to zero, because 
even if a wavefront lies on a receiver the distance to the closest 
point might not be equal to zero. We therefore need to define a 
threshold in order to distinguish between true arrivals and the 
passage of endpoints of a swallowtail close to a receiver.

In the Lagrangian scheme the wavefront is explicitly defined 
at each time step. This allows us to identify the consecutive 
wavefronts and adjacent raypaths that together bound a receiver. 
The raypath segment and traveltime can then be computed using 
linear interpolation. This scheme is similar to an approach by 
Vinje et al. (1993).

Source-receiver raypaths can be estimated a posteriori in the 
case of the Lagrangian scheme by exploiting the connectivity 
between points on the wavefront for all time steps. Once wavefront 
tracking is finished, we have a set of raypaths (green and black 
lines in Figure 4) through the medium for all points of the 
bicharacteristic strip (black and green points in Figure 4). For the 
determination of a raypath between the source and a given receiver 
we begin at the receiver and progressively interpolate between 
known neighbouring segments back to the source. This approach 
is illustrated in Figure 4 where the red raypath is interpolated back 
to the source between the green known raypath segments. Having 
extracted the raypath, an estimate for the relative amplitude can be 
determined by solving the dynamic ray-tracing equations along the 
given path (e.g., Vinje et al., 1993).

EXAMPLES

The two algorithms are implemented in FORTRAN 95. 
All computations are performed on a PC with a 3.2 GHz Intel 
Pentium 4 processor and 2 Gb RAM, running GNU/Linux. 
First the accuracy of both approaches is tested, using a one-
dimensional velocity model with a constant gradient. We then 
use a two-dimensional laterally heterogeneous seismic velocity 
model of a subduction zone in the Tonga region (Conder and 
Wiens, 2006) for the comparison between the Eulerian and 
Lagrangian solver. This test confirms the fact that the usefulness 
of the Eulerian solver is severely limited by the nature of its trade-
off between grid resolution, accuracy, and computation time. We 
then demonstrate the capabilities of our Lagrangian solver using 
the Marmousi model from the 1996 INRIA workshop on multi-
arrival traveltimes (see <http://www.caam.rice.edu/~benamou/
traveltimes.html>).

Accuracy of First arrivals for a Constant Velocity Gradient

For a constant velocity gradient model, the analytical solution 
for the travel time is known (Sheriff and Geldart, 1995). The 
model for this test is given by a velocity of 2.4 km/s at the top 
and 3.9 km/s at the bottom with a constant gradient in between 
(Figure 5). While this model does not generate later arrivals it 
provides an estimate for the accuracy of the two methods. The 
Lagrangian solver uses 150 points to represent the point source 
in phase space; the error between the numerical and analytical 
solution is in this case less than 0.1% for all receivers. The errors 
in the Eulerian approach tend to be larger but still less than 5% 
for all receivers (Figure 5). The grids for the signed distance 
functions in the Eulerian approach consist of 161×41×51 nodes. 
For one time step the values for all nodes of the two grids 
representing the signed distance function have to be calculated; 
by contrast the Lagrangian approach only requires 150 points to 
be updated, although this increases as the wavefront expands. 
This explains why the Lagrangian approach takes 7 seconds 
of CPU time while the Eulerian approach requires 35 minutes 
of CPU time. More advanced level set methods might be more 
accurate and efficient but they would still require the solution 

of two three-dimensional problems in order to solve what is 
essentially a one-dimensional problem. The lower accuracy of the 
Eulerian solver could also be partly due to the limited accuracy of 
the algorithm used for the extraction of the arrival times.

Computing Multi-Arrivals in a Subduction Zone.

We use a two-dimensional P-wave velocity model of a 
subducting slab in the Tonga region (Conder and Wiens, 2006) 
to illustrate the basic features of the Eulerian and Lagrangian 
solver. We expect the appearance of multiple arrivals due to the 
high-velocity anomaly associated with the subduction of the cold 
oceanic lithosphere. The plane of the model is perpendicular to 
the slab, and the model extends for 1400 km in the east-west 
direction and 700 km in the depth direction. P-wave velocity 
values are given by Conder and Wiens (2006) for a Cartesian 
grid consisting of 57×29 nodes spaced 25 km horizontally and 
vertically (Figure 6(a)).

Fig. 6. Later arrivals in a subduction zone. (a) Orientation of the two-
dimensional P-wave velocity model (Conder and Wiens, 2006). (b) 
Wavefronts calculated using the Eulerian solver. The velocity is plotted 
as perturbation with respect to a local one-dimensional model. (c) 
Wavefronts calculated using the Lagrangian scheme. We observe three 
arrivals at the receiver and their raypaths are plotted red for the first, 
green for the second, and blue for the third arrival.
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In the Eulerian scheme, the signed distance functions are 
defined on a grid consisting of 113×58×59 nodes. The grid is 
scaled so that the spacing in all three dimensions is similar. 
Calculating the wavefronts using the Eulerian solver takes 24 h 
compared with 14 s when using the Lagrangian solver. In the 
Lagrangian solver we represent the point source using 500 points. 
As shown in Figures 6(b) and 6(c), the wavefronts calculated by 
the Lagrangian solver are clearly preferable. Without a finer 
computational mesh the level set method is unable to capture the 
development of the swallowtail pattern. Increasing the grid size 
by a factor of two, however, means that the computation time 
increases by a factor of sixteen and the memory requirements 
increase by a factor of eight. The Lagrangian solver predicts 
three arrivals for the receiver and we also can extract the ray-path 
information for each arrival.

It is important to realise that we are computing later arrivals 
using a velocity model that was constructed using only first 
arrivals. This may mean that later arrivals are under-represented, 
as first-arrival tomography tends to underestimate the amplitude 
of slow anomalies. Figure 6(c) suggests that the inclusion of 
later arrivals in seismic imaging (e.g. in tomography) could in 
principle improve path coverage and hence resolution, since 
raypaths for the two later arrivals are sampling different parts of 
the model than the first arrival.

Later Arrivals in the Marmousi Model

The Marmousi model has traditionally been used to demonstrate 
the limitations of first-arrival traveltimes in imaging complex media. 
Geoltrain and Brac (1993) showed that multi-arrival traveltimes 
are needed in order to accurately image the Marmousi model. 
The geological structure is based on a profile through the North 
Quenguela trough in the Cuanza basin in Angola (Versteeg, 1993).

Traditionally traveltimes have been computed using a smoothed 
version of the Marmousi model (see <http://www.rocq.inria.
fr/~benamou/testproblem.html>) (e.g., Buske and Kaestner, 2004; 
Qian and Leung, 2004; Coman and Gajewski 2005). The smooth 
model was obtained by convolving the so-called hard model, 
which is characterised by strong velocity gradients, with a spatial 
Hanning (cos2) filter of radius 150 m. The model consists of 
384×122 nodes with a vertical separation of 24 m. Figure 7(a) 
illustrates raypaths, wavefronts, and relative amplitudes obtained 
by the Lagrangian solver for the standard test problem, using the 
smoothed version of the model with a source at (6000, -2800). We 
are able to recover 651 arrivals and the corresponding raypaths 
for the 384 receivers positioned at the surface. The computation 
time in this case is 45 s, and more than 40% of the arrivals are 
later arrivals, which tend to sample regions avoided by first 
arrivals. Figure 7(b) shows the raypaths for a source close to the 

Fig. 7. Later arrivals and amplitude information for two sources (a and b) in the Marmousi model. The raypaths for the first arrivals are given in 
red, for the second arrivals in green, and for third and later arrivals in blue. The figure on the top shows the relative amplitudes for the first (red), 
second (green), and third arrival (blue).
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left boundary of the model, at (50, -2600). As the wavefronts 
for this source position travel a greater distance, the wavefronts 
become much more complex and the fast region acts as a kind 
of waveguide. We observe 3291 arrivals for this example, with 
later arrivals accounting for more than 85% of the total. For both 
source locations we observe that the later arrivals tend to sample 
regions avoided by the first arrivals. We also calculate relative 
amplitudes for the first, second, and third arrivals using dynamic 
ray tracing (e.g., Vinje et al., 1993). The later arrivals have similar, 
and for some receivers, larger amplitudes than the first arrival. This 
confirms our expectation that the first arrival of a wavefront is not 
always the most energetic arrival.

We use the Lagrangian solver to identify regions in the 
Marmousi model where sources generate later arrivals for at least 
one receiver on the surface. We do this by evaluating 2976 source 
points with a vertical and horizontal spacing of 48 m. Figure 8(a) 
shows a map of the maximum difference in arrival time between 
the first and second arrival at one of the receivers at the surface. 
Sources close to the receivers in the centre of the model show 
a large difference in traveltime between the first and second 
arrival. This is due to the strong velocity gradient in the lower left 
region of the model. This strong change in the velocity behaves 
like a reflector for sources above this fast region and deflects 
down-going energy back towards the surface. Figure 8(b) is a 
map of the maximum number of later arrivals at the surface, as a 
function of source location. Note that for reasons of computational 
convenience we limit the maximum number of arrivals to 60. 
Sources close to the left and right boundary of the model tend 
to generate large numbers of later arrivals, as the wavefronts can 
travel greater distances and therefore more, and larger, swallowtail 
patterns can develop. If a source is located in the two fast regions 
near to the left and right edges of the model, we do not observe 
large numbers of later arrivals at the surface. A wavefront in the 
neighbourhood of a point source tends not to develop a swallowtail, 
even in the presence of a significant velocity contrast, as a result 
of its high curvature.

Figure 8(c) is a map of the velocity gradient of the Marmousi 
model. By comparing the wavefronts in Figure 7 with Figure 8(c) 
we see that the swallowtails are initiated in regions where we 
observe a strong velocity gradient. Overall we observe that the 
generation and detection of multiple arrivals is extremely sensitive 
to small changes in the velocity structure and the source and 
receiver location.

DISCUSSION AND CONCLUSIONS

We have given an overview of two classes of phase space 
solvers for the computation of multiple arrivals: a Lagrangian 
and an Eulerian scheme. The fundamental difference between the 
two solvers is their scaling with computation time, memory, and 
accuracy. The Lagrangian approach uses a local one-dimensional 
discretisation, while the Eulerian scheme requires a three-
dimensional discretisation even for a two-dimensional problem.

The level set method is well known and frequently used in 
computational mathematics, but little known or used in seismology. 
Even so there is still a lack of agreement in the literature on how 
best to implement it. The stability of solvers used for the level set 
equation, and the implementation of schemes aimed at keeping the 
signed distance function well-behaved during the computation, form 
part of ongoing research. The level set method has several powerful 
features for general interface problems, among them the capability 
to handle the merging and breaking of interfaces automatically. 
However the fundamental limitation of the level set method is that 
features of a surface that are smaller than a few grid cells cannot 
be adequately resolved by a signed distance function. In practice 

the grid resolution in three dimensions for the representation of the 
bicharacteristic strip will therefore always be a limiting factor. A 
narrow-band adaptive gridding technique for the signed distance 
function could provide a high grid resolution where it is necessary. 
However such algorithms are generally difficult to implement and 
it is questionable if such a scheme could ever be superior to a 
Lagrangian scheme for seismological problems.

Lambaré et al. (1996) use the two components of the slowness 
vector as the additional coordinates for their phase space, while we 
only use the direction of the local wavefront normal as an additional 
coordinate. This means that we have a reduced three-dimensional 
phase space when compared to their four-dimensional phase space. 
Coman and Gajewski (2005) do not propagate their wavefront 
in phase space and therefore calculate an approximation to its 
curvature based on the local slowness vector in order to produce 
a satisfactory refinement criterion. Our approach also differs from 
previous implementations in the sense that we remove points from 
the wavefront if their density is above a certain threshold. We are 
able to track more than 60 later arrivals for certain source locations in 
the Marmousi model because of the stability of the method. Coman 
and Gajewski (2005) and Lambaré et al. (1996) also calculate later 
arrivals for this model but because of the position of their sources 
they track fewer later arrivals in their examples.

A phase-space-based approach for the computation of later 
arrivals in a three-dimensional model would require the evolution 
of a surface in five dimensions. The two phase-space coordinates 
are then given by the two angles describing the direction of the 
local wavefront normal. In the Eulerian approach the level set 
method would have to be used to evolve three surfaces in five 
dimensions (Osher et al., 2002). In this case the grid resolution 

Fig. 8. (a) Maximum observed traveltime difference between first and 
second arrival for any one of the receivers at the surface as a function 
of source location. (b) Maximum number of arrivals for any one of the 
receivers at the surface as a function of source location. (c) Velocity 
gradient of the Marmousi model.
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in the Eulerian approach would be severely limited by the 
computational cost. For the Lagrangian case, extension to three 
dimensions would mean representing a two-dimensional manifold 
in a five dimensional phase space, by triangles for example, 
and keeping track of the connectivity between these triangles, 
which seems much more feasible. Vinje et al. (1996) performed 
wavefront tracking in three dimensions, but the refinement of the 
wavefront is not performed in phase space, and they do not remove 
triangles when the wavefront becomes over sampled.

In summary, we have shown that it is possible to compute 
multi-arrival traveltimes in a complex two-dimensional velocity 
model and that the Lagrangian scheme is currently the preferred 
choice by a wide margin. We have also demonstrated that the 
practicality of the level set method for computing multi-arrival 
traveltimes is currently questionable, despite the level set 
method being a well established and proven technique outside 
of seismology. We used the Lagrangian solver in order to find 
source locations for the Marmousi model that will lead to the 
observation of large numbers of later arrivals at a given set of 
receivers. We have also shown how the Lagrangian solver can 
be used to find receiver positions that will detect later arrivals. 
A longer-term goal is to exploit the information contained in 
observed later arrivals in order to improve seismic imaging.
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