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1 Introduction

1.1 Motivation

Seismic data represent one of the most valuable resources for investigating the internal structure and
composition of the earth. One of the first people to deduce earth structure from seismic records was
Mohorovičić, a Serbian seismologist who, in 1909, observed two distinct traveltime curves from a
regional earthquake. He determined that one curve corresponded to a direct crustal phase and the
other to a wave refracted by a discontinuity in elastic properties between crust and upper mantle.
This world-wide discontinuity is now known as the Mohorovičić discontinuity or Moho for short.
On a larger scale, the method of Herglotz and Wiechart (see, for example, Gubbins, 1992) was
first implemented in 1910 to construct a 1-D whole earth model. The method uses the relationship
between angular distance and ray parameter to determine velocity as a function of radius within the
earth.

Today, an abundance of methods exist for determining earth structure from seismic waves. Dif-
ferent components of the seismic record may be used, including traveltimes, amplitudes, waveform
spectra, full waveforms or the entire wavefield. Source-receiver configurations also differ - receiver
arrays may be in-line or 3-D, sources may be close or distant to the receiver array, sources may
be natural or artificial, and the scale of the study may be from tens of meters to the whole earth.
Finally, there are a multitude of ways of translating the data extracted from the seismogram into a
representation of seismic structure.

The purpose of this article is to review a particular class of methods for imaging earth structure
called seismic traveltime tomography. This is a form of seismic traveltime inversion that is used to
constrain 2-D and 3-D models of the Earth represented by a significant number of parameters. The
word tomography literally means slice picture (from the Greek word tomos meaning slice) and was
first used in medical imaging to describe the process of mapping the internal density distribution
of the human body using x-rays (Lee & Pereyra, 1993). The term was later appropriated by the
seismological community to describe a similar process using seismic waves to map earth structure.
Seismologists now routinely use tomography to refer to 3-D structural imaging even though, strictly
speaking, the word was originally designed to describe the imaging of 2-D slices only.

Inversion of source-receiver traveltimes of seismic waves is undoubtedly the most popular tech-
nique for imaging subsurface structure at all scales. However, comprehensive up-to-date reviews of
the methodology and their application are rarely found in the literature (some useful reference works
include Nolet, 1987b; Iyer & Hirahara, 1993; Kennett, 1998). We hope to at least partially address
this problem. Here, we restrict ourselves to traveltime tomography used in studies of the crust and
lithosphere. These local scale studies typically involve the deployment of seismometer arrays with
a spatial coverage of several hundred km or less in any dimension. The class of data that may be
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recorded in such experiments include normal incidence reflection, refraction and wide-angle reflec-
tion, teleseismic and local earthquake arrival times. Although the inversion methods used in these
studies are often common to a wide range of other seismic tomography applications, the point here
is that they are presented in the context of traveltime inversion for local-scale structure.

The widespread use of body wave traveltimes in seismic tomography is undoubtedly related to
the relative ease with which they may be extracted from a seismogram and the simple relationship
that exists between traveltime and wavespeed. However, much more information is contained in
a seismic waveform than simply the arrival time of a particular phase. Surface wave tomography,
which utilizes the surface waveform component of an arriving wavetrain to build 3-D images of shear
wavespeed, is the most commonly used type of waveform tomography. It is generally carried out
at regional or global scales and has been particularly important in mapping beneath oceans (Nolet,
1987a); oceanic upper mantle is rarely probed by body wave tomography since few seismic recorders
are placed in an ocean setting. The methodology and application of surface wave tomography falls
outside the scope of this review, so we refer the interested reader to the texts of Iyer & Hirahara
(1993) and Kennett (2002) and the journal papers of Cara & Lévêque (1987), Nolet (1990), Zielhuis
& van der Hilst (1996) and Debayle & Kennett (2000) for more information on the subject.

This paper sets out to review commonly used methods of traveltime inversion for crustal and
lithospheric imaging from the mid 1970s, when seismic tomography was first used, until recently,
and provide a comprehensive list of references. However, we would like the paper to be more
than just a concatenation of method descriptions and a discussion of their relative merits. This is
achieved in several ways. First, we impart a tutorial flavor to the paper by being instructive as well
as informative; this will be of particular benefit to readers who are not very familiar with seismic
tomography. For example, many schematic diagrams and technical drawings are included to try and
illustrate basic concepts, or clarify important ideas. Second, recent techniques that have seen little or
no application in seismic tomography but show significant potential are also explained (e.g. the fast
marching method of traveltime determination and global optimization techniques). Third, to help
understand how the various methods are used in real data applications, and how different classes of
data influence the formulation of the inverse problem, we present a number of case studies in detail.
Generally, these examples are very recent, although we also discuss earlier applications to emphasize
how the methodology has evolved. Lastly, we discuss in some detail the future of seismic traveltime
tomography as a tool for subsurface imaging, and in particular the frontier areas of research that
remain to be explored.

In the remainder of this section, the basic concepts underlying seismic traveltime tomography are
introduced, and the four types of data for analyzing crustal and lithospheric structure are described
(i.e. coincident reflection, refraction and wide-angle reflection, local earthquake and teleseismic). In
Section 2, we review methods of seismic traveltime tomography, and in particular focus on model
parameterization, techniques for determining traveltimes, inversion schemes and practical methods
for analyzing solution robustness. Application of these methods to each of the four data types are
then presented and compared in Section 3, with most examples taken from the existing literature.
In Section 4, we conclude with a discussion on possible future developments in seismic traveltime
tomography.

1.2 Seismic Traveltime Tomography: Formulation

If we represent some elastic property of the subsurface (e.g. velocity) by a set of model parameters
m, then a set of data (e.g. traveltimes) d can be predicted for a given source-receiver array by line
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integration through the model. The relationship between data and model parameters, d = g(m),
forms the basis of any tomographic method. For an observed dataset dobs and an initial model m0,
the difference dobs −g(m0) gives an indication of how well the current model predictions satisfy the
data. The inverse problem in tomography is then to manipulate m in order to minimize the difference
between observed and predicted data subject to any regularization that may be imposed. The end
result will be a mathematical representation of the true structure whose accuracy will depend on a
number of factors including: i) how well the observed data are satisfied by the model predictions, ii)
assumptions made in parameterizing the model, iii) errors in the observed data, iv) accuracy of the
method for determining model predictions g(m), and v) the extent to which the data constrain the
model parameters. The tomographic method therefore depends implicitly on the general principles
of inverse theory (Tarantola, 1987; Menke, 1989; Parker, 1994) .

The steps required to produce a tomographic image from seismic data can thus be defined as
follows:

1. Model parameterization: The seismic structure of the region being mapped is defined in
terms of a set of unknown model parameters. Tomographic methods generally require an
initial estimate of model parameter values to be specified.

2. Forward calculation: A procedure is defined for the calculation of model data (e.g. travel-
times) given a set of values for the model parameters.

3. Inversion: Automated adjustment of the model parameter values with the object of better
matching the model data to the observed data subject to any regularization that may be im-
posed.

4. Analysis of solution robustness: May be based on estimates of covariance and resolution
from linear theory or on the reconstruction of test models using synthetic datasets.

In seismic traveltime tomography the model data are traveltimes and the model parameters define
velocity variations. The traveltime of a ray in a continuous velocity medium v(x) is:

t =
∫

L(v)

1

v(x)
dl (1)

where L is the ray path and v(x) is the velocity field. Eq. 1 is non-linear since the integration
path depends on the velocity. This inherent non-linearity means that the inverse problem can be
very difficult to solve. There are three basic approaches that are used, which we define as (i) linear
tomography, (ii) iterative non-linear tomography, and (iii) fully non-linear tomography. In linear to-
mography, the relationship between traveltime residual and velocity perturbation is linearized about
a reference model and corrections to the velocity field are made under this assumption. Thus, ray
paths are determined only once (through the initial or reference model) and are not re-traced. It-
erative non-linear tomography also ignores the path dependence of the velocity correction in the
inversion step, but accounts for the non-linearity of the problem by iteratively applying corrections
and re-tracing rays (i.e. repeating steps 2 and 3 in the above formulation) until, for example, the
data are satisfied, or the rate of data fit improvement per iteration satisfies a given tolerance. Fully
non-linear tomography locates a solution without relying on linearization in any way, but is rarely
done in practice.

The linearization assumption commonly adopted in traveltime tomography is reasonable pro-
vided it can be shown that the source-receiver path is not significantly perturbed by the adjustments
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made to the model parameter values in the inverse step. If we now consider a perturbation δv(x) to
a reference velocity field v0(x), so that v(x) = v0(x) + δv(x), then both the ray path and source-
receiver traveltime must also be perturbed in the new velocity field v(x) relative to v0(x). If the new
path is L(v) = L0 + δL where L0 is the path in v0(x) and t = t0 + δt where t0 is the traveltime
along L0 in v0(x), then the traveltime in v(x) can be written:

t =
∫

L0+δL

1

v0 + δv
dl (2)

The integrand in Eq. 2 may be expanded using the geometric series:

1

v0 + δv
= 1/v0

1 − (−δv/v0)
= 1

v0
− δv

v2
0

+ δv2

v3
0

− . . . (3)

Substitution of this expression into Eq. 2 and ignoring second-order terms yields:

t =
∫

L0+δL

1

v0
− δv

v2
0

dl + O(δv2) (4)

which to first order may be separated as:

t =
∫

L0

1

v0
− δv

v2
0

dl +
∫

δL

1

v0
− δv

v2
0

dl + O(δv2) (5)

The second integral on the RHS can be set to zero since Fermat’s Principle states that, for fixed
endpoints, the traveltime along a ray path is stationary with respect to perturbations in the path
(∂ t/∂L = 0). Since t = t0 + δt , then the perturbation in traveltime resulting from a perturbation to
the velocity field is given by:

δt = −
∫

L0

δv

v2
0

dl + O(δv2) (6)

The implication of Eq. 6 is that if the velocity along the path is perturbed, then the corresponding
traveltime perturbation calculated along the original path will be accurate to first order (see Snieder &
Sambridge, 1993, for a discussion of the case in which ray end points are perturbed). It is interesting
to note that if the above calculation is performed in terms of a perturbation in slowness s(x) = 1/v(x)
rather than velocity, then the resulting expression for a perturbation in traveltime is given by:

δt =
∫

L0

δsdl + O(δs2) (7)

which is linearly dependent on δs.
Studies that use linear tomography may deal with tens to hundreds of thousands of model pa-

rameters (e.g. Inoue et al., 1990; Spakman, 1991; van der Hilst et al., 1997; Bijwaard et al., 1998),
making an iterative non-linear approach computationally expensive, or have data geometries (such
as teleseismic) that make a linear assumption more valid (e.g. Achauer 1994). It is worth noting,
however, that a number of recent regional and global scale traveltime tomography studies involv-
ing hundreds of thousands to millions of ray paths and hundreds of thousands of model parameters
have used iterative non-linear inversion schemes (Bijwaard & Spakman, 2000; Gorbatov et al., 2000,
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Figure 1: Schematic representation of a source-receiver array (sources denoted by asterisks, receivers by
triangles) that bounds a model volume represented by a set of 16 constant velocity blocks labeled using
(x, y) coordinates. Ray paths connect sources and receivers and demonstrate why the inverse problem
often requires regularization. Blocks (2,1) and (3,1) are not constrained by the data, blocks (1,1), (2,2),
(3,2) and (4,1) are relatively poorly constrained by the data while blocks like (2,4) and (3,4) are relatively
well constrained by the data.

2001). Local earthquake and wide-angle tomography, for which ray paths depend strongly on ve-
locity structure, generally use an iterative non-linear approach (e.g. Hole, 1992; Graeber & Asch,
1999).

Common model parameterizations include constant velocity (or slowness) blocks, a grid of ve-
locity nodes with a specified interpolant like trilinear or cubic splines, and to a lesser extent, spectral
parameterizations like truncated Fourier series. Interface parameterizations use similar schemes
except those appropriate to a surface rather than a volume. The forward problem of finding source-
receiver ray paths and traveltimes is often solved using ray tracing techniques like shooting and
bending, first-arrival wavefront tracking on a grid (e.g. eikonal solvers) and network methods, also
known as Shortest Path Raytracing (SPR). The inverse step of adjusting model parameters to sat-
isfy observed data subject to regularization constraints is frequently solved using gradient methods
(e.g. Gauss-Newton, subspace inversion) and backprojection methods like ART or SIRT. Global
optimization methods like genetic algorithms (Goldberg, 1989) have been used but only rarely. Reg-
ularization (i.e. applying other constraints to the model in addition to those supplied by the data) is an
important consideration in the inverse step due to the often under-determined or mixed-determined
nature of the problem (see Fig. 1). A means of analyzing solution robustness is a critical step in a
meaningful interpretation of an inversion result. Estimates of a posteriori model resolution and co-
variance from linear theory have been used, as have synthetic reconstructions (e.g. the checkerboard
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test) that use the same source-receiver geometry as the original experiment. All the above methods
are discussed in more detail in Section 2.

Due to its origins in radiology and early seismic imaging, the term tomography is generally
only applied to methods that invert for a property (e.g. velocity) that is described throughout the
model volume. If only interface structure is inverted for (e.g. Hole, 1992; Rawlinson & Houseman,
1998), then the term tomography is generally not applied, even though the method conforms to the
procedures described above. However, in this paper we assume that the term tomography may be
used for any method that generally follows the four steps listed above and results in 2-D or 3-D
representations of subsurface structure.

1.3 Traveltime Data used in Studies of the Crust and Lithosphere

The four classes of data we consider for the tomographic determination of crustal and lithospheric
structure are normal incidence reflection, refraction and wide-angle reflection, local earthquake and
teleseismic. Normal incidence reflection surveys and refraction and wide-angle reflection surveys
use controlled or artificial sources (e.g. airgun shots, explosions, vibroseis) to generate seismic en-
ergy. The benefits of controlled sources include precise identification of source location and origin
time, control over data coverage, and knowledge of source waveform. However, compared to exper-
iments that use earthquake sources, surveys of this nature tend to be more expensive and cannot be
used to probe deep structure (air-gun shots tend not to penetrate very far beyond the base of the crust)
unless powerful sources such as nuclear explosions are used. PNEs (Peaceful Nuclear Explosions)
can be detected thousands of kilometers away and have occasionally been recorded by long in-line
receiver arrays (Priestley et al., 1994; Ryberg et al., 1996; Nielsen et al., 1999). Due to the advent of
the Comprehensive Test Ban Treaty, PNEs are unlikely to be used in the future.

Normal incidence reflection seismic surveys use in-line arrays of sources and receivers to image
crustal structure on depth scales of tens of meters to tens of kilometers. This seismic method is
referred to as normal incidence (or coincident) because the aim is to map reflections from sub-
horizontal interfaces using near-vertically propagating P-waves (see Fig. 2a). The most common
way of analyzing this data is to plot traces from adjacent sources or receivers next to each other
on a horizontal distance versus two-way traveltime axis to produce a reflection section. Variations
in the earth’s impulse response can then be linked to variations in earth structure. To produce a
usable reflection section, significant processing is required (Yilmaz, 1987; Telford et al., 1990) to
remove or reduce effects caused by the source wavetrain, multiples, normal moveout, near-surface
complexities, diffraction and data noise. The entire seismic wavefield is used and is mapped directly
to the model space. For this reason, reflection seismic sections are unequaled in terms of detail
and resolution. The method is most effective when used to image discontinuous changes in seismic
structure (i.e. reflectors).

As shown in Fig. 2a, the paths taken by the seismic energy in a seismic reflection experiment
are not strictly vertical, as the shot is recorded by an array of receivers at varying offsets (usually
small compared to the maximum depth of the recorded energy) from the source. The multiplicity of
data permits stacking to boost signal-to-noise ratio and the variation of ray trajectories also makes
it possible to explicitly image elastic properties using traveltimes in a process known as reflection
tomography (Bishop et al., 1985; Farra & Madariaga, 1988; Williamson, 1990; Blundell, 1993; Car-
roll & Beresford, 1996; Kosloff et al., 1996). Structure is commonly represented by a series of
sub-horizontal layers separated by continuous interfaces. Usually, both interface geometry and layer
velocity are varied by the inversion to satisfy the observed traveltimes.
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Figure 2: Schematic source-receiver geometries for various seismic surveys (sources are denoted by aster-
isks, receivers by triangles): (a) Normal incidence reflection array (common source), (b) wide-angle seismic
array; thin black lines denote reflected rays, dotted lines denote refracted rays, (c) local earthquake array
- sources lie within modeled region (dotted line), and (d) teleseismic array - sources lie outside modeled
region (dotted line).

Although it is sometimes possible for coincident reflection data to resolve the trade-off that exists
between lateral variation of velocity within a layer and interface depth (Blundell, 1993), the often
small offsets between source and receiver make it difficult. Refraction and wide-angle reflection
surveys use arrays with large offsets between sources and receivers (see Fig. 2b). In this case, traces
from adjacent receivers recorded from a single shot, or from adjacent shots recorded at a single
receiver, may be plotted on a time versus offset plot to reveal the presence of coherent traveltime
curves. The term wide-angle data normally implies the presence of both refraction and reflection
information (e.g. Riahi & Lund, 1994; Zelt et al., 1996). Wide-angle tomography shares many
similarities with reflection tomography. Model structure is commonly represented by layers with
both interface geometry and layer velocity constrained by the inversion procedure. Reflected rays
tend to be more sensitive to variations in interface structure, while refracted rays tend to be more
sensitive to variations in layer velocity.

Recently, interpretation of wide-angle seismic data has been carried out in 3-D using multiple
in-line arrays of sources and large receiver arrays. Inversion methods for 3-D wide-angle data have
been presented by a number of authors including Hole (1992), Hole et al. (1992), Riahi et al. (1997),
Zelt & Barton (1998), Zelt et al. (1999) and Rawlinson et al. (2001a). Interpretation methods for
such datasets have developed rapidly in recent years, although many still cannot deal with the level
of structural detail commonly obtained from 2-D datasets (e.g. Kodaira et al., 1998).

One of the first papers to be published on seismic tomography was that of Aki & Lee (1976), who
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inverted first-arrival P-wave traveltimes from local earthquakes for velocity structure and hypocenter
location in Bear Valley, California. The source-receiver geometry for this type of study is shown
schematically in Fig. 2c - the earthquake sources lie beneath the receiver array within the model
volume. The hypocenter coordinates, which are not accurately known, must be included in the
inversion. Although Fig. 2c shows a 2-D experiment, most local earthquake studies are 3-D. Since
the publication of the Aki & Lee (1976) paper, this branch of tomography has come into common
usage and is now popularly known as Local Earthquake Tomography or LET (Thurber, 1993).

LET has been used to image the lithosphere and upper asthenosphere to depths of up to 200 km
in subduction zone settings (Abers, 1994; Graeber & Asch, 1999). High resolution images of the
crust have also been obtained using shallow earthquakes (Thurber, 1983; Chiarabba et al., 1997). In
such cases, the results of LET can be usefully compared with wide-angle studies of the same region
(Eberhart-Phillips, 1990). Advantages of LET over wide-angle tomography include greater depth
of penetration and the added structural information provided by the relocated hypocenters, e.g. the
existence of double seismic zones (Hasegawa et al., 1978; Kawakatsu, 1985; Kao & Rau, 1999).
On the other hand, the relocation of hypocenters adds to the non-uniqueness of the solution and
phases other than first-arrival P and S can be difficult to incorporate. For this reason, LET models
rarely include interfaces, although Zhao et al. (1992) included interfaces in their LET model of NE
Japan by using observed S P waves converted at the Moho and P S/S P waves converted at the upper
boundary of the subducted Pacific Plate.

A significant difference between LET and teleseismic tomography is source location; in a tele-
seismic study, earthquakes are generally thousands of km away from the receiver array. The target
region of the crust and upper mantle lies beneath the receiver array. A key assumption of teleseismic
tomography is that only the region beneath the receiver array contains significant lateral variations
in velocity. Elsewhere, a 1-D earth model is adequate to predict the geometry and inclination of the
wavefront before it strikes the target region. Therefore, it is possible to trace the rays through a 1-D
reference model of the earth until they penetrate the teleseismic model. Normally, relative traveltime
residuals rather than absolute traveltimes are used in the inversion; this helps to account for errors in
hypocenter location and large scale mantle heterogeneities. Fig. 2d shows a schematic diagram of a
wavefront from a distant earthquake incident on a teleseismic receiver array. As in LET, teleseismic
tomography is usually carried out in 3-D.

A seminal paper by Aki et al. (1977) used teleseismic data recorded at the Norsar array to invert
for velocity anomalies to a depth of 126 km. The final solution was produced by linear inversion.
The assumption of linearity is more accurate in teleseismic tomography than in LET or wide-angle
inversion. This occurs because the ray paths tend to be near-vertical as they transmit through the
model volume and hence are less affected by the dominant variations of velocity with depth. Con-
sequently, many teleseismic tomography images, even those published recently, are the result of
linear inversions (Humphreys & Clayton, 1990; Glahn & Granet, 1993; Seber et al., 1996; Saltzer &
Humphreys, 1997). If the traveltime residuals are suggestive of significant lateral structure, then an
iterative non-linear approach may be required (Weiland et al., 1995; McQueen & Lambeck, 1996;
Rawlinson & Houseman, 1998; Frederiksen et al., 1998; Steck et al., 1998; Graeber et al., 2002).

The main difficulties in teleseismic tomography arise because of the irregular and unpredictable
nature of earthquakes. Earthquakes tend to occur at plate boundaries, so it is common to have a very
uneven distribution (in terms of azimuth and inclination) of ray paths through the target volume.
Another factor is that relative traveltime residuals only provide good constraints on lateral variations
in velocity relative to an a priori lateral average. Vertical variations in the velocity field of the
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solution model are poorly constrained and therefore must be interpreted with caution (Lévêque &
Masson, 1999).

The depth extent of teleseismic investigations may range from crustal (e.g. Lambeck et al., 1988;
Rawlinson & Houseman, 1998) to many hundreds of kilometers (e.g. Humphreys & Clayton, 1990).
The horizontal extent of the receiver array and the source distribution determines the depth to which
features may be resolved. The vertical dimension of the model volume is often chosen on this
basis, but it is always possible that structure outside the solution region causes some of the variation
between traveltime residuals (e.g. Benz et al., 1992).

2 Methods of Traveltime Inversion

2.1 Representation of Structure

The traveltime of a seismic wave between source and receiver is solely dependent on the velocity
structure of the medium through which the wave propagates. Therefore, subsurface structure in a
seismic traveltime inversion is represented by variations in P or S wave velocity (or slowness). As
mentioned in Section 1.2, velocity variations may be defined by a set of interfaces whose geometry
is varied to satisfy the data, a set of constant velocity blocks or nodes with a specified interpolation
function, or a combination of velocity and interface parameters. The most appropriate choice will
depend on the a priori information (e.g. known faults or other interfaces), whether or not the data
indicates the presence of interfaces (e.g. reflections, mode conversions), whether data coverage is
adequate to resolve the trade-off between interface position and velocity, and finally, the capabilities
of the inversion routine.

2.1.1 Velocity Parameterization

Constant velocity blocks (Fig. 3a) are simple to define and result in linear ray paths within each
block. On the other hand, they are not a natural choice for representing smooth variations in subsur-
face structure due to the velocity discontinuities that exist between adjacent blocks. These artificial
discontinuities may also cause unwarranted ray shadow zones and triplications. However, if a large
number of blocks are used and restrictions are placed on the size of the velocity changes between
adjacent blocks, then a reasonable approximation to a continuously varying velocity field is possible.
In teleseismic tomography, constant velocity blocks have been used by many authors including Aki
et al. (1977), Oncescu et al. (1984), Humphreys & Clayton (1988), Humphreys & Clayton (1990),
Benz et al. (1992), Achauer (1994) and Saltzer & Humphreys (1997). In wide-angle traveltime
inversions, the use of constant velocity blocks is not as common. Zhu & Ebel (1994) and Hilde-
brand et al. (1989) use constant velocity blocks in the inversion of 3-D refraction traveltimes while
Williamson (1990) and Blundell (1993) use them in an inversion of reflection traveltimes. Similarly,
constant velocity blocks are only rarely used in local earthquake tomography (Aki & Lee, 1976;
Nakanishi, 1985). This scheme for representing structure is often avoided when strong ray curvature
is expected.

An alternative to a block parameterization is to define velocities at the vertices of a rectangular
grid (see Fig. 3b) together with a specified interpolation function. One of the first examples of this
approach was by Thurber (1983) in the context of local earthquake tomography. To describe the
velocity at any point (x, y, z) within a rectangular grid of nodes, he used a trilinear interpolation
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Figure 3: Different types of velocity parameterization: (a) constant velocity blocks, (b) a grid of velocity
nodes, and (c) triangulated velocity grid designed for constant velocity gradient cells (after White, 1989).

function:

v(x, y, z) =
2
∑

i=1

2
∑

j=1

2
∑

k=1

V (xi , y j , zk)

(

1 −
∣

∣

∣

∣

x − xi

x2 − x1

∣

∣

∣

∣

)(

1 −
∣

∣

∣

∣

y − y j

y2 − y1

∣

∣

∣

∣

)(

1 −
∣

∣

∣

∣

z − zk

z2 − z1

∣

∣

∣

∣

)

(8)

where V (xi , y j, zk) are the velocity values at the eight grid points surrounding (x, y, z). The use
of Eq. 8 ensures that the velocity field will be continuous throughout the model volume, although
the velocity gradient will be discontinuous from cell to cell. This model parameterization is now
commonly used in local earthquake tomography (Eberhart-Phillips, 1986, 1990; Zhao et al., 1992;
Eberhart-Phillips & Michael, 1993; Scott et al., 1994; Haslinger et al., 1999), presumably because
most of these inversions are based on the SIMULPS code devised by Thurber (1983). Zhao et al.
(1994) and Steck et al. (1998) have used this parameterization in teleseismic tomography, although
Zhao et al. (1994) use a modified form of Eq. 8 for spherical coordinates.

Higher order interpolation functions must be used if the velocity field is to have continuous first
and second derivatives, which are required for some ray tracing methods (Thomson & Gubbins,
1982). Cubic spline interpolation results in continuous first and second derivatives and has been
used by a number of authors. Thomson & Gubbins (1982), in a NORSAR teleseismic study, use the
following cubic spline function to describe the slowness field within a regular 3-D spherical grid of
nodes:

s(r, θ, φ) =
4
∑

i=1

4
∑

j=1

4
∑

k=1

Si j kCi (R)C j(2)Ck(8) (9)

where Si j k are the slowness values at the nodes of the 4 × 4 × 4 grid surrounding the point (r, θ, φ).
Ci (R), C j (2) and Ck(8) are known as the cardinal splines (modified by Thomson & Gubbins,
1982, for local support) and R, 2 and 8 are the local coordinates of r , θ and φ. Nodal values
do not necessarily equal the spline values at the node points. Sambridge (1990) uses a similar
parameterization in Cartesian coordinates to describe a 3-D model constrained by traveltimes from
local earthquakes and explosions.

Cubic B-splines are similar to the cardinal splines described above in that they are locally sup-
ported and do not necessarily pass through the node values. Conventional cubic spline interpolation
forces the spline to pass through node values and is not locally supported. Undesirable effects of non-
local support include poorly resolved portions of the model having a global influence and unrealistic
velocity fluctuations between nodes (Shalev, 1993). In 2-D wide-angle traveltime tomography, cubic
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spline interpolation has been employed by Lutter et al. (1990), while Farra & Madariaga (1988) and
McCaughey & Singh (1997) have used cubic B-spline bases.

An interpolation method which features inherent flexibility is splines under tension (Smith &
Wessel, 1990). Here, a tension factor is used to control the mode of interpolation, which, in the case
of Neele et al. (1993), can vary between near trilinear interpolation and cubic spline interpolation.
The scheme features continuous first and second derivatives. Usually, one will choose a tension
factor that results in a smooth model but minimizes unrealistic oscillations and maximizes local
control. Neele et al. (1993), VanDecar et al. (1995) and Ritsema et al. (1998) all use this approach
in the inversion of teleseismic traveltimes.

A method of parameterization that goes some way towards bridging the gap between a block
approach and a grid approach is one which uses cells with a constant velocity gradient. White
(1989) describes a method of 2-D refraction tomography in which a rectangular grid of nodes is
used to define triangular regions of constant velocity gradient (see Fig. 3c). The velocity within each
cell is given by:

v(x, y) = vo + (x − xo)∇xv + (z − zo)∇zv (10)

where vo, ∇xv and ∇zv are determined using the velocities at the vertices of the triangle (e.g. vo =
v1, ∇xv = (v2 − v1)/1x , ∇zv = (v5 − v2)/1z in cell 1 of Fig. 3c). The attributes of this method
are that velocity varies continuously throughout the medium and rays can be traced analytically
within each cell. However, the velocity gradient is discontinuous at each cell boundary which, in
conjunction with their triangular shape, can result in difficulties in finding the source-receiver ray
path. A similar method was used by Chapman & Drummond (1982) for refracted rays. Another
interpolation function that can be used with the triangular cell geometry which also allows analytic
ray tracing is the constant gradient of quadratic slowness 1/v2 (Červený, 1987). The extension of
these procedures to 3-D involves the use of tetrahedral cells, with the linear interpolation functions
described in terms of the velocity nodes at the four vertices of the tetrahedron. It is important to note
that these methods of parameterization are used primarily because they facilitate analytic ray tracing
and only secondly because they provide an adequate approximation to actual subsurface velocity
distribution, which is inevitably more complex.

Rather than use a block or grid-based parameterization, one could use a scheme in which velocity
is discretized in the wavenumber domain rather than the spatial domain. Spectral parameterizations
that use some form of truncated Fourier series fall into this category. In their inversion of reflection
amplitudes and traveltimes, Wang & Pratt (1997) describe a 2-D slowness distribution using the
Fourier series:

s(r) = a00 +
N
∑

m=1

[am0 cos(k · r)+ bm0 sin(k · r)]

+
N
∑

m=−N

N
∑

n=1

[amn cos(k · r)+ bmn sin(k · r)] (11)

where r = x i + zj and k = mπk0i + nπk0j are the position and wavenumber vector respectively,
and amn and bmn are the amplitude coefficients of the (m, n)th harmonic term, which become the
unknowns in the inversion step. The advantage of this type of parameterization is that it defines a
velocity field which is infinitely differentiable and whose smoothness can be controlled through the
choice of the number of harmonic terms N that are used. Eq. 11 defines a non-local parameterization,
however, so poorly resolved portions of a solution model may have a detrimental effect on other
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regions of the model. Spectral parameterizations have been used in wide-angle traveltime inversion
by Hildebrand et al. (1989), Hammer et al. (1994) and Wiggins et al. (1996) to study crustal structure
beneath deep oceans.

2.1.2 Including Interfaces

Velocity discontinuities are most commonly included in velocity models when the subsurface is
represented by sub horizontal layers (see Fig. 4). In 2-D and 3-D traveltime inversion, the use
of layered parameterizations has almost exclusively been the domain of reflection and refraction
tomography. Reflection sections only image reflectors and refraction sections usually contain ob-
vious later-arriving traveltime curves associated with velocity discontinuities. The issues related to
choosing an appropriate interface parameterization are similar to those for choosing an appropriate
velocity parameterization - representation of the geological structure and suitability for use in the
forward and inverse solution steps.

x,z( )1v

v x,z( )2

v x,z( )3

v x,z( )4 z
x

Figure 4: Schematic representation of the kind of layered velocity structure that can be imaged in reflection
and wide-angle traveltime inversion. The velocity functions vi (x, z) describe the velocity variation within
a layer.

In 2-D, piecewise linear segments (see Fig. 5a) are probably the simplest means of representing
interface geometry. The wide-angle method of Zelt & Smith (1992) and the reflection method of
Williamson (1990) employ this type of interface parameterization. One obvious problem with using
piecewise linear segments is that the gradient of the interface is discontinuous at the joins between
segments. Such discontinuity may not be geologically realistic and will create artificial shadow zones
because incident rays with very similar paths may depart from the interface along very different paths
if they intersect the interface on either side of a point of gradient discontinuity. Zelt & Smith (1992)
avoid this problem by using an averaging filter to smooth the interface so that the departing ray has
a trajectory consistent with the smooth interface, but the point of projection is still given by the
intersection point of the incident ray with the piecewise linear interface.

The logical extension of piecewise linear segments to a 3-D model with interface surfaces is
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(a)

(b)

(c) (d)

Figure 5: Types of interface parameterization for 2-D (a-b) and 3-D (c-d) models. (a) Piecewise linear
segments, (b) piecewise cubic B-spline interpolation, (c) surface defined by mosaic of triangular patches,
(d) surface defined by mosaic of bicubic B-spline patches - note that the surface is visualized here by
orthogonal sets of lines.

to use piecewise triangular area segments (see Fig. 5c). Sambridge (1990) has used this approach
in the inversion of local earthquake and quarry blast traveltimes. Guiziou et al. (1996) also used a
triangulated interface structure in the tomographic inversion of reflection traveltimes in order to work
with geological models created in GOCAD (a computer aided design tool for modeling geological
objects). One advantage of triangulation is that multi-valued surfaces are easily described.

Analogous to defining velocity on a grid of nodes, an interface may be described by a grid of
depth nodes with a specified interpolation function (piecewise linear segments can be viewed as a
special case of this). Piecewise cubic spline functions with C2 continuity (see Fig. 5b) are com-
monly used in wide-angle inversions. Conventional cubic splines have been used in a number of 2-D
schemes including those by White (1989), Lutter & Nowack (1990) and Rawlinson & Houseman
(1998). Červený et al. (1984) parameterize a layered model with splines under tension for both in-
terfaces and layer velocity fields. Cubic B-splines, which feature local control of interface geometry,
have been used by Farra & Madariaga (1988) and McCaughey & Singh (1997). In 3-D, the use of
smooth interfaces (see Fig. 5d) is less common, mainly because methods for the inversion of 3-D
layered structures are less wide spread. The ray tracing method of Gjøystdal et al. (1984) param-
eterizes interfaces in terms of bicubic splines, and the reflection tomography method of Chiu et al.
(1986) describes interfaces using nth order polynomials (in practice, they use n ≤ 3). Like con-
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tinuous velocity variations, interfaces are also amenable to spectral parameterization. For example,
Wang & Houseman (1994) describe interfaces using a truncated Fourier series where the number of
harmonic terms controls the allowable flexibility of the interface. The problems associated with the
use of a global parameterization outlined above for velocity also apply to interface structure.

(a) x

z

(b)

2

x+b

x+b

v

2z=s

11

1

z=s

4v

2v

v3

Figure 6: Example of a layered structure parameterized using the method of Zelt & Smith (1992). (a)
Structure composed of four layers with layer velocity defined by 25 velocity nodes (black squares) and
interface structure defined by 14 boundary nodes (grey circles). There is no velocity discontinuity between
the second and third layers and dashed lines indicate the lateral boundaries of trapezoids. (b) The velocity
field within a trapezoid is defined by interpolating between four corner values (grey triangles). If no velocity
node lies at a corner, then the required value is obtained by linear interpolation from adjacent nodes.

Irregular parameterizations are not very commonly used in traveltime tomography. However, ir-
regular shaped elements can be adapted to suit variations in subsurface data coverage. The frequently
used 2-D wide-angle inversion method of Zelt & Smith (1992) uses such a method. Layer bound-
aries are described by a set of one or more arbitrarily spaced nodes interpolated linearly. Within
each layer, velocity nodes are specified on the upper and lower boundaries, the number and spacing
of which may vary (Fig. 6a). To facilitate velocity interpolation, each layer is divided laterally into
trapezoidal blocks separated by vertical boundaries, which occur at each upper and lower boundary
node and velocity node. The velocity within each trapezoid is interpolated using the velocity values
at the four corners (obtained by linear interpolation if a velocity node does not occupy a corner) such
that the velocity within each layer varies linearly between the upper and lower boundaries in the ver-
tical direction, and linearly along the upper and lower boundaries between nodes. Layer boundaries
may or may not represent velocity discontinuities. Fig. 6b shows the design of a trapezoid in more
detail. The velocity within a trapezoid is given by (Zelt & Smith, 1992):

v(x, z) = c1x + c2x2 + c3z + c4xz + c5

c6x + c7
(12)

where {ci } are linear combinations of the corner velocities. The inherent flexibility of this technique
means that a velocity structure with or without layering can be represented. If layers are present,
then it is possible for the velocity within the layers to vary arbitrarily.

Another example of irregular parameterization is given by Rawlinson et al. (2001a) in their
method of wide-angle traveltime inversion for 3-D layered crustal structure. They make use of
bicubic B-splines in parametric form to describe interface geometry. For a set of control vertices
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(a) (b)

Figure 7: Flexibility of a cubic B-spline parameterization in parametric form. (a) Irregular grid of nodes
describing a surface. Grey lines indicate surface patch boundaries. (b) Multivalued surface described by
cubic B-splines.

pi, j = (xi, j , yi, j , zi, j) where i = 1, . . . ,m and j = 1, . . . , n, the B-spline for the i j th surface patch
is:

BBBi, j(u, v) =
2
∑

k=−1

2
∑

l=−1

bk(u)bl(v)pi+k, j+l (13)

so that any point on a surface patch is a function of two independent parameters u (0 ≤ u ≤ 1) and
v (0 ≤ v ≤ 1). The weighting factors {bi} are the uniform cubic B-spline basis functions (Bartels
et al., 1987). Properties of a surface constructed using a mosaic of B-spline patches defined by
Eq. 13 include C2 continuity and local control. Fig. 5d shows a bicubic B-spline surface described
by a regular grid of 16×16 vertices. In addition to inherent smoothness and local control, vertices
may lie on an irregular grid (Fig. 7a) and the surface may also be multivalued (Fig. 7b), although
Rawlinson et al. (2001a) did not make use of the latter property in their inversions. Control vertices
may be widely spaced in regions of poor data coverage and closely spaced in regions of good data
coverage.

Fault surfaces are another common feature of earth structure that may need to be represented in
a model. Explicit representation of faults is not common in seismic methods. Faults are often near-
vertical and cause discontinuities in the interfaces and velocity fields of sub-horizontal layers offset
by the fault. Ray-tracing through such a medium may be difficult and the inverse problem is likely to
be highly non-linear. Lambeck et al. (1988) and Lambeck & Burgess (1992) computed teleseismic
traveltime residuals for a 2-D model in which constant velocity layers bounded by piecewise linear
interfaces were not required to be laterally continuous across the model, thus allowing faults to be
defined. Inversion of traveltime residuals was not attempted in either study, however. Wide-angle
inversion methods that allow for complex lateral structure (e.g. Zelt & Smith, 1992) are usually not
designed to represent faults. Laterally discontinuous structures like those found at subduction zones
(Zelt, 1999) can be represented because interfaces tend to have a shallow dip and layer dislocation
is not usually needed. Wang & Braile (1996), using a method based on that of Zelt & Smith (1992),
represent faults implicitly by sharp near-vertical jumps in sub-horizontal interface structure in adja-
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cent interfaces. However, these structures were constrained manually during the inversion process.
When interfaces are used in conjunction with layer velocities specified by blocks or a grid of

nodes, then it is usually necessary to extrapolate the velocity field of each layer beyond the sur-
rounding interfaces. These velocity parameters are redundant unless changes in interface geometry
made by the inversion step cause the relevant nodes to lie within the layer. The velocity within each
layer is usually defined to be independent of velocities in other layers, so any spatial overlap of veloc-
ity nodes from adjacent layers is of no consequence. In a 3-D wide-angle inversion study, Zelt et al.
(1999) describe velocity structure using a continuous velocity parameterization but include “float-
ing” reflectors. These floating reflectors allow reflections to be used to constrain interface structure
and velocity but simplify traveltime determination by associating the reflectors with sharp gradients
in velocity rather than with velocity discontinuities.

As mentioned earlier, the use of interfaces in teleseismic traveltime tomography is rare. Zhao
et al. (1994) employ fixed interfaces described either by a power series or piecewise linear inter-
polation in their simultaneous inversion of local, regional and teleseismic traveltimes for velocity
variation. Davis (1991) uses backprojection to invert teleseismic traveltime residuals for the struc-
ture of the lithosphere-asthenosphere boundary in East Africa, defining interface geometry in terms
of a polynomial expansion. Kohler & Davis (1997) use a similar procedure to determine 2-D crustal
thickness variations in California from teleseismic traveltime residuals.

2.2 Traveltime Determination

The calculation of ray traveltimes between known end points through a given velocity structure is
often called the forward problem. When more than one ray path exists between a given source
and receiver, the path with minimum traveltime is the one usually required because first-arrivals
are always easier to identify on a seismogram. Often, other quantities such as Fréchet derivatives
are calculated together with traveltime, but these parameters and their methods of computation are
described in the next section in the context of the relevant inversion method.

The traveltime of a seismic wave between source S and receiver R is given by the integral:

t =
∫ R

S

1

v(x)
dl (14)

where dl is differential path length, x is the position vector and v is velocity. The difficulty in
performing this integration, as pointed out in Section 1.2, is that the path taken by the seismic
energy depends on the velocity structure, and the path needs to be known in order to evaluate the
integral. For an elastic medium, the propagation of seismic wavefronts can be described by the
eikonal equation:

(∇xT )2 = 1

[v(x)]2
(15)

where T is the traveltime of the wavefront. This description of wave propagation is subject to the
so-called high frequency assumption: the wavelength of a seismic wave should be much less than
the length scale of the velocity variations of the medium through which it passes. If traveltime is
described by the equation T = T (x) and time is held constant, then TA = T (x) is an implicit
equation for the wavefront at time TA (Aki & Richards, 1980). If TA is increased to, say, TB , then
the equation TB = T (x) will describe the new geometry and position of the wavefront at a time
TB − TA later. If instead a point of constant phase on the wave is described as x = x(T ) then,
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rather than implicitly describing a wavefront (i.e. a surface), we explicitly describe a ray path (i.e. a
curve). Ray paths are by definition everywhere normal to wavefronts. The equation that governs the
geometry of ray paths can be derived from the eikonal equation by considering how a small change
in time dt effects a point x on a wavefront (see Aki & Richards, 1980). The resultant ray equation:

d

dl

(

1

v(x)
dx
dl

)

= ∇
(

1

v(x)

)

(16)

can be used to describe ray path geometry for any given velocity field v(x). A consequence of Eq. 16
is Fermat’s principle - that of all the paths that join two points A and B in a velocity medium, the
true ray path(s) will be stationary in time. In other words, the path along which the integral in Eq. 14
is performed is one which extremizes t . This property was used to derive Eq. 6.

In traveltime tomography, the traditional means of determining source-receiver traveltimes is ray
tracing (Červený, 1987, 2001). More recently, wavefront tracking schemes such as finite difference
solutions of the eikonal equation have been employed (Vidale, 1988, 1990; Qin et al., 1992). An-
other method that has seen recent application is network/graph theory, which makes direct use of
Fermat’s principle (Nakanishi & Yamaguchi, 1986; Moser, 1991). Each of these methods of travel-
time determination is described below.

2.2.1 Ray Tracing

The problem of finding a ray path between a source and receiver is a two point boundary value
problem, for which there are two basic methods of solution: shooting and bending.

2.2.1.1 Shooting method Shooting methods of ray tracing rely on formulating the ray equation
(Eq. 16) as an initial value problem, where a complete ray path can be determined provided the
source coordinates and initial ray direction are known. The boundary value problem is then solved
by shooting rays through the medium from the source and using information from the computed
paths to update the initial ray trajectories so that they more accurately target the receivers (see Fig. 8).
Rays may also be shot from receiver to source as the principle of reciprocity applies.

Source
Receiver

v (x,z) z

x

final

initial1

4
3

2

Figure 8: Principle of the shooting method. The initial projection angle of ray 1 is iteratively adjusted until
the final ray (4) passes sufficiently close to the receiver.

The ease with which the initial value problem can be solved depends on how the velocity distri-
bution is parameterized. For constant velocity (or slowness) block models, the path within a block
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is simply a straight line with traveltime varying linearly with distance. At cell boundaries, new
trajectories are calculated using Snell’s Law:

sin θi

vi
= sin θr

vr
(17)

where θi and θr are the angles of incident and refracted rays relative to the normal vector to the
interface, and vi and vr are the velocities of the media containing the incident and refracted rays
respectively.

Analytic ray tracing is also possible for media with a constant velocity gradient. Telford et al.
(1976) derive parametric equations for ray path geometry and traveltime when velocity varies lin-
early with depth z:

x = 1

pk
(cos io − cos i)

z = 1

pk
(sin i − sin io)

t = 1

k
ln

(

tan i
2

tan io
2

)
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(18)

where i is the inclination of the ray (from the downgoing vertical), io is the initial inclination, k is the
velocity gradient and p is the ray parameter. When the velocity gradient is arbitrarily oriented, such
as when a grid of constant velocity gradient triangles or tetrahedra are used (see Section 2.1), then
these expressions are modified by rotation of the coordinate system (White, 1989). Simple analytic
solutions are also possible when there is a constant gradient of quadratic slowness (see Červený,
1987).

Only a few simple velocity functions allow for analytic solutions of the initial value problem. For
the case of an arbitrary differentiable velocity function v(x), numerical solution of an initial value
formulation of the ray equation is required. For example, Zelt & Smith (1992), as part of their 2-D
wide-angle traveltime inversion method, solve two pairs of first-order differential equations:

dz

dx
= cot θ

dθ

dx
= vz − vx cot θ

v
(19)

or
dx

dz
= tan θ

dθ

dz
= vz tan θ − vx

v
(20)

with initial conditions provided by source location (xo, zo) and ray take-off angle θo. θ is the angle
of incidence (relative to the z-axis), vz = ∂v/∂z and vx = ∂v/∂x . Eq. 19 is used for near horizontal
rays and Eq. 20 is used for near vertical rays. Both systems of equations are solved using a Runge-
Kutta method with error control. Traveltime is determined by numerical integration of Eq. 14 using
the trapezoidal rule. Sambridge & Kennett (1990) use the following set of equations to solve the
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initial value problem in 3-D:

∂x

∂ t
= v sin i cos j

∂y

∂ t
= v sin i sin j

∂z

∂ t
= v cos i

∂i

∂ t
= − cos i

(

∂v

∂x
cos j + ∂v

∂y
sin j

)

+ ∂v
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sin i
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(21)

where i and j represent the incidence angle and azimuth respectively of the ray. They also use a
Runge-Kutta method to solve the system with the ray traveltime t as the integration variable. The
accuracy of the ray path and associated traveltime determined via numerical ray tracing depends on
the accuracy of the solution scheme (4th order accurate in this case) and the length of the integration
step.

wi

wr

wn

vi

vr

wr

Figure 9: At an interface, rays may refract and/or reflect. wi is tangent to the incident path, wr is tangent
to the refracted (or reflected) path and wn is normal to the interface.

When interfaces are included in a discontinuous velocity model, the reflection and transmission
laws for a ray path at an interface can be described in terms of Snell’s Law (Eq. 17). The geometrical
consequence of Snell’s Law is that the angle of reflection equals the angle of incidence, and that
the reflected/transmitted ray lies in the same plane as the incident ray and the vector normal to the
interface at the intersection point. Formulating these constraints into a procedure for determining the
new ray direction is relatively straightforward once the ray-interface intersection point is located. For
example, if wi is a vector tangent to the incident ray path at the intersection point, and wr is a vector
tangent to the refracted ray path at the intersection point (see Fig. 9), then the relation between these
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two vectors is given by (see Červený, 1987):

wr = wi +







κ

[

1

v2
r

− 1

v2
i

+ (wi · wn)
2

]1/2

− wi · wn







wn (22)

where wn is a normal vector to the interface at the intersection point and vi and vr are the velocities
of the incident and refracted rays respectively at the intersection point. κ = sign(wi · wn) and equals
+1 if wi makes an acute angle with wn and −1 otherwise. When reflected rays are required, then
vi = vr and Eq. 22 reduces to:

wr = wi − 2(wi · wn)wn (23)

where wr now points in the direction of the reflected ray. When analytic ray tracing is used, the
ray-interface intersection point can often be found by solving a system of equations which equate a
point on the ray with a point on the surface (e.g. Rawlinson et al., 2001a). In numerical ray tracing,
the step length of the integration may be iteratively updated in order to obtain a point on the ray path
sufficiently close to the interface (e.g. Sambridge & Kennett, 1990).

Solution of the initial value problem is the first step in finding a ray path from source to receiver.
The next and generally more difficult step is to solve the two-point boundary value problem. Julian
& Gubbins (1977) suggest two iterative methods of solution. The first of these is Newton’s method
which can be written for the 3-D problem as:




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∂ jo
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]
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G − g(in
o , jn

o )

]

(24)

where (h, g) are the calculated horizontal coordinates of the ray endpoint, (H,G) are the desired
coordinates and (io, jo) are respectively the inclination and azimuth of the ray at the source. Solution
of this system gives the updated projection coordinates (i n+1

o , jn+1
o ), and the process is iterated until

an appropriate tolerance criterion is met. The difficulty with this scheme is the accurate determi-
nation of the partial derivative matrix. The second method is that of false position, which involves
fitting a plane to the h(io, jo) and g(io, jo) of three known rays. The improved estimate (i n+1

o , jn+1
o )

corresponds to where (H,G) lies on the plane. The method of false position is quicker at each it-
eration than Newton’s method but converges more slowly. Sambridge & Kennett (1990) use Eq. 24
to solve the two point problem and determine accurate values for the partial derivatives by solving,
in conjunction with the initial value problem, two systems of first-order differential equations that
describe the geometrical spreading of the wavefront. A perturbation is applied to the initial ray pro-
jection angle if the ray gets trapped in a local minimum. In an application of the method (Sambridge,
1990), the initial trajectory of the first-guess ray path is provided by solving the two point problem
for a laterally averaged version of the model, as suggested by Thurber & Ellsworth (1980).

The method used by Sambridge (1990) to calculate the partial derivatives in Eq. 24 is a specific
application of paraxial ray approximation (Červený & Pšenčik, 1983; Červený et al., 1984; Červený,
1987; Farra & Madariaga, 1988; Červený, 2001), a method that is commonly used to solve the two-
point problem in reflection and refraction ray tracing. The method is based on using a ray-centered
coordinate system, where a particular ray � is taken to define one of the three coordinate axes. The
wavefield in the vicinity of the central ray can be determined from quantities that are integrated along
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the central ray using dynamic ray tracing. Geometric spreading and wavefront curvature parameters
along the initial ray � can be used to rapidly locate the two-point ray path from an initial ray that is
not too far from the target (see Červený et al., 1984).

Figure 10: Shooting method of Rawlinson et al. (2001a) used to find source-receiver refraction and reflec-
tion ray paths.

In 2-D problems, a shooting approach is often used because the source-receiver array lies on a
single vertical plane, making the shooting of a single fan of rays an effective way of obtaining nearby
rays to all targets. Zelt & Smith (1992) use a bisection method to find rays that bound each required
phase (e.g. a set of rays that all reflect back to the surface from a particular interface). The boundary
value problem is approximately solved by shooting a fan of rays into each defined region and linearly
interpolating the required quantities between the two closest rays that bracket a receiver. Blundell
(1993) uses a similar approach of shooting a fan of rays from the source to find 2-D reflection ar-
rivals. The two-point problem is then solved using a secant algorithm or a bisection algorithm with
a pair of rays that bracket the receiver. Similar methods were used by Cassell (1982) and Langan
et al. (1985). Other applications of shooting methods in 2-D reflection and/or refraction traveltime
inversion include those by Farra & Madariaga (1988), White (1989), Lutter et al. (1990), Williamson
(1990), Zelt & Smith (1992) and McCaughey & Singh (1997). Examples of its use in 3-D reflection
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and/or refraction traveltime inversions are harder to find although several 3-D tomographic studies
that combined refraction and local earthquake data (Benz & Smith, 1984; Ankeny et al., 1986; Sam-
bridge, 1990) and some teleseismic tomography studies (Neele et al., 1993; VanDecar et al., 1995)
have used shooting methods of ray tracing. Recently, Rawlinson et al. (2001a) developed a shooting
method for finding refraction and reflection arrivals in 3-D layered media. Layer velocity varies
linearly with depth in their model, so they were able to analytically trace rays within layers using
equations similar to Eq. 18. The boundary value problem was solved using the Newton scheme of
Eq. 24. Fig. 10 shows two-point paths through a 2-D layered model found using this method.

2.2.1.2 Bending method The bending method of ray tracing operates by adjusting the geometry
of an initial arbitrary path that joins the source and receiver (Fig. 11) until it becomes a true ray path
(i.e. it satisfies Fermat’s principle). The bending method proposed by Julian & Gubbins (1977) is
designed for a continuous 3-D velocity medium and locates a two-point ray path by solving a system
of first-order differential equations. If the ray path is described parametrically as x = x(q) where the
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Figure 11: Principle of the bending method. The geometry of the initial path (ray 1) is adjusted until it
satisfies Fermat’s principle (ray 4).

choice for q can be made later, then Eq. 14 can be written:

t =
∫ qR

qS

s Fdq (25)

where s is slowness and:

F = dl

dq
=
√

ẋ2 + ẏ2 + ż2 (26)

with the differentials ẋ , ẏ and ż being taken with respect to q. The calculus of variations can be
employed to describe the path which extremizes t . The Euler-Lagrange equations are (Julian &
Gubbins, 1977):
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(27)

where q = l/L; L is the total length of the source-receiver ray path and 0 ≤ l ≤ L . This choice for q
results in a single-valued representation of the ray. The boundary conditions are then x(0) = xS and
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x(1) = xR where xS and xR are the source and receiver coordinates respectively. These equations
are non-linear and cannot be solved directly. If some initial path x0(q) is chosen that passes through
S and R, then an improved estimate may be given by:

x1(q) = x0(q)+ ξξξ0(q) (28)

where ξξξ0(q) represents a perturbation to the initial path. If Eq. 28 is substituted into Eq. 27, then the
resulting equations for ξξξ0 can be linearized and solved (see Julian & Gubbins, 1977), thus giving the
improved estimate x1. This process can be repeated until the solutions converge.

Pereyra et al. (1980) use a similar approach to locate two-point paths in arbitrary continuous
media. They also extend their method to allow for the presence of interfaces. For a medium with
an arbitrary number of interfaces that separate regions of smooth velocity variation, the bending
problem can be treated by considering a separate system of non-linear differential equations in each
smooth region. It is then possible to use the known discontinuity condition at each interface that is
traversed by the ray to couple the separate systems. The disadvantage here is that the order in which
the interfaces are traversed needs to be known in advance.

Um & Thurber (1987) develop a pseudo-bending technique for solving the two-point problem
in continuous 3-D media. Their method is based on a perturbation scheme in which the integration
step size is progressively halved. The initial guess path is defined by three points which are linearly
interpolated. The center point is then iteratively perturbed using a geometric interpretation of the
ray equation until the traveltime extremum converges within a specified limit, at which point the
ray equation will be approximately satisfied. The number of path segments is then doubled and the
three-point perturbation scheme is repeated working from both endpoints to the middle (a total of
three times for this step). The number of segments is doubled again and the procedure is repeated
iteratively (see Fig. 12), until the change in traveltime between successive iterations satisfies some
convergence criterion.
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Figure 12: Principle of the pseudo-bending method of Um & Thurber (1987). An initial guess ray defined
by three points is provided. The center point is perturbed to best satisfy the ray equation. Then the number of
segments is doubled and the process is repeated. This figure schematically represents three such iterations.

Compared to earlier bending methods, the pseudo-bending technique is much faster (Um &
Thurber, 1987). Zhao et al. (1992) modify this technique to cope with interfaces as follows. Consider
two points A and B close to but on either side of an interface. Straight lines connect A and B
separately to a point C on the interface. The correct ray-interface intersection point is obtained by
adjusting the point C using a bisection method until Snell’s Law is satisfied.
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Prothero et al. (1988) develop a 3-D bending method based on the simplex method of function
minimization. The first stage of the method is to locate the minimum-time circular path between
source and receiver using an exhaustive search method. Perturbations to this path, described by
a sum of sine wave harmonics, are then made using the simplex method which searches for the
amplitude coefficients that produce the path of least time. The method is more robust than the
pseudo-bending method of Um & Thurber (1987) but is significantly slower (Prothero et al., 1988).

Bending methods of ray tracing have been used by a number of authors in studies that invert
teleseismic data (Thomson & Gubbins, 1982; Zhao et al., 1994, 1996; Steck et al., 1998), but not
by many in the inversion of reflection or refraction data. Chiu et al. (1986) use a bending method
in the inversion of 3-D reflection traveltimes and Zhao et al. (1997) use the pseudo-bending method
in the inversion of refraction traveltimes for 2-D crustal structure. In local earthquake tomography,
bending methods are probably most commonly used to find source-receiver paths and traveltimes
(Eberhart-Phillips, 1990; Zhao et al., 1992; Scott et al., 1994; Eberhart-Phillips & Reyners, 1997;
Graeber & Asch, 1999). In comparing their bending and shooting methods, Julian & Gubbins (1977)
found that bending is computationally faster than shooting by a factor of 10 or more in media with
continuous velocity variations. When discontinuities are present, however, the formulation of the
bending problem becomes much more complex. In general, for smooth velocity structures that do
not cause complex ray geometries, bending methods are more efficient, but when interfaces or strong
velocity gradients are present, shooting methods tend to be more robust and therefore preferable
(Červený, 1987; Sambridge & Kennett, 1990).

The only other type of ray tracing scheme that is mentioned here is approximate ray tracing
(Thurber & Ellsworth, 1980). Here, the velocity in a region local to the source and receiver is
laterally averaged, and a 1-D ray tracer is used to find the minimum time-path through this laterally
invariant structure. The resultant traveltime and path approximate the true first-arrival traveltime
and path through the 3-D model. If more accuracy is required, the ray path estimate can be used as
a starting path in a bending routine (Thurber & Ellsworth, 1980). A variant of this technique was
introduced by Thurber (1983), in which a large number of circular arcs with differing curvature and
dip are joined between source and receiver. The traveltime along each arc is then computed using
the 3-D velocity model. An approximation to the first-arrival ray is then selected by choosing the
arc with minimum traveltime. Thurber (1983) and Eberhart-Phillips (1986) have used this style of
approximate ray tracing in local earthquake tomography.

2.2.2 Wavefront Tracking

Rather than tracing rays from point to point through a medium to determine source-receiver travel-
times, an alternative is to track the propagation path of the entire wavefront. The traveltime from
the source to all points in the medium is found using this approach. The most common means of
wavefront tracking employs finite-difference solutions of the eikonal equation on a regular grid to
calculate the first-arrival traveltime field.

2.2.2.1 Finite difference schemes Vidale (1988) proposed a finite difference scheme that in-
volves progressively integrating the traveltimes along an expanding square in 2-D. Strictly speaking,
this method doesn’t track wavefronts to determine the traveltime field, but it represents a precursor
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to the class of schemes that do, and is still widely used. The eikonal equation (Eq. 15) in 2-D is:

(

∂T

∂x

)2

+
(

∂T

∂z

)2

= [s(x, z)]2 (29)

where s(x, z) is the slowness field and T (x, z) is the traveltime of a propagating wave. Vidale’s
method is formulated for a structure defined by a square grid of velocity nodes. Consider the grid
points surrounding some local source point A in Fig. 13. If the traveltime to point A is T0 then the
traveltime to the points Bi are given by:

TBi = T0 + h

2
(sBi + sA) (30)

where h is the node separation and sBi and sA are the slowness at the nodes Bi and A respectively.
The next step is to find the traveltime to the corner points TCi . If the top right hand group of nodes in
Fig. 13 with known traveltimes to A(T0), B1(T1) and B2(T2) are considered, then the traveltime to
the point C1(T3) can be determined from the eikonal equation. The two differential terms in Eq. 29
can be approximated with finite differences:
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(31)

which, when substituted into Eq. 29, gives:

T3 = T0 +
√

2(hs̄)2 − (T2 − T1)2 (32)

where s̄ is the average slowness of all four points under consideration.
The resulting scheme can be used to calculate the traveltimes to all the Ci . The traveltimes to

the next set of grid points can then be determined as the scheme progresses by solving along squares
of increasing size around the source point (see Fig. 14). Solving for the traveltime to node points
along a new square cannot be done in an arbitrary order; a scheme (e.g. Vidale, 1988) is required
to determine the order of solution that will result in the least traveltime to each new node. Only
these times will be valid seismic traveltimes. Vidale (1988) also gives another formulation that
assumes locally circular wavefronts. The locally circular wavefront approximation is most accurate
for strongly curved wavefronts and the locally plane wavefront approximation is most accurate for
wavefronts with low curvature. Vidale (1990) extends the method to 3-D.

The problem with using an expanding square to progressively determine the traveltime field is
that its geometry does not, in general, resemble the shape of the first-arrival wavefront. Conse-
quently, the computed traveltimes may not represent first-arrivals, especially if the structure contains
large velocity contrasts. Fig. 15 shows a schematic example in which the traveltime from A to B is
determined for path 1 by the expanding square method, but path 2 has the least traveltime by virtue
of the high velocity zone. Qin et al. (1992) propose a scheme that calculates the traveltime field us-
ing an expanding wavefront method. They use the same propagator equations (Equations 30 and 32)
and start by calculating the traveltimes to the eight grid points (in 2-D) about the source. Thereafter,
the point of global minimum traveltime along the perimeter of the points processed so far is used
as the next source to locally expand the solution region. Using this approach, the traveltime field
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Figure 13: Method used by Vidale (1988) to find the first-arrival traveltime field for a continuous velocity
medium. See text for details.

Figure 14: The expanding square method for determining the traveltime field. Traveltimes to the filled
circles are determined from the open circles. The filled square is the source.

is determined using an expanding geometry that closely resembles the true shape of the wavefront
and the possibility of computing arrivals other than first-arrivals is minimized. Where steep veloc-
ity gradients or discontinuities are encountered, however, problems can still occur as only outward
propagating rays are considered.

Cao & Greenhalgh (1994) also solve the eikonal equation using a finite difference scheme and a
solution region defined by an expanding wavefront. They consider two different model discretization
schemes; one in which each node is placed at the center of a cell (i.e. same as the Vidale scheme),
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Figure 15: Schematic illustration showing how the expanding square method can fail. The traveltime along
path 1 is determined by the expanding square but path 2 has a shorter traveltime due to the high velocity
zone.

and one in which the nodes are placed at the corner of a cell with uniform slowness. They found that
the corner node discretization provided superior solutions.

The presence of discontinuities such as interfaces between layers can be simulated by assigning
the appropriate velocity values to the grid points that lie on either side of the interface. This means
that accurate first-arrival times can be determined without separately parameterized interfaces form-
ing a part of the model for the forward step. However, the expanding square formalism of Vidale
(1988) may fail for head-waves traveling along an interface with a large velocity contrast as causal-
ity may be violated in a similar way as suggested in Fig. 15. Hole & Zelt (1995) and Afnimar &
Koketsu (2000) address this problem by introducing special head-wave operators.

If reflection traveltimes are sought, the finite difference method needs to be modified. Riahi &
Juhlin (1994) and Hole & Zelt (1995) both develop schemes for calculating reflection traveltimes
by modifying the Vidale (1990) method. Riahi & Juhlin (1994) solve the eikonal equation starting
from both source and receiver and tracking first-arrivals through the grid to the interface. The correct
reflection point will then be the one which minimizes source-receiver traveltime. The drawback of
this approach is the need to track traveltimes through the grid from all sources and all receivers. Hole
& Zelt (1995) overcome this problem by assuming that the incoming wavefront from the source and
the interface are sufficiently smooth to validate a local planar approximation. Thus, the reflected
traveltimes to nodes that are adjacent to the interface can be determined using only the depth to the
reflector, the normal vector to the reflector, and the direction vectors of the incident ray and reflected
ray (from Snell’s law). If the wavefront incident on the reflector contains gradient discontinuities or
strong curvature, the accuracy of this scheme will be reduced.

Unlike ray tracing methods of traveltime determination, wavefront tracking approaches do not
explicitly find ray paths. If they are used as part of a tomographic-style inversion scheme, then some
way of locating ray paths is required. One way of doing this is to start at the receiver and follow the
traveltime gradient ∇T back through the computed traveltime field to the source. ∇T will always
be oriented perpendicular to the first-arrival wavefront and will therefore trace out the first-arrival
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ray path. In practice, this could be done on a cell by cell basis using the average traveltime gradient
within each cell to orientate a local line segment approximation to the path. Thus, the complete ray
path will be described in terms of piecewise linear segments. For example, if we consider a 2-D cell
surrounded by grid points Ti, j , Ti+1, j , Ti, j−1 and Ti+1, j−1, then the average traveltime gradient is
approximately:

∇T =
(

Ti+1, j − Ti, j − Ti, j−1 + Ti+1, j−1

2δx
,

Ti, j − Ti, j−1 − Ti+1, j−1 + Ti+1, j

2δz

)

(33)

A number of authors have developed schemes that draw on the basic idea of Vidale (1988);
van Trier & Symes (1991) determine traveltimes on a regular grid using an upwind finite-difference
method which solves a hyperbolic conservation law that describes changes in the gradient com-
ponents of the traveltime field. Podvin & Lecomte (1991) employ a method that uses Huygen’s
principle in the finite difference approximation; Faria & Stoffa (1994) propose a scheme that ex-
plicitly uses Fermat’s Principle to determine first-arrivals on a gridded traveltime field. These three
methods are more suited to solution by massively parallel or vector computation than the methods
of Vidale (1988) and Qin et al. (1992).

2.2.2.2 Fast marching method A problem with many of the eikonal grid-based methods (e.g.
Vidale, 1988, 1990; Qin et al., 1992) is that they have numerical difficulties when the true wavefront
is not differentiable. In other words, the first-arriving wavefront may contain kinks (discontinuities in
gradient); this is particularly the case in complex velocity media where multi-pathing (the wavefront
crosses itself) can occur. One way of addressing this problem is to search for “weak solutions” of
Eq. 15. A weak solution to a differential equation is an entropy satisfying approximate solution
that is not differentiable everywhere but satisfies an integral formulation of the equation. The key
advantage of such a formulation is that more general solutions are permitted, in particular ones that
don’t necessarily satisfy the differentiability demands of the original equation.

The Fast Marching Method (FMM) of Sethian & Popovici (1999) for solving the eikonal equa-
tion on a 3-D grid uses this approach. In its simplest form, the FMM uses the first-order upwind
difference scheme:
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where the following finite difference operator notation is used:

D+x T = T (x + δx)− T (x)

δx
(35)

D−x T = T (x)− T (x − δx)

δx
(36)

and si j k is slowness at the grid point (i, j, k). Eq. 34 is a non-linear equation (quadratic) for the
traveltime Ti j k. Of the two possible solutions, the larger value is always the correct value. The
FMM of Sethian & Popovici (1999) systematically constructs traveltimes T in a downwind fashion
from known values upwind using a narrow band method. The narrow band basically represents the
propagating wavefront, and grid points are tagged as either alive, close or far, depending on whether



2 METHODS OF TRAVELTIME INVERSION 29

Upwind

Far pointsAlive points
Close points

Downwind

Figure 16: Principle of the narrow band method. Alive points have their traveltimes correctly calculated.
Close points form a band about the alive points and have trial values. Far points have no values calculated.
Alive points lie upwind of the narrow band while far points lie downwind.

(a) (b) (c)

Figure 17: Principal of the FMM in 2-D. (a) Starting from the source point (black dot) in the center of
a grid, traveltimes to the four neighboring grid points are determined using Eq. 34. (b) The smallest of
these four values (grey dots) must be correct, so all close neighbors to this point that are not alive (white
dots) have their values computed, and added to the narrow band defined by the grey dots. (c) The smallest
of these six close points again must be correct, and all neighboring points have their values computed (or
recomputed).

they have had the band pass through them, they are inside the band, or are yet to be touched by the
band, respectively (see Fig. 16).

The FMM begins from a source point (or wavefront), and calculates the traveltimes at neigh-
boring grid points using Eq. 34 (for example) to form the first stage of the narrow band. The point
with minimum traveltime is then accepted as alive (i.e. it is a true first-arrival traveltime), and all
neighboring points to this alive point are updated (if close) or calculated for the first time (if far), in
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which case they become close and the narrow band progresses downwind (see Fig. 17). Choosing
the close point with minimum traveltime means that causality is satisfied. The key to an efficient im-
plementation of the narrow band scheme is to be able to rapidly locate the close point with minimum
traveltime. Heap sorting of traveltimes using a binary tree (Sethian & Popovici, 1999) means that the
FMM will have an efficiency of O(N log N ) where N is the number of grid points. Fig. 18 shows a
wavefront calculated using the FMM propagating through a complex 2-D velocity model. Source-
receiver ray paths, calculated by following the steepest descent direction (using Eq. 33) through the
computed traveltime field from each receiver, are also shown. The velocity variations have been
made extremely large to illustrate the robustness of the scheme, which remains stable despite the
propagating wavefront exhibiting significant discontinuities in gradient.

Figure 18: Example of the FMM in a complex 2-D velocity medium. The grid on which the eikonal
equation is solved has a spacing of 200 m in both x and z; the total number of points is 100,701. Wavefronts
are shown by thin grey lines and are visualized at 0.5 s intervals; rays are denoted by black lines and are
always perpendicular to the wavefronts.

To increase the accuracy of the FMM scheme without increasing the number of grid points,
higher order differences may be used to approximate the traveltime gradient (Popovici & Sethian,
2002). However, since causality must be respected, they cannot simply replace the first-order dif-
ferences in all cases (Sethian, 1999). Kim (2001) advocates using the average normal slowness ŝi j k

in place of si j k to increase accuracy since velocities specified at grid points don’t account for the
true variation across a cell. For point sources, Alkhalifah & Fomel (2001) suggest using a spherical
rather than Cartesian grid since the latter tends to under-sample the wavefront near the source where
curvature is high, and hence introduces traveltime errors. This source of error occurs for any Carte-
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sian grid-based method that determines the traveltime field from a point source. Although the FMM
scheme is yet to be applied to tomographic problems, we have described it in some detail because it
is the first unconditionally stable eikonal scheme and will probably come into more common use in
the near future.

Finite difference grid methods that solve the eikonal equation are generally much quicker (Vi-
dale, 1988; Sethian & Popovici, 1999) than the ray tracing methods described in Section 2.2.1,
especially for problems involving relatively few receivers and many sources or vice versa. They are
designed to calculate first-arrival traveltimes, they find diffraction paths in shadow zones, and they
can often work in regions of complex velocity (e.g. Sethian & Popovici, 1999). Ray methods do
not necessarily find the first-arrival path and often fail in shadow zones. The grid-based methods
can also determine the arrivals of head-waves and diffractions that cannot be found by conventional
geometric ray tracing.

Finite-difference schemes do have their disadvantages, one of the principal being algorithm sta-
bility, although the FMM scheme recently introduced by Sethian & Popovici (1999) overcomes this
problem. They also only locate first-arrivals, unless explicit conditions, such as reflections from
an interface, are specified. While this is desirable in many cases, later arrivals can be of interest,
such as in the generation of synthetic seismograms. Another disadvantage of grid methods is that
the medium needs to be densely sampled by velocity nodes in order to achieve accurate traveltimes,
with consequent demands on processing power and memory. For a 3-D problem, computation time
will increase at least in proportion to M3 where M is the number of nodes in one dimension. The
increase in computation time for ray-tracing methods is generally not as dramatic. Regional and
global studies, which often use a large number of model parameters, do not usually employ grid-
based methods to find traveltimes and ray paths. Apart from computation time, specific phases
(e.g. PcP , P P , PcS) which are not first-arrivals are sometimes used, which would also complicate
the implementation of a grid method. Grid methods are also not common in teleseismic tomography,
possibly because of the need to find ray paths from the source point to the model region through a
global 1-D velocity model, a task easily accomplished by ray tracing. Similarly, examples of ap-
plications in local earthquake tomography are hard to find, although there doesn’t seem to be any
particular reason why grid methods are unsuited to this class of problem.

In contrast, finite difference solutions of the eikonal equation have been used frequently in the
forward step of wide-angle traveltime inversions, especially in 3-D. Hole (1992) presents a method
for the inversion of first-arrival traveltimes for 3-D velocity variation using a finite-difference ap-
proach. Hole et al. (1992) use a similar forward scheme in the inversion for interface structure
using broadside refractions from the Queen Charlotte Basin, Canada. Also using finite-difference
techniques, Riahi et al. (1997) invert wide-angle reflections for Moho structure beneath the Gulf
of Bothnia and Zelt et al. (1996) invert both reflection and refraction traveltimes for velocity and
interface structure beneath the southwestern Canadian Cordillera. Other studies to use finite differ-
ence solutions of the eikonal equation in 3-D wide-angle traveltime inversions include Zelt & Barton
(1998), Zelt et al. (1999, 2001) and Day et al. (2001). Parsons et al. (1996) use a finite difference
approach in the inversion of wide-angle traveltimes for the 2-D crustal structure of the Colorado
Plateau.

2.2.3 Shortest Path Ray Tracing (SPR)

The shortest path or network method uses Fermat’s principle directly to find the path of the first-
arrival ray between source and receiver. To do this, a grid of nodes is specified within the velocity
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medium and a network or graph is formed by connecting neighboring nodes with traveltime path
segments. The first-arrival ray path between source and receiver will then correspond to the path
through the network which has the least traveltime.

In a seminal paper by Nakanishi & Yamaguchi (1986), the velocity field is defined by a set of
constant velocity blocks with network nodes placed on the interface between the blocks. Connection
paths between adjacent nodes do not cross any cell boundaries (see Fig. 19a), so the traveltime t
between two nodes is simply t = ds where d is the distance between the two nodes and s is cell
slowness. A similar approach is used by Fischer & Lees (1993). Moser (1991) uses a rectangular grid
with the network nodes coinciding with the velocity nodes (see Fig. 19b). The traveltime between
two connected nodes is estimated by t = d(s1 + s2)/2 where s1 and s2 are the slowness at the two
nodes.

Once the network structure and method of traveltime determination between two nodes has been
chosen, the next step is to use a shortest path algorithm to locate the ray path. Essentially, the
problem is to locate the path of minimum traveltime from all the possible paths between source and
receiver through the given network. An algorithm that is often used in network theory is that of
Dijkstra (1959) for which computation time is proportional to the number of nodes squared.

(a) (b)

Figure 19: Two types of node arrangements for an SPR network (after Moser, 1991). Connectors are
indicated by solid lines in both cases. (a) Network nodes along constant slowness cell boundaries (dashed).
(b) Network nodes that coincide with velocity nodes.

Errors in SPR are due to the finite node spacing and angular distribution of node connectors
(Moser, 1991). A coarse grid of nodes may poorly approximate the velocity variations while a lim-
ited range of angles between adjacent connectors may result in a poor approximation to the true path.
Obviously, increasing the number of nodes and connectors will result in superior solutions but may
come at a significant computational cost. Much work has been done to increase the computational
speed of the shortest path algorithm, with particular attention given to the use of efficient sorting
algorithms (Moser, 1991; Klimeš & Kvasnička, 1994; Cheng & House, 1996; Zhang & Toksöz,
1998).

SPR will by definition find the first-arrival traveltime between any given source and receiver.
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However, it is possible to impose constraints on the path so that some other arrivals such as reflections
or multiples can be determined. Moser (1991) demonstrated a method for reflections which requires
the shortest path to visit a specified set of nodes that lie on the interface.

In their original implementation of SPR, Nakanishi & Yamaguchi (1986) inverted traveltimes
from local earthquakes, while Zhang & Toksöz (1998) used it in the inversion of refraction trav-
eltimes. Toomey et al. (1994) inverted first-arrival refraction traveltimes for 3-D crustal velocity
structure using a scheme similar to that of Moser (1991) to solve the forward problem. Apart from
these examples, the use of SPR in tomographic inversions is not common. SPR shows similar ad-
vantages to finite differences (see Section 2.2.2) relative to conventional ray tracing methods. It can
correctly locate diffraction paths and head waves and always finds first-arrivals. The main advantage
SPR has over most finite difference methods is robustness; it is capable of working in highly com-
plex media. Cheng & House (1996) claim it to be the most robust numerical scheme for traveltime
calculations, although the introduction of the FMM challenges this claim. SPR methods also tend to
be slower than eikonal methods.

2.3 Solving the Inverse Step

The inversion step, which involves the adjustment of the model parameters m to better satisfy the
observed data dobs through the known relationship d = g(m), can be performed in a number of ways.
In traveltime tomography, the functional g is non-linear because the ray path depends on the velocity
structure. Ideally, an inversion scheme should account for this non-linearity. The three approaches
to solving the inversion step that will be considered below are backprojection, gradient methods and
global optimization techniques.

2.3.1 Backprojection

In Section 1.2, we showed that the perturbation of a ray path only has a second order effect on
traveltime. In terms of slowness, this was written (see Eq. 7):

δt =
∫

L0

δs(x)dl + O(δs(x)2) (37)

If a continuum is described by M constant slowness blocks, then the discrete form of Eq. 37 for N
rays can be written:

d = Gm (38)

where d are the traveltime residuals, m the slowness perturbations and G an N × M matrix of ray
lengths li j corresponding to the distance traversed by each ray in each block. Note that for the general
case m (e.g. velocity nodes, interface depths etc.) in Eq. 38, G = ∂g/∂m where g(m) is the model
prediction. Many of the elements of G will be zero since each ray path will usually only traverse a
small subset of the M blocks. Backprojection methods can be used to solve Eq. 38 for the slowness
perturbations m by iteratively mapping traveltime anomalies into slowness perturbations along the
ray paths until the data are satisfied. Backprojection methods generally use constant slowness (or
velocity) blocks. Two well known backprojection techniques for solving Eq. 38 are the Algebraic
Reconstruction Technique (ART) and the Simultaneous Iterative Reconstruction Technique (SIRT),
both of which originate from medical imaging.
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In ART, the model is updated on a ray by ray basis. The residual dn for the nth ray path is
distributed along the path by adjusting each component of m in proportion to the length lnj of the
ray segment in the j th cell:

mk+1
j = mk

j + tk+1
n lnj

M
∑

m=1
l2
nm

(39)

where tk+1
n = dn − tk

n is the difference between the residuals at the 0th and kth iteration, mk
j is the

approximation to the j th model parameter at the k th iteration, m1
j = 0 and t1

n = 0. The residual

along the (n + 1)th ray is then determined for the updated velocity field m using the original path
and is backprojected in the same manner. A single iteration of the method consists of performing this
backprojection for the N ray paths. Rays are then retraced and the backprojection repeated until the
data are satisfied to within tolerance, or the solution converges. The main problem with ART is that
it suffers from poor convergence properties (Blundell, 1993). It has been used by McMechan (1983)
in cross-hole tomography and Nakanishi & Yamaguchi (1986) in local earthquake tomography.

SIRT addresses some of the convergence problems associated with ART by averaging the pertur-
bations applied to each parameter from all the rays that are influenced by the parameter. Thus, the
SIRT algorithm may be written (Blundell, 1993):

mk+1
j = mk

j + 1

Rk
j

Rk
j

∑

n=1











tk+1
n lnj

M
∑

m=1
l2
nm











(40)

where Rk
j is the number of rays that the j th model parameter influences for the k th iteration. The

SIRT method has been used in the inversion of teleseismic traveltime residuals by Dueker et al.
(1993), Granet & Trampert (1989) and McQueen & Lambeck (1996). Blundell (1993) used SIRT
(as well as other methods) in the inversion of reflection traveltimes for both velocity structure and
interface depth.

Authors who have used variants of these backprojection schemes include Humphreys & Clayton
(1990), Hole (1992) and Zelt & Barton (1998). Humphreys & Clayton (1990) used block subbinning,
filtering and spatial averaging in the backprojected inversion of teleseismic traveltimes. Block sub-
binning reduces the weight of rays that come from dominant directions, and thus reduces blurring of
the image along these paths. Filtering is done using point spread functions to reduce the natural ten-
dency of backprojection to blur an image if resolution is not perfect, and spatial averaging is used to
smooth the solution. Hole (1992) also uses smoothing in the backprojected inversion of wide-angle
traveltimes. Zelt & Barton (1998), in their 3-D wide-angle seismic inversion method, implement
several other modifications aimed at improving the convergence and accuracy of backprojection.

Inversion using backprojection tends to be computationally more rapid at each iteration com-
pared to other techniques, but often converges more slowly and with less stability. This is at least
partly due to the use of more ad hoc regularization (like spatial averaging) compared to, for example,
the formal inclusion of such constraints in the inversion permitted by gradient methods.
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2.3.2 Gradient Methods

The inverse problem in seismic tomography can be formulated as one of minimizing an objective
function consisting of a data residual term and one or more regularization terms. As before, let d de-
note a data vector of length N which is dependent on a model vector m of length M as d = g(m). For
an initial estimate m0 of the model parameters, comparing d = g(m0) with the observed traveltimes
dobs gives an indication of the accuracy of the model. The misfit can be quantified by constructing
an objective function S(m), consisting of a weighted sum of data misfit and regularization terms,
that is to be minimized.

An essential component of the objective function is a term 9(m) which measures the difference
between the observed and predicted data. If it is assumed that the error in the relationship dobs ≈
g(mtrue) is Gaussian, then a least squares or L2 measure of this difference is suitable:

9(m) = ‖g(m)− dobs‖2 (41)

If uncertainty estimates have been made for the observed data (usually based on picking error), then
more accurate data are given a greater weight in the objective function by writing 9(m) as:

9(m) = (g(m)− dobs)
T C−1

d (g(m)− dobs) (42)

where Cd is a data covariance matrix. If the errors are assumed to be uncorrelated, then Cd =
[δi j (σ

j
d )

2] where σ j
d is the uncertainty of the j th traveltime. Strictly speaking, Cd is best referred to

as a data weighting matrix rather than a data covariance matrix unless it truly reflects the uncertainty
associated with the data. A major weakness in this definition of data misfit is that the L2-norm is
sensitive to outliers. This means that if only a few data have spurious values (e.g. from incorrect
phase identification), then they will have a significant influence on the size of 9(m) since each
residual is squared; the L2-norm is a non-robust measure. A solution produced by the minimization
of9(m) is then likely to be less reliable than one produced using, for example, an L 1 norm (Menke,
1989). Despite this weakness, most inversion methods appeal to Gaussian statistics and adopt an L 2

norm. See Claerbout & Muir (1973) for a discussion of robustness in error distribution.
A common problem with tomographic inversion is that not all model parameters will be well

constrained by the data alone (i.e. the problem may be under-determined or mixed-determined). A
regularization term8(m) is often included in the objective function to provide additional constraints
on the model parameters, thereby reducing the non-uniqueness of the solution. The regularization
term is typically defined as:

8(m) = (m − m0)
T C−1

m (m − m0) (43)

where Cm is an a priori model covariance matrix. If uncertainties in the initial model are assumed
to be uncorrelated, then Cm = [δi j (σ

j
m)

2] where σ j
m is the uncertainty associated with the j th model

parameter of the initial model. Again, this should really be referred to as a model weighting matrix
unless its entries reflect the true statistical uncertainties of the initial model. The effect of8(m) is to
encourage solution models m that are near a reference model m0. The values used in Cm are usually
based on prior information.

Another approach to regularization is the minimum structure solution (Constable et al., 1987)
which attempts to find an acceptable trade-off between satisfying the data and finding a model with
the minimum amount of structural variation. One way of including this requirement in the objective
function is to use the term (Sambridge, 1990):

�(m) = mT DT Dm (44)
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where Dm is a finite difference estimate of a specified spatial derivative. For example, if
m1,m2, . . . ,m M represent contiguous depth nodes of an interface in 2-D space, then the gradient of
the interface could be regulated using:

Dm =
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Alternatively, the curvature of the interface could be regulated using:
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An explicit smoothing term such as Eq. 46 in the objective function may be necessary if crude pa-
rameterizations such as constant velocity blocks are used to simulate a continuously varying velocity
field. However, if an implicitly smooth parameterization like cubic splines is used, then an explicit
smoothing term may be unnecessary. In other words, the same smooth result could be achieved by
reducing the number of parameters and hence the size of the inverse problem. The appropriate num-
ber of parameters required to represent the model for a given dataset could be chosen on a statistical
basis, such as employing the F test (Menke, 1989).

Using the L2 terms described above in Equations 42 - 44, the objective function S(m) can be
written in full as:

S(m) = 1

2
[9(m)+ ε8(m)+ η�(m)] (47)

where ε is referred to as the damping factor and η as the smoothing factor (when D is the second
derivative operator, which is usually the case). Multiplication of all terms by 1/2 is done simply to
prevent the expressions for the first and second derivatives of S having all elements multiplied by
2 (see Eq. 49 and Eq. 50). ε and η govern the trade-off between how well the solution mest will
satisfy the data, how closely mest is to m0, and the smoothness of mest . There are several means
for choosing appropriate values for ε and η. One way is to use the largest values of ε and η for
which the data are still satisfied, but there will be a trade-off between ε and η. When only damping
or smoothing is invoked, then this approach is simpler to implement. However, it may be that the
relationship between the data fit and the model perturbation or model roughness is highly non-linear,
in which case this criterion may not be robust. A better approach is to inspect the trade-off curves
between data fit and model roughness (or perturbation) for different values of η (or ε), as shown
schematically in Fig. 20. If both η and ε are non-zero, then a contour plot which shows traveltime
fit contoured on a plot of model roughness vs. model perturbation (Fig. 21) could be used, but the
main drawback here is the considerable computational effort required. An alternative approach is to
perform a synthetic reconstruction using the same source-receiver geometry as the real experiment.
The appropriate amount of damping and smoothing would then be given by the values of η and ε
which resulted in the most accurate reconstruction of the synthetic model.
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Figure 20: Schematic illustration of trade-off curves that could be used to choose appropriate damping or
smoothing parameters for an inversion. A number of separate (eight in these examples) inversions with
different values of ε or η are required in order to construct these curves. (a) Data fit vs. model perturbation
for different values of ε. (b) Data fit vs. model roughness for different values of η.
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Figure 21: Possible scheme for choosing ε and η simultaneously. Contours of traveltime misfit for a set of
solution models are plotted on a graph of model perturbation vs. model roughness. The optimum region has
low roughness and model perturbation but adequately satisfies the data. Computational effort is the main
drawback of this approach.

Many studies involving the tomographic inversion of real data use a semi-quantitative approach
to choosing η and/or ε (or other trade-off parameters) like those outlined above (e.g. Oncescu et al.,
1984; White, 1989; Neele et al., 1993; Steck et al., 1998; Graeber & Asch, 1999; Rawlinson et al.,
2001a). At this stage, it is important to point out that the objective function expressed in Eq. 47 in
a sense juxtaposes two different regularization frameworks: Bayesian and Occam’s. In a Bayesian-
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style inversion, knowledge of a priori information is of paramount importance. To properly honor
this approach, smoothing would be ignored (i.e. set η=0), the data covariance matrix would reflect
the known statistical properties of the data and the initial model estimate would be based on a
priori model information. In addition, we would set ε = 1 since the a priori model covariance
matrix would reflect the uncertainties associated with the a priori information. Minimization of the
objective function then results in a solution that assimilates the information contained in the data
with the a priori information, resulting in an a posteriori model distribution. The posterior model
uncertainties should then be less than the prior uncertainties, which is the desired outcome (how
much less depends on how good the data are). The principal difficulty with this approach is that
meaningful a priori information concerning model and data errors is difficult to obtain in practice.
Nevertheless, this Bayesian approach has been adopted by a number of authors (e.g. Aki et al., 1977;
Lutter & Nowack, 1990). Scales & Snieder (1997) discuss the merits and difficulties of adopting a
Bayesian framework for inversion.

The other regularization framework is suggested by Occam’s principle of seeking a solution with
the least structure necessary to fit the data (Constable et al., 1987). In this case ε = 0 since we don’t
want the initial model, whose accuracy is poorly known, to unduly influence the solution model. This
type of scheme is also popular (e.g. Sambridge, 1990; Zelt & Barton, 1998; Day et al., 2001). Often,
however, a mixture of both frameworks is used, in which case one seeks a physically reasonable
model that contains no unnecessary structure, is not highly perturbed from the initial model and
satisfies the data. This explains to some extent why the choice of ε and η is often subjective.

Gradient-based inversion methods make use of the derivatives of S(m) at a specified point in
model space. A basic assumption that is shared by all practical gradient methods is that S(m) is
sufficiently smooth to allow a local quadratic approximation about some current model:

S(m + δm) ≈ S(m)+ γ̂γγ δm + 1
2δm

T Ĥδm (48)

where δm is a perturbation to the current model and γ̂γγ = ∂S/∂m and Ĥ = ∂2S/∂m2 are the gradient
vector and Hessian matrix respectively. Evaluating these partial derivatives for Eq. 47 gives:

γ̂γγ = GT C−1
d [g(m)− dobs] + εC−1

m (m − m0)+ ηDT Dm (49)

Ĥ = GT C−1
d G + ∇mGT C−1

d [g(m)− dobs] + εC−1
m + ηDT D (50)

where G = ∂g/∂m is the Fréchet matrix of partial derivatives calculated during the solution of the
forward problem. As mentioned earlier, for the case of constant slowness blocks, G = [li j ] where
li j is the ray segment length of the i th ray in the j th block. Usually, the second derivative term in
Ĥ is neglected since it is time consuming to evaluate, and its effect is small if g(m)− dobs is small,
or if the forward problem is quasi-linear (∇mG ≈ 0). Both γ̂γγ and Ĥ do not lie in model space, but
in the dual of model space (Tarantola, 1987). If γγγ is the steepest ascent vector in model space then
γγγ = Cm γ̂γγ and H, the curvature operator in model space, is H = CmĤ.

Since g is generally non-linear, the minimization of Eq. 47 requires an iterative approach:

mn+1 = mn + δmn (51)

where m0 is the initial model. The objective function is minimized for the current ray path estimate
at each step to produce mn+1, after which new ray paths are computed for the next iteration. The
iterations cease either when the observed traveltimes are satisfied or when the change in S(m) with
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iteration gets sufficiently small. A useful measure of data fit is provided by the normalized χ 2 misfit
function defined by:

χ2 = 1

N

N
∑

i=1

(

d i
m − d i

obs

σ i
d

)2

(52)

where {d i
m} = g(m), {d i

obs} is the set of observed data and {σ i
d} are the traveltime uncertainties

(or weights). An inversion solution fits the data to the level of the noise when χ 2 = 1. Once this
value is achieved, there is little point in continuing with the iterative inversion process. However,
Eq. 52 measures the data fit in an average sense, and it is still possible to have χ 2 < 1 while one
or more model traveltime residuals are larger than their respective error estimates. If the data misfit
does not fall below χ2 = 1, then statistical hypothesis testing (e.g. Kreyszig, 1993) can be used
to stop the iterative process. For example, if the data misfit has a normal distribution, we can test
whether the data variance at iteration n is significantly different from the variance at iteration n + 1
(usually referred to as an F -test). The F -test has been used by numerous authors (e.g. Thurber,
1983; Eberhart-Phillips, 1986; Steck et al., 1998; Graeber & Asch, 1999).

The following gradient-based inversion methods can be used to determine δmn in Eq. 51.

2.3.2.1 Gauss-Newton method and damped-least squares The Gauss-Newton method locates
the updated point mn+1 by finding the minimum of the tangent paraboloid to S(m) at mn . At the
minimum of S, the gradient will vanish, so m is required such that:

F(m) = GT C−1
d (g(m)− dobs)+ εC−1

m (m − m0)+ ηDT Dm = 0 (53)

where F(m) = γ̂γγ . If we are at some point mn , then a more accurate estimate mn+1 can be obtained
using a Taylor series expansion of Eq. 53 and ignoring second order terms:

Fi (m
1
n+1, . . . ,m M

n+1) = Fi(m
1
n, . . . ,m M

n )+
M
∑
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(m j
n+1 − m j

n)
∂Fi

∂m j

∣

∣

∣

∣

mn

= 0 (54)

which may be rewritten as:

mn+1 = mn −
[

∂F
∂m

]−1

n
[Fn] = mn −

[

∂2S

∂m2

]−1

n

[

∂S

∂m

]

n
(55)

where (∂S/∂m)n is the gradient vector and (∂2S/∂m2)n is the Hessian matrix. Substituting Eq. 49
and Eq. 50 into Eq. 55 gives the Gauss-Newton solution:

δmn = −[GT
n C−1

d Gn + ∇mGT
n C−1

d (g(mn)− dobs)+ εC−1
m + ηDT D]−1

×[GT
n C−1

d [g(mn)− dobs] + εC−1
m (mn − m0)+ ηDT Dmn] (56)

As mentioned earlier, the second derivative term in the Hessian matrix is usually ignored, which
gives the quasi-Newton solution:

δmn = −[GT
n C−1

d Gn + εC−1
m + ηDT D]−1[GT

n C−1
d [g(mn)− dobs]

+εC−1
m (mn − m0)+ ηDT Dmn] (57)
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Straightforward implementation of this method requires an M × M matrix equation to be solved. If
the number of model parameters is large, the solution will be computationally expensive, and if data
coverage is poor, the problem may well be ill-conditioned.

If instead we assume that the relationship d = g(m) is linearizable then (c.f. Eq. 38):

dobs ≈ g(m0)+ G(m − m0) (58)

or δd = Gδm with δd = dobs − g(m0) and δm = m − m0 (i.e. Eq. 38 with G = ∂g/∂m). If Eq. 58
is exactly linear, then the Newton and quasi-Newton solutions are the same because the second
derivative terms in the Hessian matrix are zero. Because a one-step solution is possible in the linear
case, the objective function is sometimes written:

S(m) = 1

2

[

(Gδm − δd)T C−1
d (Gδm − δd)+ εδmT C−1

m δm + ηδmT DT Dδm
]

(59)

where last term on the RHS smooths the perturbations to the prior model. The functional in this case
is:

F(m) = GT C−1
d (Gδm − δd)+ εC−1

m δm + ηDT Dδm = 0 (60)

and the solution can be written as:

δm = [GT C−1
d G + εC−1

m + ηDT D]−1GT C−1
d δd (61)

When no smoothing is used (η = 0) and the matrices Cd and Cm represent the known a priori error
statistics, then Eq. 61 becomes:

δm = [GT C−1
d G + C−1

m ]−1GT C−1
d δd (62)

which is the maximum likelihood solution to the inverse problem or the stochastic inverse (Aki et al.,
1977). The expressions for δm in Eq. 57, Eq. 61 or Eq. 62 are often referred to as Damped Least
Squares (DLS) solutions to the inverse problem (particularly when η = 0).

It is interesting to note the differences between the solution given by Eq. 57 and Eq. 61. First,
the smoothing term in Eq. 61 smoothes the perturbations to the model, not the model itself. Second,
if Eq. 61 is applied iteratively, then the damping regularization is not necessarily the same as that
imposed by the iterative implementation of Eq. 57. In the latter, the term m0 usually represents the
initial or starting model and the effect of the regularization is to favor a solution near the initial model
(how “near” will depend on the value of ε). If, however, m0 = mprior , where mprior is the solution
at the previous iteration, then the damping in Eq. 57 will be the same as that for Eq. 61, in which
the misfit of the current model compared to the previous model is regulated. In damping, the use of
m0 is often referred to as “jumping” while using mprior is often referred to as “creeping” (Shaw &
Orcutt, 1985). Similarly, smoothing the perturbation to the model is “creeping” while smoothing the
model is “jumping”. The DLS-type solution scheme is the technique most commonly used to solve
the inverse step in seismic tomography. Many other variants to those discussed above have also been
used - Spakman (1993) describes and compares several of them.

Studies that have used a DLS-type solution to the inverse problem in teleseismic tomography
include those by Aki et al. (1977), Zhao et al. (1994), Weiland et al. (1995), Wiggins et al. (1996) and
Steck et al. (1998). Authors who have used DLS solutions to invert wide-angle traveltimes include
Kanasewich & Chiu (1985), Chiu et al. (1986), Farra & Madariaga (1988), White (1989), Lutter &
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Nowack (1990), Lutter et al. (1990), Zelt & Smith (1992), Lutter et al. (1994), Kosloff et al. (1996),
Wang & Braile (1996), McCaughey & Singh (1997) and Zelt & Barton (1998). Similarly, DLS is
also popular in local earthquake tomography (Aki & Lee, 1976; Thurber, 1983; Eberhart-Phillips,
1986; Zhao et al., 1992; Graeber & Asch, 1999).

The most computationally expensive part of the DLS solution is to solve a matrix equation of
dimension M . If the number of parameters is not large, then the solution may be found using meth-
ods like LU decomposition (Press et al., 1992) or Cholesky decomposition (Tarantola, 1987). A
particularly useful solution technique for small to mid-size problems is Singular Value Decomposi-
tion (Press et al., 1992) or SVD. It is capable of robustly dealing with matrices that are singular or
nearly singular, which is often the case in tomographic problems. In addition, SVD can be used to
diagnose problems with the system of equations, such as the presence of equations that do not help
constrain the solution. Another attractive feature of SVD is that covariance and resolution estimates
associated with the solution model may be obtained at virtually no extra cost (e.g. White, 1989).

For models defined by large numbers of parameters, direct solution methods are cumbersome
and iterative techniques are more practical. One such method is the conjugate gradient method of
Hestenes & Stiefel (1952), which is able to take advantage of the sparse nature of linear systems
commonly associated with seismic tomography problems (Scales, 1987). Conjugate gradients and
LSQR, a variant of the conjugate gradient algorithm, are probably the most commonly used methods
for solving linear systems of the form of Eq. 61 with a large number (e.g. 1000’s - 100,000’s) of
unknowns (Nolet, 1985; Scales, 1987; VanDecar & Snieder, 1994).

The DLS-type solution to the inverse problem need not be formulated as a set of normal equa-
tions, such as Eq. 57 or Eq. 62. For example, Eq. 59 may be minimized by finding the least squares
solution of the system:





C−1/2
d G√
εC−1/2

m√
ηD



 δm =





C−1/2
d δd

0
0



 (63)

which is equivalent to solving Eq. 61. SVD or iterative solvers like LSQR can be used to solve
Eq. 63 since they can equally well be applied to non-square systems and will solve the equations in
the least-squares sense.

2.3.2.2 Steepest descent The method of steepest descent is probably the simplest gradient-based
method for iterative minimization of an objective function. It is based on the idea that the objective
function S may be minimized by successive searches along local directions of steepest descent. If
γγγ n is the direction of steepest ascent in model space at a point mn, the model correction is given by:

δmn = −µnγγγ n (64)

where the scalar µn is a positive real number whose value locates the minimum in the direction
specified by γγγ n. The parameter µn can be found by line minimization as follows. By assuming
that g(m) is locally linear, so that g(mn+1) = g(mn)+ Gn(mn+1 − mn), then S(m) is quadratic so
∂S(m)/∂µn = 0 will give the value of µn . Substituting Eq. 64 into Eq. 48 gives:

S(mn − µnγγγ n) = S(mn)− µn γ̂γγ
T
n γγγ n + 1

2µ
2
nγγγ

T
n Ĥnγγγ n (65)

The partial derivative of Eq. 65 is:

∂S(mn − µnγγγ n)

∂µn
= −γ̂γγ T

n γγγ n + µnγγγ
T
n Ĥnγγγ n = 0 (66)
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which can be rearranged to give:

µn = γ̂γγ
T
n γγγ n

γγγ T
n Ĥnγγγ n

(67)

An iterative line search could also be implemented to determine µn , but this may require numerous
calculations of the forward step. The efficiency of the steepest descent method depends on the
character of S(m), but usually it is slow because the local direction of steepest descent may differ
greatly from the direction in which the minimum is to be found. Fig. 22 schematically illustrates
how the steepest descent method may be inefficient. Blundell (1993) investigates the properties
of the steepest descent method in the context of inverting reflection traveltimes for velocity and
interface depth but the method has not been widely used in seismic tomography.
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Figure 22: Illustration of the method of steepest descent in 2-D model space. The method can be inefficient
in locating the solution if the local direction of steepest descent is oblique to the direction in which the
minimum is to be found.

2.3.2.3 Conjugate gradients Hestenes & Stiefel (1952) first suggested the idea of conjugate
gradient methods in regard to solving systems of linear equations. Fletcher & Reeves (1964) subse-
quently applied it to unconstrained optimization. At each iteration, the conjugate gradient method
uses a new search direction that is conjugate to all the previous ones. In other words, the n th iteration
of the conjugate gradient method locates the minimum in an n-dimensional subspace spanned by the
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current search direction and the n − 1 previous search directions. The algorithm may be defined by
(see Tarantola, 1987):

φφφn = γγγ n + αnφφφn−1 (68)

δmn = −µnφφφn (69)

where {φφφn} is a set of conjugate directions and φφφ0 = γγγ 0. The scalar µn can be determined by
Eq. 67 (using φφφn in place of γγγ n) and αn is defined so that the new search direction is conjugate to
the previous search directions (see Press et al., 1992):

αn = γγγ T
n γ̂γγ n

γγγ T
n−1γ̂γγ n−1

(70)

or

αn = γγγ T
n γ̂γγ n − γγγ T

n γ̂γγ n−1

γγγ T
n−1γ̂γγ n−1

(71)

Eq. 70 is the Fletcher-Reeves variant and Eq. 71 is the Polak-Ribiere variant. The latter formula-
tion sometimes gives superior results when S(m) is non-quadratic (Tarantola, 1987). In the context
of seismic traveltime inversion, the conjugate gradient method has been used infrequently for di-
rect minimization of an objective function. Rawlinson & Houseman (1998) have used it to invert
teleseismic traveltimes and Blundell (1993) has used it in the inversion of reflection traveltimes.

The principal advantage that both the steepest descent and conjugate gradient method have over
the Newton and DLS methods is that a large system of linear equations does not need to be solved.
Consequently, these methods are much more rapid at the inverse step. However, since they only
minimize in one dimension at each iteration, they tend to converge more slowly. If the procedure
for solving the forward step is fast compared to solving the M × M matrix equation, then steepest
descent or conjugate gradients may be preferable. However, if the forward step is slow compared to
solving the matrix inverse, then a Newton or DLS approach may be quicker.

2.3.2.4 Subspace method Both the steepest descent method and conjugate gradient method are
examples of 1-D subspace methods in that they perform a line minimization at each iteration. In
general, however, subspace methods may be constructed in which the minimization is carried out
simultaneously along several search directions that together span a subspace of the model space.
The basic theory for the general subspace inversion method is presented here; more details can be
found in Kennett et al. (1988), Sambridge (1990) and Williamson (1990).

At each iteration, the subspace method restricts the minimization of the quadratic approximation
of S(m) to a p-dimensional subspace of model space, so that the perturbation δm (ignoring the iter-
ation subscript n in δmn for convenience) occurs in the space spanned by a set of p M-dimensional
basis vectors {a j }:

δm =
p
∑

j=1

µ j a j = Aµµµ (72)

where A = [a j ] is the M × p projection matrix. The component µ j determines the length of the
corresponding vector a j that minimizes the quadratic form of S(m) in the space spanned by a j .
Hence, µµµ is found by substituting Eq. 72 into Eq. 48, which gives in summation form:

S(m + δm) = S(m)+
p
∑

j=1

µ j γ̂γγ
T a j + 1

2

p
∑

j=1

p
∑

k=1

µ jµk[ak]T Ĥ[a j ] (73)



2 METHODS OF TRAVELTIME INVERSION 44

and locating the minimum of S with respect to µµµ:

∂S(m)
∂µq

= γ̂γγ
T aq +

p
∑

k=1

µk[ak]T Ĥ[a j ] = 0 (74)

for q = 1, . . . , p. Rearranging Eq. 74 for µµµ gives:

µµµ = −[AT ĤA]−1AT γ̂γγ (75)

and since δm = Aµµµ, the solution, taking Ĥ = GT C−1
d G + εC−1

m + ηDT D, is:

δm = −A[AT (GT C−1
d G + εC−1

m + ηDT D)A]−1AT γ̂γγ (76)

which can be used iteratively in the manner specified by Eq. 51. The quantities A, γ̂γγ and G are
re-evaluated between successive iterations. Most implementations of the subspace method construct
the basis vectors {a j } in terms of the steepest ascent vector in model space γγγ and its rates of change
(e.g. Kennett et al., 1988; Sambridge, 1990; Williamson, 1990; Blundell, 1993).
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Figure 23: A contour plot of S(m) which is a function of two parameters of different physical dimensions.
S(m) is much more sensitive to mb than ma , and a gradient method like steepest descents will converge
slowly. Searching in directions specified by basis vectors (dotted lines) that only lie in space defined by a
single parameter class eliminates these problems, since S(m) is a function of only one parameter class in
each of these directions.

The subspace method has several desirable characteristics. First, the determination of δm only
requires the solution of a relatively small p × p system of linear equations - Williamson (1990)
uses p = 6 and Blundell (1993) uses p ≤ 8. Second, it offers a natural way of dealing with
multiple parameter classes, such as velocity parameters and interface depth parameters, that are to
be inverted for simultaneously. If the basis vectors {a j } are chosen such that each vector only lies
in the space spanned by a particular parameter class, then the minimization will account for the
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different sensitivities of S(m) with respect to the different parameter classes in a balanced way (see
Fig. 23). Other gradient methods in which parameters of different physical dimensions are mixed
can exhibit slow convergence and a strong dependence on relative scaling of the different parameter
types (Kennett et al., 1988).

As an example of how one might choose a set of basis vectors, consider an inverse problem that
has three different parameter classes that are to be constrained by the data. Three separate search
directions can simply be obtained by partitioning the gradient vector in model space γγγ = Cm γ̂γγ on
the basis of parameter class:

γγγ = a1 + a2 + a3 =





γγγ 1

0
0



+





0
γγγ 2

0



+





0
0
γγγ 3



 (77)

where a1, a2 and a3 represent ascent vectors that lie in the space of only one parameter type. A fur-
ther nine basis vectors can be obtained by pre-multiplying a1, a2 and a3 by the model space Hessian
H = CmĤ and partitioning the three vectors that result in the same way as Eq. 77. Additional basis
vectors can be produced by repeating the process of pre-multiplication of the latest set of vectors
by the partitioned model space Hessian. Once the required number of basis vectors is obtained,
Gram-Schmidt orthogonalization should be applied to avoid interdependence:

ai
or th = ai −

i−1
∑

j=1

ai · a j

a j · a j
a j (78)

for i = 1, . . . , p. The basis vectors {ai
or th} are normalized and used in Eq. 76 via the projection

matrix A. If the subspace is large, then SVD may be more effective in finding the orthonormal set of
subspace vectors due to the build-up of round-off error associated with the numerical implementation
of Eq. 78 (Press et al., 1992). Choosing an appropriate number of basis vectors requires finding an
acceptable balance between computational effort and rate of convergence.

Subspace methods have been applied to the inversion of reflection traveltimes for velocity and
interface structure (Williamson, 1990; Blundell, 1993), to the inversion of local earthquake and
artificial source traveltimes for velocity, interface structure and hypocenter location (Sambridge,
1990) and to the inversion of reflection amplitude data for interface structure (Wang & Houseman,
1994) and velocity (Wang & Houseman, 1995). Rawlinson et al. (2001a,b) use it in the inversion of
refraction and wide-angle reflection traveltimes for the determination of layered crustal structure.

2.3.2.5 Fréchet matrix All gradient methods require the calculation of G = ∂g/∂m, which de-
scribes the rate of change of traveltimes with respect to model parameters. For such discrete models,
G defines the “Gateaux” derivative of g; the term “Fréchet” derivative should really only be used
to describe the derivative of g for a continuous model (Shaw & Orcutt, 1985). However, since G
is widely referred to as the Fréchet derivative/matrix even if the model is discrete, we will continue
to do so here. The two basic parameter types that are normally encountered in traveltime inversion,
especially of wide-angle data, are velocity (or slowness) and interface depth. First-order accurate
expressions for the derivatives can be derived quite simply for both cases. They are usually calcu-
lated as part of the forward step of the tomographic problem. In local earthquake tomography, the
source location is also an unknown, so derivatives of traveltime with respect to these parameters are
required.



2 METHODS OF TRAVELTIME INVERSION 46

The linearized relationship between traveltime residual and velocity perturbation was given by
Eq. 6:

δt = −
∫

L(v0)

δv

v2
0

dl (79)

where δv is the velocity perturbation and v0 is the reference velocity field. If the velocity field is
defined by a grid of velocity nodes, then to first-order the Fréchet derivatives are given by:

∂ t

∂vn
= −

∫

L(v0)

v−2
0
∂v

∂vn
dl (80)

where vn is the velocity of a particular node and ∂v/∂vn is the change of velocity along the ray
with respect to a change in vn . This expression is usually straightforward to calculate if the velocity
interpolation function v = f (vnodes) has a simple form (e.g. cubic B-splines). Fréchet derivatives
have been calculated using Eq. 80 (or its equivalent for slowness) by most authors who use gradient
methods and models parameterized by a grid of velocity nodes (e.g. White, 1989; Lutter et al., 1990;
Sambridge, 1990).

First-order accurate analytic expressions can also be obtained for the Fréchet derivatives when
the model parameters describe interface depths. The basic approach is to partition the problem:

∂ t

∂zn
= ∂ t

∂hint

∂hint

∂zint

∂zint

∂zn
(81)

where zn is the depth coordinate of the interface node, hint is displacement normal to the interface
at the point of intersection by the ray and zint is the depth coordinate of the intersection point. The
first two derivatives on the RHS of Eq. 81 can be worked out analytically to first-order accuracy
by assuming a locally linear wavefront and interface (e.g. Bishop et al., 1985; Nowack & Lyslo,
1989; White, 1989; Sambridge, 1990; Zelt & Smith, 1992; Blundell, 1993; Riahi & Juhlin, 1994).
Consider Fig. 24 which shows a plane wave impinging on a planar interface that is perturbed by a
distance 1h. Rays A and B show the path taken by the wave before and after the perturbation. It is
easy to see that the difference in traveltime 1t between rays A and B from position 1 to position 2
is:

1t = a

v j
− b

v j+1
(82)

and since a = −w j · wn1h and b = −w j+1 · wn1h (all vectors are unit vectors), substitution into
Eq. 82 gives:

1t =
[

w j+1 · wn

v j+1
− w j · wn

v j

]

1h (83)

and the approximation to the derivative is:

∂ t

∂hint
≈ w j+1 · wn

v j+1
− w j · wn

v j
(84)

The second term in Eq. 81 can be derived from the fact that wn · wz = −1h/1z so the derivative is:

∂hint

∂zint
≈ −wn · wz (85)
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Figure 24: Plane wave incident on a perturbed planar interface for first-order approximation of interface
Fréchet derivatives. w j is a unit vector parallel to rays A and B in layer j and w j+1 is a unit vector parallel
to rays A and B in layer j + 1. wn is the unit normal vector to the interface at the intersection point and
wz = [0, 0, 1].

Substitution of both partial derivatives into Eq. 81 gives:

∂ t

∂zn
≈
[

w j · wn

v j
− w j+1 · wn

v j+1

]

[

wn · wz
] ∂zint

∂zn
(86)

Note that Eq. 86 will work for any ray direction provided w j always points towards the interface and
w j+1 always points away from the interface, irrespective of whether the ray is upgoing or downgo-
ing. For reflections, w j+1 · wn = −w j · wn and v j+1 = v j . The term ∂zint/∂zn depends on the form
of the interface depth interpolation function z = f (znodes).

In 3-D space, four parameters describe the location of an earthquake hypocenter. The partial
derivative of the traveltime t with respect to origin time to is simply:

∂ t

∂ to
= −1 (87)
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Figure 25: A change in depth 1zh of the hypocenter results in a change in the path length 1l of the ray.

because t = ta − to where ta is the arrival time. In Cartesian coordinates, the partial derivatives of
traveltime with respect to the three spatial coordinates are straightforward to derive. For example,
consider a perturbation in depth 1zh of the hypocenter (see Fig. 25). The corresponding change in
path length 1l is given by:

1l = −1zh cos θh (88)

where θh is the angle between the ray and the z-axis at the hypocenter. Note that the change in path
length is negative since the hypocenter is perturbed to a shallower depth. The change in traveltime
is given by:

1t = 1l

vh
= −1zh cos θh

vh
(89)

where vh is the velocity at the hypocenter. The first-order accurate expression for the partial deriva-
tive is thus given by:

∂ t

∂zh
= −cos θh

vh
(90)

Similarly, the partial derivatives for the remaining two parameters are:

∂ t

∂xh
= −cosφh

vh
(91)

∂ t

∂yh
= −cosψh

vh
(92)

where φh and ψh subtends the horizontal projection of the ray path and the x and y axes respectively
at the hypocenter. Most local earthquake tomography schemes use this kind of hypocenter partial
derivative (e.g. Thurber, 1983; Eberhart-Phillips, 1986; Sambridge, 1990).



2 METHODS OF TRAVELTIME INVERSION 49

2.3.3 Global Optimization

The inversion methods described in Section 2.3.1 and Section 2.3.2 are local in that they exploit
information in regions of model space near an initial model estimate and thus avoid an extensive
search of model space. Consequently, they cannot guarantee convergence to a global minimum so-
lution. Local methods are prone to entrapment in local minima, especially if the subsurface velocity
structure is complex and the starting model is not close to the true model. Fig. 26 illustrates these
problems.

m a

m b (S m )

S ( m)
Contours of
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A Bm2 m1 m m3op
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Figure 26: (a) Contours of S(m) for a two parameter model. (b) Cross section through (a). Local methods
are likely to locate the global optimum solution mop if initial model m1 is used, but are more likely to find
local minima if initial models m2 or m3 are used.

In many realistic applications of traveltime tomography, particularly at regional and global scales,
the need for global optimization techniques is hard to justify, because the a priori model informa-
tion is relatively accurate and lateral heterogeneities are not very large (e.g. Widiyantoro & van der
Hilst, 1997; Gorbatov et al., 2000). Therefore, the local minimum of the objective function in the
vicinity of the initial model is also likely to be the global minimum of the objective function. How-
ever, the crust and lithosphere are generally less well constrained by a priori information and are
also much more heterogeneous. This means that the initial model is likely to be more distant from
the global minimum solution, and entrapment in a local minimum becomes more of a concern. A
second motivation for using global methods is that they often produce an ensemble of solutions that
satisfy the data to a similar level. This enables one to choose the model deemed most likely to rep-
resent the geology of the region (Pullammanappallil & Louie, 1993), and estimate posterior model
uncertainties.

The computational burden of exploring large regions of model space is immense, especially for
the large number of unknowns typically encountered in traveltime tomography. Recent interest in the
use of global optimization techniques for solving geophysical inverse problems has been generated
to a large degree by rapid advancements in computing power. Further advancements will continue to
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make these techniques more practical and hence popular. Several types of global optimization that
have been applied to seismic inversion use random processes to search model space and find better
models. These Monte Carlo (MC) methods include genetic algorithms and simulated annealing. For
recent reviews on the use of MC techniques for geophysical inverse problems, see Sambridge &
Mosegaard (2001) and Mosegaard & Sambridge (2002).

The earliest Monte Carlo approach, defined simply as a uniform random search of model space,
is the simplest of these global methods. The misfit function is evaluated at a set of points in model
space that are randomly chosen between pairs of upper and lower bounds (chosen a priori). The se-
lection of new points has no dependence on previous points. Each model generated by this process is
tested for fitness and then accepted or rejected. The final set of accepted models can then be used for
interpretation. If model space is not very large, say M = 80, and each m i is discretized to assume
only 10 possible values, the number of different models is 1080. Of course, the uniform random
search approach will not test every model, but it is likely to spend significant amounts of computa-
tion time exploring unfavorable regions of model space. Computation requirements will therefore
become prohibitive if large numbers of model parameters are involved (Sambridge & Drijkonin-
gen, 1992). Consequently, a basic Monte Carlo approach is not suited to most seismic traveltime
inversion problems.

step
Forward

Cross-over Mutation

Output
models

Input
models

Next iteration Stop GA

Reproduction
Selection/

Figure 27: Flow chart for genetic algorithm solution of the inversion problem. Each step is carried out on a
population of models and the process is terminated when the maximum fitness parameter of the population
exceeds a given threshold.

Genetic algorithms use an analogue to biological evolution to develop new models from an initial
pool of randomly picked models. The process of producing a new set of models from a pre-existing
set involves four basic steps, summarized in the flowchart of Fig. 27. The first step is to solve the
forward problem (i.e. determine traveltimes) for the set of input models. The next step, selection and
reproduction, assigns a measure of fitness to each model in the pool based on the magnitude of the
misfit function at the corresponding point in model space. Then a rule for selecting which models
are to be used to create the next generation is applied. Two common choices for the selection
operator are linear normalization selection and parent selection (Boschetti et al., 1996). Linear
normalization selection ranks each model according to its fitness and then allows each model to
generate a number of offspring proportional to its rank position. Parent selection causes pairs of
models to be mated randomly so that each couple creates two offspring in the cross-over stage. The
cross-over step creates a pool of offspring, each of which is a “mix” of its two parents. Sambridge
& Drijkoningen (1992) represent models by binary strings and perform the cross-over by simply
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cutting and transposing two segments at a randomly chosen point along the two strings.
Mutation involves randomly changing some parameter values (or bits if a binary string represen-

tation is used) in selected models. This ensures that some “freshness” remains in the model pool,
although the mutation rate should be kept low (Boschetti et al., 1996, use a mutation rate of 1%) so
that “good” models are not corrupted. The basic principle behind genetic algorithms is that models
with a high fitness index will pass their characteristics to subsequent generations, while those as-
pects of the cycle that introduce random changes to the population permit new parts of the model
space to be tested. For more detailed information on genetic algorithms, refer to Goldberg (1989)
and Whitley (1994).

Simulated annealing is based on an analogy with physical annealing in thermodynamic systems
to guide variations to the model parameters. The process of annealing in metallurgy involves the slow
cooling of a metal, which allows the atoms to order themselves into stable, structurally strong, low
energy configurations. In the analogue process, some starting model is represented by a collection of
atoms (parameters) in equilibrium at a given temperature T . At each iteration, an atom is displaced
(a parameter is varied) and the resultant change in the energy of the system 1E (change in the
objective function) is computed. If 1E ≤ 0 the displacement is accepted and the new model is used
as the starting point of the next iteration. If 1E > 0, then acceptance is probabilistic. Kirkpatrick
et al. (1983) use the probability P(1E) = exp(−1E/K BT ) where T is analogous to temperature
in controlling the probability of a randomly selected move and the constant K B is analogous to
Boltzmann’s constant. By repeating this step many times, the model evolves with the variation of
parameters simulating the thermal motion of atoms held at a temperature T . The simulated annealing
process consists of “melting” the system at a high T , then progressively lowering T until the system
reaches an equilibrium state (it “freezes”). At each T , the simulation is iterated until a steady state
is reached before moving to the next temperature level. More detailed explanations of this method
can be found in Kirkpatrick et al. (1983) and Aarts & Korst (1989).

Global optimization using stochastic methods is a rapidly developing field of science. However,
current applications to seismic traveltime inversion problems have been limited due to computational
expense. Genetic algorithms have been used in the 1-D inversion of marine refraction waveforms
(Sambridge & Drijkoningen, 1992; Drijkoningen & White, 1995) and the 2-D inversion of refrac-
tion traveltimes (Boschetti et al., 1996). The latter paper inverts for 45 model parameters. While this
number of parameters is insufficient to adequately parameterize many seismic datasets, it is possi-
ble to use such a coarse model as a starting point for subsequent refinement using local optimization
techniques. The idea behind this two-stage inversion is that the globally optimized coarse model will
be near enough the global minimum to allow the local method to locate the global solution. Boschetti
et al. (1996) use genetic algorithms in this context. Simulated annealing has been used by Pullam-
manappallil & Louie (1993) in the inversion of reflection traveltimes for 2-D velocity structure and
interface geometry. Asad et al. (1999) use simulated annealing to produce a coarse 3-D model
from local earthquake traveltimes before refining it with the gradient method of Thurber (1983), in
a scheme similar in principle to that of Boschetti et al. (1996). Global optimization techniques can
find global minimum solutions to highly non-linear inverse problems, but the computational expense
when large numbers of parameters are involved currently limits their use in seismic data inversion.

2.4 Analysis of Solution Quality

The process of producing a solution to an inverse problem using the above methods is not complete
until some estimate of solution robustness or quality is made. Simply producing a single solution
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that minimizes an objective function (i.e. best satisfies the data and a priori constraints) without
knowledge of resolution or non-uniqueness is inadequate. Two approaches are commonly used to
assess solution robustness in traveltime tomography. The first approach assumes local linearity to
estimate model covariance and resolution; the second tests resolution by reconstructing a synthetic
model using the same source-receiver geometry as the real experiment.

2.4.1 Resolution and Covariance Matrices

To derive expressions for posterior model covariance and resolution, we will assume that the ob-
jective function is of the form of Eq. 47 with η = 0. The reason this is done is because it is more
straightforward and common to consider covariance and resolution matrices in a Bayesian frame-
work. In other words, the error statistics associated with the a priori model information and data
are well known, thus allowing the two sets of information to be objectively combined to produce
a more accurate posterior model distribution. In such circumstances, ε = 1 and Cm represents the
true a priori model covariance. In the following derivation, however, we will retain ε as a variable
to examine its effect on covariance and resolution if it is used as a tuning parameter in the inversion.
For an objective function of the form Eq. 47 with η = 0, the maximum likelihood solution is given
by the m that satisfies Eq. 53 with η = 0, which may be written as:

εC−1
m (m − m0) = −GT C−1

d (g(m)− dobs) (93)

Adding GT C−1
d G(m − m0) to both sides gives:

m − mo = [GT C−1
d G + εC−1

m ]−1GT C−1
d [dobs − g(m)+ G(m − mo)] (94)

which is an implicit equation for m. Following Tarantola (1987), let mtrue represent the true model,
which is unknown. The observed data are related to mtrue by:

dobs = g(mtrue)+ ζζζ (95)

where ζζζ represents observational and model representation errors. The resolution operator r defines
the relationship between the calculated solution m and the true solution:

m = r(mtrue) (96)

If r is linear, then m = r(m0)+ R(mtrue − m0), where R = ∂r/∂m and m0 = r(m0) so that:

m − m0 = R(mtrue − m0) (97)

If we assume that ζζζ = {0} in Eq. 95 and let m = mtrue on the RHS of Eq. 94, then Eq. 97 can be
written in the form of Eq. 94 with the resolution matrix R given by:

R = [GT C−1
d G + εC−1

m ]−1GT C−1
d G (98)

The diagonal elements of R range between zero and one. If R = I, then, according to Eq. 97,
m = mtrue and the solution model is perfectly resolved. If R 6= I, then the model parameter esti-
mates represent weighted averages of the true model parameters.

The matrix Cm describes a priori model covariance, with the square root of the diagonal entries
indicating the uncertainty associated with the initial model parameter values. The constraints sup-
plied by the data will result in changes to these uncertainties. The a posteriori covariance matrix CM
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describes the error in the solution parameters and is related to the resolution matrix by (Tarantola,
1987):

R = I − CMC−1
m (99)

Substituting Eq. 98 for R and solving for CM gives:

CM = ε[GT C−1
d G + εC−1

m ]−1 (100)

The diagonal elements of CM indicate the posterior uncertainty associated with each model param-
eter. The Fréchet matrix G in Equations 98 and 100 is calculated at the solution point. Off-diagonal
elements of the posterior covariance matrix are more conveniently interpreted in terms of correla-
tions (Tarantola, 1987):

ρi j = C i j
M

(C i i
M)

1
2 (C j j

M )
1
2

(101)

where −1 ≤ ρi j ≤ 1 and i, j = 1, . . . ,M . A strong correlation between uncertainties means that
the two parameters have not been independently resolved by the dataset.

If ε is treated as a damping factor in the inversion (i.e. its value is varied to tune the solution),
then Cm no longer truly represents the a priori model covariance. In this case, the resolution and
posterior covariance will have a dependence on the value chosen for ε. From the above definition of
R (Eq. 98), as ε → 0, then R → I and the solution approaches perfect resolution. As ε → ∞, then
R → 0 and the model is not resolved by the data at all. If we rearrange Eq. 100 as:

C−1
M =

GT C−1
d G

ε
+ C−1

m (102)

we see that as ε → 0, the a priori covariance becomes increasingly irrelevant to the value of the
posterior covariance, whereas when ε → ∞, CM → Cm . From a Bayesian viewpoint, having
ε → 0 means that there is no a priori model information and the information contained in the data
is totally responsible for the state of the posterior model information. In contrast, ε → ∞ means
that there are no errors associated with the a prior model information, in which case the data are
irrelevant. These two end member states are not possible in practice, and reflect the fact that the
inclusion of a damping parameter is not consistent with a Bayesian paradigm. In short, the use of
ε as a damping parameter to tune the solution makes the absolute values of resolution and posterior
covariance rather meaningless. However, their relative values will still be useful indicators of the
effect the data have had in constraining the solution model. For example, it is reasonable to interpret
parameters associated with diagonal elements of the resolution matrix that are large as meaning that
the data have been more effective in constraining them than those parameters with smaller resolution
values.

The principal difficulties with R and CM are that (i) they are derived from linear theory and
are less meaningful as the non-linearity of the problem increases (Snieder, 1998, has considered
perturbation theory as a means of extending these concepts to a non-linear regime), (ii) errors in
model representation are not taken into account, and (iii) they require the inversion of an M × M
matrix, GT C−1

d G+εC−1
m , which may be impractical for large numbers of parameters. Nevertheless,

they have been used in many teleseismic traveltime inversions (e.g. Aki et al., 1977; Benz et al.,
1992; Steck et al., 1998), wide-angle traveltime inversions (e.g. White, 1989; Hole, 1992; Zelt &
Smith, 1992; Riahi & Lund, 1994; Wang & Braile, 1996) and local earthquake tomography studies
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(e.g. Eberhart-Phillips, 1990; Eberhart-Phillips & Michael, 1993; Abers, 1994; Protti et al., 1996;
Graeber & Asch, 1999). McCaughey & Singh (1997) and Zhang & Toksöz (1998) also consider
correlations (Eq. 101) as part of their interpretation of solution quality.
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Figure 28: Schematic diagram showing a checkerboard test model for a local earthquake tomography sce-
nario. Sources (black dots with white edges) and receivers (grey-filled triangles) are positioned identically
to the real experiment and rays are traced through the synthetic structure. The synthetic traveltimes are then
inverted, starting from some given initial model, in an attempt to recover the checkerboard pattern.

2.4.2 Synthetic Tests

Parameterizations that describe continuous velocity fields often opt for resolution tests that attempt
to reconstruct a synthetic model using the same source-receiver geometry as the real experiment.
The rationale behind this approach is that if a known structure with similar length scales to the
solution model can be recovered using the same (for linearized solutions) or similar (for iterative
non-linear solutions) ray paths, then the solution model should be reliable. The quality criterion is
the similarity between the recovered model and the synthetic model. The so-called “checkerboard
test” (Fig. 28), in which the synthetic model is divided into alternating regions of high and low
velocity with a length scale equal (or greater) to the smallest wavelength structure recovered in the
solution model, is a common test model. The initial model used for the test is the same as that
used for the real inversion. Regions in which the checkerboard pattern is recovered clearly are those
regions in which structure in the solution model can be considered to be well resolved. Lévêque et al.
(1993) demonstrate that such an approach is not necessarily as reliable as it might seem. It is possible
for the small scale structure of the checkerboard test to be well retrieved while larger-scale structure
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is poorly retrieved. Furthermore, if the solution takes into account the non-linearity of the inverse
problem, then the ray-path coverage will have a dependence on the velocity distribution. Thus,
while a checkerboard reconstruction can account for the non-linearity of the traveltime dependence
on the checkerboard structure, it cannot account for the non-linearity of the traveltime dependence
on the true structure. Thus, rather than iteratively invert for the checkerboard structure, it may be
better to simply use the ray-path geometry from the model produced by the inversion of the real
data in a linear inversion. Alternatively, one could test a number of different synthetic models to
investigate the effect of different structures (and hence ray geometries) on the resolution; this would
be advisable especially if the solution model is complex.

Teleseismic traveltime tomography studies that have used checkerboard resolution tests include
those by Glahn & Granet (1993), Achauer (1994) and Seber et al. (1996). Ritsema et al. (1998)
used several different synthetic models rather than checkerboards and analyzed the accuracy of their
recovery. This kind of analysis is not commonly used in wide-angle studies, although recently, Zelt
(1998), Zelt et al. (1999, 2001) and Day et al. (2001) implemented checkerboard tests for analyzing
the resolution of velocity structure (Zelt et al., 1999, also use it for interface structure) derived from
wide-angle traveltime inversion. In local earthquake tomography, checkerboard tests have been
implemented by Chiarabba et al. (1997) and Graeber & Asch (1999); Walck & Clayton (1987) and
Walck (1988) used synthetic reconstructions with anomalies positioned in key localities (i.e. regions
of high geological interest).

3 Applications to Observed Data

In this section, we review some applications of traveltime inversion methods to real data. Our aim is
to give an idea of how the methods described above can be put together to solve a 2-D or 3-D inverse
problem in practice. With this is mind, we tend to focus our attention on several selected case studies,
rather than just briefly describe numerous examples. The choice of which methods to use is usually
influenced by the class of data (reflection, wide-angle, local earthquake, teleseismic) that is available
(see Section 1.3). For example, normal incidence reflection data, as its name suggests, predominantly
contains reflected phases, so interfaces must be included in the parameterization. Teleseismic data,
on the other hand, do not contain reflected phases, so structure in this case is generally represented
by a continuous velocity variation. Thus, the different data types often resolve different aspects of
structure, a feature that will also be discussed in some detail below.

3.1 Reflection Tomography

A number of 2-D schemes for the tomographic interpretation of reflection data have been presented
over the years but not many of them have been extensively applied to real data (at least, there are
not many examples in the literature). Bishop et al. (1985) presented one of the first methods for
the simultaneous determination of velocity and depth in laterally varying media. In their method,
the subsurface is represented by sub-horizontal layers separated by interfaces with a cubic spline
parameterization. Within each layer, velocity is permitted to vary laterally and vertically by means
of a grid of constant velocity gradient boxes. Within each box, a ray path segment will have the
geometry of a circular arc, and therefore has an analytic expression. A shooting method of ray
tracing determines source-receiver ray paths and traveltimes, and a Gauss-Newton method is used
to iteratively minimize an objective function consisting of a data residual term and a model length
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term (i.e. damping but no smoothing). The system of linear equations is solved using a Gauss-
Seidel algorithm with successive over-relaxation. The method was applied to Common Depth Point
(CDP) data from a pair of intersecting profiles in a region with permafrost. Significant shallow
velocity variations due to the presence of the permafrost were imaged and the depth estimates to
the interfaces at the intersection of the profiles agreed significantly better that those determined by
conventional seismic processing. The maximum depth to which structure was imaged was ∼5.5 km.

It has been recognized by a number of authors that reflection traveltimes poorly resolve vertical
variations of velocity within a layer (Farra & Madariaga, 1988; Kosloff et al., 1996). In the method
of Farra & Madariaga (1988), a layered parameterization is adopted in which interfaces and lateral
velocity variations within layers are described by cubic B-splines. Velocity within a layer is verti-
cally invariant. Source-receiver ray paths and traveltimes are found with a shooting method of ray
tracing that uses elements of paraxial ray theory to iteratively correct the ray take-off angle. The ob-
jective function they minimize consists of a data residual term and a penalty function which restricts
the model behavior in accordance with the available a priori model information. A DLS approach is
applied to iteratively minimize the objective function, and SVD is used to solve the system of linear
equations at each step. They also make use of a layer-stripping approach. In this scheme, reflection
traveltimes from the top interface are initially used to constrain the top layer only. Once these data
are satisfied, traveltimes for the second interface are also introduced and together they are used to
constrain the first two layers. The scheme continues in this manner through each successive layer.
Farra & Madariaga (1988) applied their scheme to a synthetic model that included a layer pinchout,
and showed that it can be reconstructed using a model with 1-D structure as a starting model. Cou-
pled oscillations of interfaces and velocity variations were found to occur in regions where the data
were unable to resolve the trade-off between interface depth variation and lateral velocity variation
within a layer. They then applied the scheme to data from the Paris Basin. The maximum offset
between source and receiver was 1.68 km, and structure was imaged to a depth of 2 km. A total
of 99 parameters (57 velocity, 42 interface) were used to describe the model. The initial model
was described by four flat constant velocity layers. In the solution model, the interfaces remained
nearly horizontal, but the layer velocities had significant lateral variations. The recovered interface
geometries are consistent with the known structure of the region.

Imaging of 3-D structure by reflection tomography is not very common. Chiu et al. (1986)
developed and applied a scheme to vibroseis data collected on Vancouver Island. Their method
assumes that subsurface structure can be adequately represented by constant velocity layers that
separate interfaces described by nth-order polynomial surfaces. A ray bending scheme is used to
solve the forward problem, and an iterative damped least squares approach is used to solve the inverse
problem. As in the above methods the linear system of equations are solved with SVD. However, in
their application to crooked line vibroseis data collected as part of PROJECT LITHOPROBE, only
110 traveltime picks were available to constrain the structure of a two-interface model, consisting
of a decollement zone and an under-thrusting oceanic crust. They found that planar interfaces were
adequate to satisfy the data, making this a rather limited example of 3-D tomography.

In general, coincident reflection traveltime data alone do not seem to be sufficient to resolve both
interface depth variations and arbitrary velocity variations within a layer, despite the relatively dense
ray coverage associated with most reflection experiments. Williamson (1990) confirms this limita-
tion by using a multi-stage inversion scheme in which progressively shorter length scales are per-
mitted in both velocity and interface geometry as the iterative process proceeds. Despite satisfying
the data and finding that longer wavelength components may be adequately recovered, Williamson
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(1990) also found that shorter wavelength velocity-depth trade-offs cannot be resolved without fur-
ther information. This may take the form of a priori information to help constrain the problem,
and/or simplifying assumptions made about the structure (e.g. constant velocity layers, layers in
which velocity has no vertical variation). While this may be sufficient at shallow depths, a basic
drawback of reflection tomography is that the resolving power of the data decreases with depth due
to the geometry of the experiment. Thus, it is usually limited to near-surface applications.

3.2 Wide-Angle Tomography

Unlike coincident reflection tomography, inversion of wide-angle traveltimes for 2-D or 3-D crustal
structure has been applied to many datasets from around the world. For example, numerous studies
have been carried out in Canada (e,g, Hole et al., 1992; Kanasewich et al., 1994; Clowes et al., 1995;
Zelt & White, 1995; Morozov et al., 1998; Zelt et al., 2001), the U.S. (e.g. Lutter & Nowack, 1990;
Jarchow et al., 1994; Zhu & Ebel, 1994; Parsons et al., 1996; Wang & Braile, 1996; Lizarralde &
Holbrook, 1997), Europe (e.g. Riahi & Lund, 1994; Staples et al., 1997; Darbyshire et al., 1998;
Louden & Fan, 1998; Mjelde et al., 1998; Korenaga et al., 2000; Morgan et al., 2000) and in oceanic
settings (e.g. Hildebrand et al., 1989; Wiggins et al., 1996; Kodaira et al., 1998; Recq et al., 1998;
Day et al., 2001; Grevemeyer et al., 2001). Experiments involving marine air-gun sources and land
based receivers or OBSs (Ocean Bottom Seismometers) are quite common since they can be cou-
pled with coincident reflection studies. As discussed in Section 1.3, wide-angle data contain both
refraction and wide-angle reflection phases. The traveltimes of rays that refract tend to constrain ve-
locity variations better than wide-angle reflections, which in turn are better at constraining interface
depth. Thus, with adequate data coverage, the simultaneous inversion of refraction and reflection
traveltimes can result in a well constrained solution model that includes both variations in interface
depth and layer velocity.

Wide-angle experiments are usually performed in 2-D (i.e. recorded by an in-line array of sources
and receivers), although recent studies (Zelt & Barton, 1998; Zelt et al., 1999; Day et al., 2001;
Rawlinson et al., 2001b; Zelt et al., 2001) indicate that 3-D wide-angle surveys are becoming more
frequent. In 2-D experiments, data coverage is often quite dense, and tomographic-style interpre-
tation techniques are usually designed to allow both interface structure and layer velocities to be
constrained by the data. One of the most frequently used methods for the tomographic style inver-
sion of 2-D wide-angle traveltimes was developed by Zelt & Smith (1992). In their method, the
model is parameterized in terms of a layered network of irregular blocks (see Section 2.1), which
allows velocity to vary both laterally and vertically within a layer. Layer pinchouts and isolated
bodies can also be included by reducing layer thickness to zero. The advantage of this approach to
structural representation is that velocity and interface node distribution can be adapted to suit the
resolving power of the dataset. Refractions, reflections and head waves are traced through the model
by numerically solving the initial value problem formulated in terms of a pair of first order ordinary
differential equations (Eq. 19 and Eq. 20). Linear interpolation between rays that bracket a given re-
ceiver is used to estimate the corresponding traveltime and Fréchet derivatives. The inverse problem
is solved using an iterative DLS method (damping but no smoothing), with rays re-traced after each
iteration. LU decomposition is used to solve the system of linear equations.

A number of authors have adopted the approach of Zelt & Smith (1992) to invert wide-angle
data, including Kanasewich et al. (1994), Riahi & Juhlin (1994), Staples et al. (1997), Ye et al.
(1997), Darbyshire et al. (1998), Kodaira et al. (1998), Morozov et al. (1998) and Navin et al.
(1998). Darbyshire et al. (1998) applied it to data from the ICEMELT refraction line to image crustal
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Figure 29: Crustal model obtained from the ICEMELT refraction line in Iceland using the wide-angle
traveltime inversion method of Zelt & Smith (1992). Solid lines on the Moho represent those parts of the
interface constrained by the data. [From Darbyshire et al. (1998). Copyright 1998 Royal Astronomical
Society. Reproduced by permission of Blackwell Science Ltd.]

structure above the Iceland mantle plume. In their study, up to 60 land-based recorders were used
to record seismic energy from six explosive shots along a 310 km line traversing Iceland from north
to south. A total of 181 traveltime picks were used to constrain the crustal model, which included
both interfaces and velocity variations within a layer. The inversion solution produced a normalized
χ2 misfit value of 1.31. Fig. 29 shows the ICEMELT crustal model produced by the inversion of
refraction and wide-angle reflection traveltimes. The upper crust is characterized by high vertical
velocity gradients (>0.2 s−1) and considerable lateral heterogeneity. By contrast, the lower crust is
less complex and features much smaller vertical velocity gradients (<0.03 s−1). The crust thickens
to nearly 40 km depth above the mantle plume, a feature interpreted to be caused by increased melt
generation due to elevated mantle temperatures and active convection in the plume core. Two of the
methods used by Darbyshire et al. (1998) to analyze the robustness of their solution model are ray
coverage and estimates of resolution from linear theory. Fig. 30a shows all the ray paths used to
constrain the ICEMELT model, and Fig. 30b shows a plot of the diagonal elements of the resolution
matrix; values ≥ 0.5 are considered well resolved. Several regions in the upper and lower crust are
poorly resolved while the mid crust is generally well resolved.

Darbyshire et al. (1998) did not use the inversion routine of Zelt & Smith (1992) in a completely
automated fashion. Manual intervention (i.e. the user empirically tunes one or more parameter values
instead of the inversion routine) was used to refine some of the upper crustal structure. In 2-D
wide-angle modeling, it is sometimes necessary to intervene during the inversion process to prevent
unrealistic model perturbations caused, for example, by insufficient data constraints or extreme non-
linearity. In some studies (e.g. Iwasaki et al., 1990; Gürbüz & Evans, 1991; Grad et al., 1997; Iwasaki
et al., 1998; Recq et al., 1998), the inversion is performed completely manually in a process called
“forward modeling” (i.e. one tries to satisfy the data by adjusting model parameter values using trial
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(a)

(b)

Figure 30: (a) All ray paths used to constrain the model in Fig. 29 and (b) diagonal elements of the reso-
lution matrix obtained from linear theory. Regions that are considered well constrained have a value ≥0.5.
[From Darbyshire et al. (1998). Copyright 1998 Royal Astronomical Society. Reproduced by permission
of Blackwell Science Ltd.]

and error). The advantage of this approach is that the user has complete control over the state of the
model, and that hypothetical structures may be tested against the data. On the other hand, if there
are a large number of model parameters, repeated forward modeling becomes very time consuming.

Wide-angle seismic studies that attempt to constrain structure in 3-D usually do not consider both
interface structure and layer velocity variations. For example, Hole (1992), Hammer et al. (1994),
Toomey et al. (1994), Zelt & Barton (1998), Day et al. (2001) and Zelt et al. (2001) inverted first
arrivals for continuously varying velocity, and Hole et al. (1992) and Riahi & Juhlin (1994) inverted
refraction and reflection traveltimes respectively for interface structure. Studies that have attempted
to invert for both parameter types include Zelt et al. (1996), who use a layer stripping approach,
and Zelt (1999), who use floating reflectors coupled with sharp velocity gradients to simulate dis-
continuities. Most of the above 3-D wide-angle studies use methods to solve the forward problem
of traveltime and ray path determination based on the finite difference approach of Vidale (1990).
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Figure 31: Three cross sections taken approximately perpendicular to the strike of the subducting slab of a
synthetic subduction zone. Rawlinson (2000) showed that it was possible to reconstruct the underplated low
velocity lens (grey) from an initial model with only 2-D structure using wide-angle refraction and reflection
traveltimes. Land based receivers and marine sources were used in the synthetic test, which demonstrated
the flexibility of the method developed by Rawlinson et al. (2001a). From top to bottom, the ocean layer is
shown in light blue, the sediment layer in yellow, the upper crustal layer in green, the lower crustal layer in
amber, the subducting ocean crust in dark blue, and the lithospheric mantle in red.

In fact, it is probably true to say that this is the only branch of seismic tomography in which this
method predominates.

A method for the inversion of 3-D wide-angle seismic traveltimes that uses conventional ray
tracing, rather than grid-based eikonal methods, was presented by Rawlinson et al. (2001a). In this
scheme, crustal structure is represented by layers separated by smoothly varying interfaces with a
cubic B-spline parameterization. Within each layer, the velocity varies linearly with depth. This
restriction on the layer velocity field means that rays can be traced analytically within a layer, thus
allowing rapid solution of the initial value problem. The two point problem is solved using a shooting
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Figure 32: Traveltime inversion trade-off curves for various values of the damping factor ε after four
iterations of the inversion performed by Rawlinson et al. (2001b) for the crustal structure of Tasmania. The
ordinate axis plots the percentage improvement in χ 2 from the starting model, while the abscissa plots the
percentage perturbation of the solution model from the initial model; this is plotted for each parameter type:
interface node depth (solid line), layer velocity (dashed line) and layer velocity gradient (dotted line).

method which uses a Newton-type method to accurately locate the required two-point paths. A
subspace inversion method is used to iteratively solve the inverse problem of minimizing an objective
function consisting of a data residual term and a damping term. A smoothing term was not included
because the smooth nature of the cubic B-spline parameterization facilitated implicit smoothing by
varying the node density as required. An obvious drawback of the method is that the assumption of a
crustal layer with laterally invariant velocity may not be applicable in some circumstances. However,
if such a model is able to satisfy a given dataset, then it may be difficult to argue for a more complex
model. Novel features of the method are that layers may pinch out and the horizontal distribution
of the nodes may be varied to suite the resolving power of the dataset. Quite complex structure
may therefore be represented. An example is provided by Rawlinson (2000) where a relatively
complex synthetic subduction zone (see Fig. 31), which includes an underplated low velocity lens,
was successfully reconstructed from a starting model with only 2-D structure.

Rawlinson et al. (2001b) applied the method of Rawlinson et al. (2001a) to wide-angle data
collected as part of the TASGO project. In this study, an array of 44 land-based recorders was
distributed throughout the island state of Tasmania, SE Australia, to record seismic energy from
an encircling array of marine normal incidence reflection shot lines. The size of the dataset was
reduced from its maximum potential by a number of recorder failures, low signal to noise ratios
at several sites and the limited range of the airguns (usually <200 km). A total of 2590 Pn and
Pm P traveltimes from 13 shot lines to 21 receivers were used to constrain a two layer model of
Tasmania. This consisted of the crust and the upper mantle separated by a Moho of variable depth.
Lateral variations of velocity within the crust were not included because Pn and Pm P arrivals poorly
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Figure 33: χ2 misfit versus iteration number for the inversion (using ε = 1.0) of Pn and Pm P traveltimes
done by Rawlinson et al. (2001b) for the Moho structure of Tasmania.

constrain such features, and the coverage of crustal arrivals was rather poor.
The Moho is represented by a rectangular grid of 600 nodes spaced 20 km apart. The total

number of unknowns in the inverse problem is therefore 604 - only two parameters are required to
describe the linear velocity gradients in each of the crust and mantle. A simple 1-D model with the
Moho at 30 km depth was chosen as a starting model. The damping factor ε, that weights the relative
importance of the data and the a prior model information, was selected by inspection of a trade-off
curve (Fig. 32). Since there are three parameter classes in the inverse problem (interface node depth,
layer velocity and layer velocity gradient), a trade-off curve is shown for each. From these diagrams,
a value of ε = 1 was taken. Note that ε = 2 generates a near-identical model. A 14-D subspace
inversion scheme was applied to minimize the objective function; after four iterations, the RMS
traveltime fit was reduced to 176 ms from an initial value of 371 ms. The corresponding normalized
χ2 misfit versus iteration is shown in Fig. 33.

The Moho structure of the solution model is shown in Fig. 34 along with the diagonal elements
of the resolution matrix. Outside the horizontal bounds of the source-receiver array, much of the
Moho has not been perturbed from its initial value of 30 km due to a lack of ray path coverage.
This is supported by the resolution map, which also indicates poor data coverage in central and
NE Tasmania (Fig. 34b). A striking feature of the solution model is a major change in crustal
thickness beneath the Arthur Lineament metamorphic belt in NW Tasmania (Fig. 34a). This has been
interpreted to represent the NW limit of deformation in Tasmania during the Mid-Late Cambrian
Tyennan Orogeny.

3-D wide-angle tomographic problems often involve large datasets and a large number of un-
knowns. For example, in their inversion for continuously varying velocity structure, Zelt & Barton
(1998) use 53,479 first-arrival picks and separately invert for 315,000 unknowns using a backpro-
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Figure 34: (a) Moho depth and (b) diagonal elements of the resolution matrix of the solution model for
Tasmania produced from the TASGO wide-angle dataset. In both diagrams, stars indicate recorders and
small triangles indicate shot points from which data were picked. Contiguous triangles form shot lines
except where data gaps occur (e.g. lines 4 and 15). Thick dashed lines denote tectonic element boundaries:
Arthur Lineament (AL) and Tamar Fracture System (TFS). [From Rawlinson et al. (2001b). Copyright
2001 American Geophysical Union. Reproduced by permission of American Geophysical Union]

jection method and 35,000 unknowns using a regularized least squares method. Studies of a similar
magnitude were recently carried out by Day et al. (2001) and Zelt et al. (2001).

In summary, wide-angle tomography has proven to be a useful tool for revealing information
about crustal structure. Its strength is its ability to resolve the trade-off between interface depth
and lateral velocity variation within a layer given sufficient data coverage. This is in contrast to
coincident reflection tomography. The main weaknesses of wide-angle tomography are the difficulty
of picking reflection phases, which are always later arrivals, and the presence of extreme lateral
variations in crustal structure, which can cause significant ray-path perturbations, and hence violate
the local linearity assumption upon which iterative inversion methods are based.

3.3 Local Earthquake Tomography

Local earthquake tomography (LET) is a common tool for imaging subsurface structure in seismi-
cally active areas. Studies have been carried out in many different regions including California (Aki
& Lee, 1976; Thurber, 1983; Eberhart-Phillips, 1986; Walck & Clayton, 1987; Walck, 1988; Zhao
& Kanamori, 1992; Eberhart-Phillips & Michael, 1993; Scott et al., 1994), Taiwan (Kao & Rau,
1999), Japan (Nakanishi, 1985; Zhao et al., 1992), South America (Bosch, 1997; Graeber & Asch,
1999) and the Mediterranean (Chiarabba et al., 1997; Luca et al., 1997; Papazachos & Nolet, 1997;
Haslinger et al., 1999). Apart from the source-receiver geometry, one of the distinguishing features
of LET compared to the other types of tomography discussed here, is the need to relocate earthquake
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hypocenters (spatial location and origin time) as part of the image reconstruction. This is because
accurate hypocenter location requires an accurate knowledge of the velocity structure in the region
occupied by the earthquakes and the recorders whose data are used in the location process. Adequate
data are therefore required to resolve the trade-off between variations in structure and variations in
hypocenter locations.

One of the original LET studies was carried out by Aki & Lee (1976). In their method, 3-
D crustal structure is represented by constant slowness blocks. The initial model is completely
homogeneous, and the inversion is linear, so rays consist of straight line paths between sources
and receivers. Slowness perturbations for each block and hypocenter corrections are simultaneously
inverted for using a DLS approach (damping but no smoothing). The method was applied to data
collected at 60 stations in Bear Valley, California, from 32 local earthquakes. The x × y × z block
size was set at 3 × 4 × 5 km3, with a total of 264 blocks used to span a volume of 24 × 44 × 15 km3

which included all receivers and sources. 1218 first-arrival times were inverted for all unknowns.
Estimates of covariance and resolution from linear theory were used to analyze the robustness of the
velocity solution and relocated hypocenters. A feature of the solution model is a narrow low velocity
band oriented along the San Andreas fault zone in the upper 5 km.

The conceptual basis of LET has not really altered since the study of Aki & Lee (1976). However,
some refinements have been made. For example, Thurber (1983) used approximate 3-D ray tracing
(which allows iterative improvement of the solution model) and a continuously varying velocity field
via linear interpolation of a uniform grid of velocity nodes. Eberhart-Phillips (1990) introduced a
pseudo bending scheme to find more accurate two-point paths starting from rays calculated using
the approximate ray tracing method of Thurber (1983). These refinements are common to most im-
plementations of LET in recent times and are encapsulated in the commonly used computer package
SIMULPS12 (Evans et al., 1994).

A relatively recent application of LET was carried out by Graeber & Asch (1999) to image the
subduction zone structure beneath the southern central Andes. In this study, local earthquakes were
recorded by a network of 31 recorders deployed in northern Chile between the Coastal Cordillera and
the Western Cordillera. A total of 16,488 P-arrivals from 764 events were inverted for P-velocity
structure and hypocenter location using the SIMULPS12 algorithm. The initial model required by
the inversion scheme was based upon a model produced by a separate inversion of the data for 1-
D structure and hypocenter location only. The optimum damping factor for the DLS solution was
obtained by visual inspection of the data variance vs. solution variance trade-off curve approximated
by performing several single-iteration inversions with a range of damping values. Station delay terms
were also included in the inversion as unknowns to help offset the effects of near surface structure.
The solution model was obtained after 12 iterations of the DLS method, which reduced the data
variance by 63% with respect to the optimum 1-D model. Fig. 35 shows a series of vertical slices
through the resulting P-wave velocity model, which is described by a total of 2496 nodes. Relocated
hypocenters are also shown in this figure. Only those parts of the velocity model that are relatively
well resolved according to the diagonal elements of the resolution matrix are shown in Fig. 35. The
solution model clearly suggests the presence of a subduction zone involving the easterly subduction
of oceanic crust beneath continental crust, with the geometry of the subducted plate also indicated
by the relocated hypocenters.

Apart from calculating the resolution matrix to investigate solution robustness, Graeber & Asch
(1999) also performed several synthetic resolution tests, including a checkerboard test. The results
of this test at two cross-sections are shown in Fig. 36. As expected, the reconstruction below the
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Figure 35: Cross-sections through a 3-D velocity model of the southern central Andes produced by in-
version of local earthquake arrival times. Absolute velocities shown are a sum of initial velocities and
calculated perturbations from an iterative non-linear inversion technique. Stations, recent volcanos and
hypocenters adjacent to the sections are denoted by squares, triangles and open circles respectively. Velocity
grid nodes are denoted by crosses. [From Graeber & Asch (1999). Copyright 1999 American Geophysical
Union. Reproduced by permission of American Geophysical Union]

hypocenters is generally poor, but in the region between the hypocenters and receivers the recon-
struction is generally good.

In addition to using first-arrival P-wave data, it is also quite common in LET to utilize S-wave
data. A particularly useful property to map is the P-to-S velocity ratio (Vp/Vs). For example,
regions with high levels of hydration are likely to have elevated Vp/Vs since the shear modulus will
be reduced compared to the bulk modulus. One way of determining Vp/Vs is to separately invert for
P and S velocity structure and then compare the results (e.g. Eberhart-Phillips, 1990). One problem
with this is that the S-wave dataset is often smaller and of poorer quality than the P-wave dataset,
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Figure 36: Checkerboard resolution test for the model shown in Fig. 35. (a) Synthetic checkerboard model,
and (b) recovered checkerboard at two different latitudes. Symbols are defined as in Fig. 35. [From Graeber
& Asch (1999). Copyright 1999 American Geophysical Union. Reproduced by permission of American
Geophysical Union]

making detailed comparison of the two models difficult. An alternative is to directly invert the
difference in P and S arrival times Ts − Tp for Vp/Vs . Walck (1988) used this approach to construct
a model of the 3-D variation in Vp/Vs in the Coso Region, California using backprojection. Graeber
& Asch (1999) also construct an image of Vp/Vs by considering 8238 Ts − Tp arrival time residuals.
Their inversion for Vp/Vs was performed simultaneously with the inversion for Vp, hypocenter
location and station delays. They found elevated Vp/Vs ratios in the zone above the subducting
oceanic crust, suggesting the release of aqueous fluids from the oceanic crust into the overlying
material.

Although restricted to regions of active seismicity, LET is a useful tool for mapping subsurface
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structure at a variety of scales. Shallow earthquakes can be used to image the upper few kilometers
of the crust (e.g. Walck, 1988; Chiarabba et al., 1997) while deep earthquakes from regions like sub-
duction zones can be used to image lithospheric scale structure (e.g. Graeber & Asch, 1999). While
relocation of earthquake hypocenters is a necessary part of the reconstruction of the velocity field
from the data, their distribution provides valuable additional information on subsurface structure.
Inclusion of S-wave data in the form of inversion of Ts − Tp for Vp/Vs is not commonly considered
in the other forms of tomography described in this paper, further distinguishing LET as a method
worth considering provided local earthquake sources are available.

3.4 Teleseismic Tomography

Like wide-angle tomography and local earthquake tomography, teleseismic tomography has been
used extensively to map the structure of the crust and lithosphere. Studies are often carried out
on a variety of scales ranging from 10s of km (e.g. Rawlinson & Houseman, 1998; Steck et al.,
1998) to 100s of km (e.g. Humphreys & Clayton, 1990; Dorbath & Paul, 1996). In the latter type of
study, mantle beneath the lithosphere is also imaged. Usually, the horizontal extent of the receiver
array and the source distribution determines the depth to which features may be resolved. Most
teleseismic studies are carried out in 3-D (e.g. Aki et al., 1977; Oncescu et al., 1984; Humphreys &
Clayton, 1990; Benz et al., 1992; Glahn & Granet, 1993; Achauer, 1994; Seber et al., 1996; Saltzer
& Humphreys, 1997; Ritsema et al., 1998; Steck et al., 1998; Graeber et al., 2002), with relatively
few 2-D studies (e.g. Evans, 1982; McQueen & Lambeck, 1996) probably because of the difficulty
in lining up an array of recorders on roughly the same great circle as a set of teleseismic earthquakes
with good angular coverage.

The data utilized by teleseismic tomography studies are the relative traveltime residuals of identi-
fiable phases (usually the direct P-phase). These are obtained by calculating the difference between
predicted and observed traveltimes and subtracting the mean for each source-receiver set. Predicted
traveltimes are usually obtained by ray tracing through a 1-D reference model of the Earth, such
as IASP91 (Kennett & Engdahl, 1991). Removing the mean from each set of traveltime residuals
means that they are relatively insensitive to errors in hypocenter location. However, they also be-
come insensitive to vertical variations in structure. One consequence of this is that the horizontally
averaged velocity structure of the solution model will simply reflect the horizontally averaged veloc-
ity structure of the initial model. Interpretation of the resulting models must therefore be done with
care (see Lévêque & Masson, 1999, for more details).

One of the first papers to describe a method of seismic tomography was that of Aki et al. (1977),
who developed a scheme in the context of application to teleseismic data. In their method, the
lithosphere is represented by layers composed of constant velocity blocks. Incoming wavefronts
from teleseismic events are assumed to be locally planar beneath the model region and the initial
model has constant velocity layers. Thus, the task of ray tracing from the incident wavefront to the
receiver array is straightforward. Linear inversion is performed using either a stochastic inverse or
a generalized inverse approach. The stochastic solution is essentially a DLS solution with ε = 1,
while the generalized inverse solution has ε = 0, but identifies a minimum length solution using
SVD. The method was applied to data collected by the Norwegian Seismic Array (Norsar) to image
lithospheric structure in southeastern Norway. A total of 1496 traveltime residuals from 93 events
recorded at 22 sites (each consisting of six seismometers) were inverted for the slowness perturbation
of 405 constant velocity blocks contained in a five-layer model of the lithosphere (9 × 9 blocks per
layer). The model region has a horizontal coverage of 180 × 180 km and extends to a depth of 126
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Figure 37: Horizontal sections taken through the 3-D solution model of western Victoria obtained by
inversion of teleseismic traveltime residuals. Receivers are denoted by green diamonds and the dashed
line on the 45 km depth slice indicates the approximate location of the Moyston Fault Zone. [From Graeber
et al. (2002). Copyright 2002 Royal Astronomical Society. Reproduced by permission of Blackwell Science
Ltd.]

km. Estimates of a posteriori model covariance and resolution obtained from linear theory were
used to analyze the solution models. The encouraging results produced by this study undoubtedly
catalyzed the numerous seismic tomography studies of the crust and lithosphere that soon followed.

A recent example of teleseismic tomography, which reflects the way in which the method has
evolved since the paper of Aki et al. (1977), is that of Graeber et al. (2002). In this study, an array
of 40 short period recorders were distributed throughout an area of about 270×150 km2 in western
Victoria, SE Australia. The tomographic scheme of VanDecar (1991) was used to invert 4067 tele-
seismic traveltime residuals for the velocity structure of the crust and upper mantle to a depth of 405
km. In this scheme, velocity structure is represented by a spherical grid of slowness nodes (27,898 of
them in this case) interpolated by splines under tension. A shooting method of ray-tracing based on
the method of Creager & Jordan (1984) finds source-receiver traveltimes and ray paths through the
3-D model. To solve the inverse problem, a gradient-based iterative non-linear scheme is employed.
The objective function consists of a data misfit term and a number of regularization terms includ-
ing damping, flattening (first-derivative smoothing) and smoothing (second-derivative smoothing).
In addition, station and hypocenter corrections are included as unknowns. Station corrections help
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Figure 38: Synthetic checkerboard resolution test for the model shown in Fig. 37. (a) Original checker-
board model, and (b) reconstructed checkerboard. [From Graeber et al. (2002). Copyright 2002 Royal
Astronomical Society. Reproduced by permission of Blackwell Science Ltd.]

reduce the mapping of near surface effects into deeper structure. Hypocenter adjustments are usu-
ally kept small because they are poorly constrained. The minimization of the objective function is
achieved by assuming local linearization which allows the objective function to be written as a matrix
equation (cf. Eq. 63). This matrix equation is then solved using a conjugate gradient method. The
linear inversion and 3-D ray-tracing are performed iteratively to account for the non-linear nature of
the inverse problem.

The solution model produced by Graeber et al. (2002) using this scheme is shown in Fig. 37 as a
series of horizontal slices. One of the prominent features of the model is a relatively slow anomaly in
the east which decreases in amplitude with depth. Graeber et al. (2002) interpret this feature, which
lies beneath the Newer Volcanic Province, as a thermal anomaly related to Pliocene and Pleistocene
hotspot-fueled volcanism. Synthetic tests were used to examine the robustness of the inversion
solution. Fig. 38 shows the results of a checkerboard resolution test. In this version, alternating
fast and slow anomalies are separated by zones of zero anomaly to permit smearing effects to be
detected more easily (Fig. 38a). The reconstruction (Fig. 38b) recovers the checkerboard pattern
more successfully nearer the surface. The amplitudes of the recovered checkerboard anomalies are
generally less than the synthetic model, which is a typical feature of this type of test. The degraded
structure of the recovered checkerboard is due partly to the source coverage - in this study, few
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earthquakes from the south and west were detected.
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Figure 39: Three models derived from the Musgrave Line teleseismic dataset using different methods. (a)
Crustal structure obtained by Lambeck & Burgess (1992) using forward modeling, (b) contours of velocity
for the model obtained by inversion for slowness perturbation by McQueen & Lambeck (1996), and (c)
crustal structure obtained by Rawlinson & Houseman (1998) using inversion for interface geometry. Note
the differences in scale between (a), (b) and (c). [Modified from Rawlinson & Houseman (1998). Copyright
1998 Royal Astronomical Society. Reproduced by permission of Blackwell Science Ltd.]

In most teleseismic tomography studies, traveltime residuals are matched by adjusting velocity
(or slowness) parameters that describe a continuous velocity field; interfaces are rarely included.
There are several reasons for this. First, teleseismic data do not contain obvious signs of an inter-
face, such as the “reflectors” seen in normal-incidence seismic sections, or the later arriving, large
amplitude reflection curves evident in refraction studies. Interfaces may cause mode conversions
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in teleseismic arrivals, but these are not easy to detect, particularly if the analysis relies on single
component data. Second, methods that invert for both interface structure and continuous velocity
variation must be able to address the trade-off between velocity and interface position. In teleseis-
mic tomography, only transmitted rays are available, so the prospect of producing a well resolved
combination of velocity and interface parameters is low. Finally the number and approximate depths
of interfaces needs to be known a priori as there is little information in the data on this aspect. To
some extent, this problem also occurs when a continuous velocity field is assumed, in that it is not
possible to derive an initial model from the data itself. In such circumstances, the starting model
may be obtained from other sources, such as wide-angle studies, or even global 1-D velocity models
such as IASP91 (see Graeber et al., 2002). Surface wave inversion and teleseismic receiver function
results may also be useful in locating approximate interface positions. Since the Earth is character-
ized by both continuous and discontinuous changes in structure, it is reasonable to investigate the
other end member model type (i.e. consisting only of variable interfaces) when inverting teleseismic
traveltime residuals for subsurface structure. This has been done by Davis (1991), Kohler (1997)
and Rawlinson & Houseman (1998).

In the 2-D method of Rawlinson & Houseman (1998), structure is represented by sub-horizontal
constant velocity layers. Interfaces are described by nodes interpolated by cubic splines. The depths
of the nodes are the unknowns in the inversion. Rays are traced from a planar incident wavefront to
the receiver array by means of a shooting method. A conjugate gradient method is used to minimize
an objective function that consists only of a data residual term. The method is iterative, with ray-
tracing applied after each application of the conjugate gradient method to account for the non-linear
nature of the inverse problem. Synthetic tests showed that multiple interfaces may be reconstructed
simultaneously in the presence of noise, and with relatively inaccurate initial models. For example,
if the initial interfaces have an inaccurate average depth, their shape can still be recovered, but the
average depth of the interface will not change. The method was applied to the Musgrave Line dataset
collected in central Australia that traversed portions of the Musgrave Block and the Amadeus Basin.
A three-interface crustal model was used to represent structure, and the data consisted of traveltimes
from only five incoming wavefronts. The initial model was based on a 1-D refraction interpretation
of wide-angle data collected nearby.

The Musgrave Line dataset was previously interpreted by Lambeck & Burgess (1992) and Mc-
Queen & Lambeck (1996) using different methods. Lambeck & Burgess (1992) used forward model-
ing to satisfy the data with structure represented in terms of constant velocity layers with piece-wise
linear boundaries. McQueen & Lambeck (1996) used a SIRT backprojection method to invert the
traveltime residuals for perturbations in slowness on a rectangular grid of constant slowness cells.
Lateral structure was permitted to a depth of over 90 km. Both methods used a 2.5 D approach
(i.e. models are defined in 3-D space but are restricted to 2-D structure), allowing additional out-of-
plane sources to be considered.

Fig. 39 compares all three models for the Musgrave Line that have been derived using different
assumptions about structure and different approaches to satisfy the data. In terms of defining laterally
slow and fast regions, all three models have a reasonable level of agreement. It is interesting to
note that the two end member inversion models both satisfy the data to approximately the same
level (63% misfit reduction for Fig. 39b and 62% misfit reduction for Fig. 39c), suggesting that
inverting for interface structure and inverting for velocity variation are equally valid as far as the
data are concerned. One advantage a tomographic inversion approach has over forward modeling is
the ability to test the robustness of the solution. Fig. 40 shows two synthetic tests used to assess the
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(b)

(a)

Figure 40: Two synthetic tests designed to analyze the robustness of the solution given in Fig. 39c. Ray
diagrams show paths from the five wavefronts through the recovered structure. Dashed lines show the
initial model, dotted lines the true model and solid lines the reconstruction. The synthetic models in (a)
and (b) were chosen to be quite different in order to illustrate the effect of different ray geometries on the
reconstruction.

quality of the solution shown in Fig. 39c. Both structures were chosen arbitrarily, and the tests use the
same wavefront geometry and receiver array as the Musgrave Line experiment. The reconstruction
of all three interfaces is generally quite accurate in both tests, suggesting that most of the significant
structure contained in the solution model (Fig. 39c) is well constrained by the data.

Teleseismic tomography is a useful tool for investigating crust and upper mantle structure. Com-
pared to local earthquake tomography, its main advantages are that it can be used to map structure
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at greater depths, and that it is not restricted to regions of active seismicity. However, the fact that
relative traveltime residuals must be used means that only relative perturbations in lateral structure
can be resolved. In addition, the assumption that the model region is completely responsible for
the teleseismic traveltime residuals will not always be valid. Also, the near-vertical incidence angle
of ray-paths and the sometimes poor azimuthal source coverage may lead to significant smearing
effects that in turn can lead to incorrect interpretations of results (see Keller et al., 2000). On the
other hand, the interface structure shown in Fig. 39c demonstrates one advantage of the near-vertical
transmission of rays: highly complex lateral structure may be resolved. Wide-angle tomography (for
example) would have great difficulty imaging such structural complexity.

4 Future Developments

Traveltime tomography still remains the most popular approach for imaging subsurface structure
on crustal and lithospheric scales. A wide array of schemes and algorithms can be found to tackle
these problems, and there is little doubt that traveltime tomography will continue to play a role in
the imaging of earth structure well into the future. Our aim here is to discuss, and to some degree
speculate on, the possible directions in which seismic traveltime tomography methods may develop,
and whether it will continue to be the predominant interpretation technique for large datasets.

A current limitation of many traveltime tomography techniques is that they only consider first-
arrivals and ignore the potentially vast amount of information contained in later arriving phases.
Exceptions include coincident reflection tomography and wide-angle tomography. In the case of
reflection tomography, the number of phases picked usually corresponds to the number of interfaces
contained in the model. Wide-angle tomography often includes later arriving reflection phases in
a similar fashion. One of the principal difficulties in including traveltime information from later-
arriving phases is that they are often obscured by the wavetrain of earlier arriving phases. This can
make identification difficult or impossible. Another difficulty is that even if coherent later arrivals
can be picked, they need to be related to model structure in order to be useful. For first-arrivals
picked from a seismogram, this is not required because we just need to search for the transmission
paths through the structures that correspond to first arrivals. Of course, this task is not necessarily
straight forward, but the point is that we don’t need to know anything about the ray path a priori. For
wide-angle reflection phases, for example, we do need to know which interface they reflect from. If
a layered parameterization is used, with the number of interfaces defined by the number of reflection
phases identified, then the problem of association may not arise. If the interfaces are defined a priori,
then it may not be easy to relate later arrivals with structure. One approach is to constrain the initial
model using only first-arrivals plus any other phases that can be confidently identified, and then use
the updated model to predict the traveltimes of other phases that weren’t picked but may be evident
in the data. A direct comparison with the observed data may allow additional phases to be picked
with more confidence (Zelt, 1999). Multiples and phase conversions may also be identified in this
manner.

As well as the problems of detection and association of later arrivals described above, yet another
difficulty is that current methods of traveltime and ray path determination used in tomography are
only capable of finding a small subset of all possible arrivals. Obvious examples are the grid-based
methods (Section 2.2.2) and SPR (Section 2.2.3), both of which are limited to first-arrivals. Both
methods can be made to find reflection arrivals but not later arrivals associated with caustics. Tradi-
tional ray tracing methods can find multiple arrivals - for example, by shooting an extremely dense
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spread of rays, or by bending using a large variety of initial paths. However, in even moderately
complex media, these approaches would be very computationally expensive. Recently, significant
effort has been made in developing and implementing schemes for computing multivalued traveltime
maps. One approach, often referred to as wavefront construction, involves the discrete propagation
of a wavefront through a medium by using local ray tracing from each wavefront surface. Rays
are traced for a given time step, with the end points of the rays describing the geometry of the new
wavefront. New rays are introduced by interpolation if diverging rays cause parts of the wavefront
to be poorly sampled. Multiple arrivals can be found using this scheme, including caustics. This
basic idea for locating multiple arrivals has been developed by a number of authors (e.g. Vinje et al.,
1993; Ettrich & Gajewski, 1996; Lucio et al., 1996; Lambaré et al., 1996; Vinje et al., 1996, 1999).
Other schemes for finding multi-valued traveltime fields include Big Ray tracing (Benamou, 1996;
Abgrall, 1999), which is a two-step procedure involving relatively coarse ray tracing followed by so-
lution of the eikonal equation in spatial domains defined by adjacent ray paths, and Dynamic Surface
Extension (Steinhoff et al., 2000), which shares similarities with wavefront construction.

The use of these schemes within a tomographic inversion may allow the traveltimes of more later
arrivals to be utilized, thus resulting in a potentially better constrained and more detailed solution.
With the advent of modern high fidelity broad band digital seismometers, much more information on
the later arriving wavefield is being recorded, and new methodology such as wavefront construction
is required to better exploit this type of data.

Another area in which traveltime tomography may see more development is in the combining of
different datasets in a simultaneous inversion. Usually, tomographic studies constrain structure us-
ing just one type of data (reflection, wide-angle, local earthquake, teleseismic), but this need not be
the case provided more than one overlapping dataset is available. For example, wide-angle or LET
arrays are likely to detect teleseismic arrivals during their deployment, which could be exploited to-
gether with the principal dataset. Studies that combine different datasets have been carried out in the
past. Thurber (1983) and Ankeny et al. (1986) included refraction traveltimes from several explosive
sources in a LET study, Parsons & Zoback (1997) simultaneously inverted local earthquake, explo-
sive source and airgun traveltimes for the crustal structure of the San Francisco Peninsula, and Sato
et al. (1996) simultaneously inverted local earthquake and teleseismic traveltime data to image struc-
ture beneath the northeastern Japan arc. Methods that combine coincident reflection and wide-angle
data in a simultaneous inversion have been developed by Wang & Braile (1996) and McCaughey &
Singh (1997).

An often important component of subsurface velocity structure (especially in regions exhibiting
significant deformation) that is frequently ignored in traveltime tomography studies is anisotropy.
If the effects of anisotropy are severe enough, reconstructions that assume isotropy may produce
erroneous results (Watanabe et al., 1996). The principal reason for ignoring anisotropy is that the
data can usually be satisfied adequately with an isotropic model. Introducing anisotropy effectively
increases the number of unknowns considerably for the same spatial resolution, meaning that the
inverse problem is likely to become under-determined for most realistic datasets. As a consequence,
traveltime tomography studies that have considered anisotropy usually make several assumptions
about structure to reduce the number of unknowns. For example, Hearn (1996) inverted Pn trav-
eltimes for lateral variations in both velocity and anisotropy in the uppermost mantle. The Moho
surface along which the ray paths propagate is assumed to be planar, and is parameterized in terms
of cells. Each cell is associated with three unknowns: slowness and two coefficients of azimuthal
anisotropy. Using multiple traveltime datasets and later arriving phases as suggested above may



4 FUTURE DEVELOPMENTS 75

make anisotropy tomography a more realistic proposition as data coverage will be greatly improved.
The traveltimes of seismic phases constitute just one of the components of the recorded wave-

form. Combining traveltimes with amplitude information or using the shape of the waveform itself
is likely to yield much more information than traveltimes alone. Wang & Pratt (1997) combined
traveltime and amplitude data in reflection tomography. They showed that using both datasets in
an inversion for velocity or interface structure results in more accurate solutions compared to in-
versions that invert only one data type. Neele et al. (1993) combined amplitude and traveltimes
from a teleseismic dataset in a joint inversion for upper mantle structure. Pratt et al. (1996) demon-
strated via 2-D synthetic tests that wavefield inversion of wide-angle seismic data produces velocity
models of significantly greater resolution than traveltime inversion. Combining traveltime data with
non-seismic data is also likely to be further developed in the future. Using both gravity data and
traveltime data from wide-angle surveys to constrain crustal models has been done in the past. For
example, Vogt et al. (1998) used a forward modeling approach to reconcile the two data types and
produce a structural model for the Hatton Basin and continental margin. Lees & VanDecar (1991)
simultaneously inverted local earthquake traveltimes and Bouger gravity anomalies for crustal struc-
ture in Western Washington.

Like most other areas of science, increases in computing power will also influence the way in
which traveltime tomography will be approached in the future. Indeed, many of the potential future
developments described above are reliant to some extent on the availability of greater computing
power. Computationally intensive methods for solving the inverse step of the problem like genetic
algorithms or simulated annealing (Section 2.3.3) will become more feasible for larger scale prob-
lems. Currently, they are limited to perhaps several hundred unknowns at most. Also, the results
from other studies could be used to improve model accuracy. For example, a teleseismic model could
be embedded within a lower resolution global model to help prevent the mapping of aspherical man-
tle structure into the local region of interest. This has been done in the context of regional-scale
traveltime inversion by Widiyantoro & van der Hilst (1997); in this study, global and regional travel-
times were inverted simultaneously for a regional model on a 1◦ × 1◦ grid embedded within a global
model with a 5◦ × 5◦ cell size. However, the non-linearity of the problem was not accounted for in
the inversion, probably due in part to the significant computational expense involved.

In conclusion, there are still many new ways in which seismic traveltime information can be ex-
ploited in tomographic-style problems. Most current methods use only a small subset of the recorded
information, such as first arrivals. The new generation of methods are likely to be able to represent
continuous and discontinuous structure, use a wide variety of data geometries (e.g. coincident reflec-
tion, wide-angle etc.), incorporate traveltimes from later phases, account for anisotropy, use other
aspects of the waveform such as amplitudes, and perhaps be able to use other data types such as
gravity. The optimum method would use all the information contained in the recorded waveform
to constrain structure, but practical implementation of such an approach is a long way off. Seismic
traveltimes have played an important role in helping us to understand the structure and composition
of the crust and lithosphere via tomographic inversion, and will continue to do so well into the future.
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Lambaré, G., Lucio, P. S., & Hanyga, A., 1996. Two-dimensional multivalued traveltime and ampli-
tude maps by uniform sampling of a ray field, Geophys. J. Int., 125, 584–598.

Lambeck, K. & Burgess, G., 1992. Deep crustal structure of the Musgrave Block, central Australia:
results from teleseismic traveltime anomalies, Australian Journal of Earth Sciences, 39, 1–19.

Lambeck, K., Burgess, G., & Shaw, R. D., 1988. Teleseismic travel-time anomalies and deep crustal
structure in central Australia, Geophys. J., 94, 105–124.

Langan, R. T., Lerche, I., & Cutler, R. T., 1985. Tracing of rays through heterogeneous media: An
accurate and efficient procedure, Geophysics, 50, 1456–1465.

Lee, W. H. K. & Pereyra, V., 1993. Mathematical introduction to seismic tomography, in Seismic
tomography: theory and practice, edited by H. M. Iyer & K. Hirahara, pp. 9–22, Chapman &
Hall, London.

Lees, J. M. & VanDecar, J. C., 1991. Seismic tomography constrained by Bouguer gravity anomalies:
Applications in western Washington, Pageoph, 135, 31–52.
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Nowack, R. L. & Lyslo, J. A., 1989. Fréchet derivatives for curved interfaces in the ray approxima-
tion, Geophys. J., 97, 497–509.

Oncescu, M. C., Burlacu, V., Anghel, M., & Smalbergher, V., 1984. Three-dimensional P-wave
velocity image under the Carpathian Arc, Tectonophysics, 106, 305–319.

Papazachos, C. & Nolet, G., 1997. P and S deep velocity structure of the Hellenic area obtained by
robust nonlinear inversion of travel times, J. Geophys. Res., 102, 8349–8367.

Parker, R. L., 1994. Geophysical inverse theory, Princeton University Press, Princeton.

Parsons, T. & Zoback, M. L., 1997. Three-dimensional upper crustal velocity structure beneath San
Francisco Peninsula, California, J. Geophys. Res., 102, 5473–5490.

Parsons, T., McCarthy, J., Kohler, W. M., Ammon, C. J., Benz, H. M., Hole, J. A., & Criley, E. E.,
1996. Crustal structure of the Colorada Plateau, Arizona: Application of new long-offset seismic
data analysis techniques, J. Geophys. Res., 101, 11,173–11,194.

Pereyra, V., Lee, W. H. K., & Keller, H. B., 1980. Solving two-point seismic-ray tracing problems
in a heterogeneous medium, Bull. Seism. Soc. Am., 70, 79–99.

Podvin, P. & Lecomte, I., 1991. Finite difference computation of traveltimes in very contrasted
velocity models: a massively parallel approach and its associated tools, Geophys. J. Int., 105,
271–284.



REFERENCES 85

Popovici, A. M. & Sethian, J. A., 2002. 3-D imaging using higher order fast marching traveltimes,
Geophysics, 67, 604–609.

Pratt, R. G., Song, Z. M., Williamson, P., & Warner, M., 1996. Two-dimensional velocity models
from wide-angle seismic data by wavefield inversion, Geophys. J. Int., 124, 323–340.

Press, W. H., Tuekolsky, S. A., Vetterling, W. T., & Flannery, B. P., 1992. Numerical Recipes in
FORTRAN, Cambridge University Press, Cambridge.

Priestley, K., Cipar, J., Egorkin, A., & Pavlenkova, N., 1994. Upper-mantle velocity structure be-
neath the Siberian platform, Geophys. J. Int., 118, 369–378.

Prothero, W. A., Taylor, W. J., & Eickemeyer, J. A., 1988. A fast, two-point, three-dimensional
raytracing algorithm using a simple step search method, Bull. Seism. Soc. Am., 78, 1190–1198.

Protti, M., Schwartz, S. Y., & Zandt, G., 1996. Simultaneous inversion for earthquake location and
velocity structure beneath central Costa Rica, Bull. Seism. Soc. Am., 86, 19–31.

Pullammanappallil, S. K. & Louie, J. N., 1993. Inversion of seismic reflection traveltimes using a
nonlinear optimization scheme, Geophysics, 58, 1607–1620.

Qin, F., Luo, Y., Olsen, K. B., Cai, W., & Schuster, G. T., 1992. Finite-difference solution of the
eikonal equation along expanding wavefronts, Geophysics, 57, 478–487.

Rawlinson, N., 2000. Inversion of Seismic Data for Layered Crustal Structure, Ph.D. thesis, Monash
University.

Rawlinson, N. & Houseman, G. A., 1998. Inversion for interface structure using teleseismic travel-
time residuals, Geophys. J. Int., 133, 756–772.

Rawlinson, N., Houseman, G. A., & Collins, C. D. N., 2001a. Inversion of seismic refraction and
wide-angle reflection traveltimes for 3-D layered crustal structure, Geophys. J. Int., 145, 381–401.

Rawlinson, N., Houseman, G. A., Collins, C. D. N., & Drummond, B. J., 2001b. New evidence of
Tasmania’s tectonic history from a novel seismic experiment, Geophys. Res. Lett., 28, 3337–3340.

Recq, M., Goslin, J., Charvis, P., & Operto, S., 1998. Small-scale crustal variability within an
intraplate structure: The Crozet Bank (southern Indian Ocean), Geophys. J. Int., 134, 145–156.

Riahi, M. A. & Juhlin, C., 1994. 3-D interpretation of reflected arrival times by finite-difference
techniques, Geophysics, 59, 844–849.

Riahi, M. A. & Lund, C. E., 1994. Two-dimensional modelling and interpretation of seismic wide-
angle data from the western Gulf of Bothnia, Tectonophysics, 239, 149–164.

Riahi, M. A., Lund, C. E., & Pederson, L. B., 1997. Three-dimensional image of the Moho undula-
tions beneath the Gulf of Bothnia using wide-angle seismic data, Geophys. J. Int., 129, 461–471.

Ritsema, J., Nyblade, A. A., Owens, T. J., Langston, C. A., & VanDecar, J. C., 1998. Upper mantle
seismic velocity structure beneath Tanzania, east Africa: Implications for the stability of cratonic
lithosphere, J. Geophys. Res., 103, 21,201–21,213.



REFERENCES 86

Ryberg, T., Wenzel, F., Mechie, J., Egorkin, A., Fuchs, K., & Solodilov, L., 1996. Two-dimensional
velocity structure beneath northern Eurasia derived from the super long-range seismic profile
Quartz, Bull. Seism. Soc. Am., 86, 857–867.

Saltzer, R. L. & Humphreys, E. D., 1997. Upper mantle P wave velocity structure of the eastern
Snake River Plain and its relationship to geodynamic models of the region, J. Geophys. Res., 102,
11,829–11,841.

Sambridge, M. & Mosegaard, K., 2001. Monte Carlo methods in geophysical inverse problems, Rev.
of Geophys., submitted.

Sambridge, M. S., 1990. Non-linear arrival time inversion: Constraining velocity anomalies by
seeking smooth models in 3-D, Geophys. J. Int., 102, 653–677.

Sambridge, M. S. & Drijkoningen, G., 1992. Genetic algorithms in seismic waveform inversion,
Geophys. J. Int., 109, 323–342.

Sambridge, M. S. & Kennett, B. L. N., 1990. Boundary value ray tracing in a heterogeneous medium:
A simple and versatile algorithm, Geophys. J. Int., 101, 157–168.

Sato, T., Kosuga, M., & Tanaka, K., 1996. Tomographic inversion for P wave velocity structure
beneath the northeastern Japan arc using local and teleseismic data, J. Geophys. Res., 101, 17,597–
17,615.

Scales, J. A., 1987. Tomographic inversion via the conjugate gradient method, Geophysics, 52,
179–185.

Scales, J. A. & Snieder, R., 1997. To Bayes or not to Bayes, Geophysics, 62, 1045–1046.

Scott, J. S., Masters, T. G., & Vernon, F. L., 1994. 3-D velocity structure of the San Jacinto fault
zone near Anza, California-I. P waves, Geophys. J. Int., 119, 611–626.

Seber, D., Barazangi, M., Tadili, B. A., Ramdani, M., Ibenbrahim, A., & Sari, D. B., 1996. Three-
dimensional upper mantle structure beneath the intraplate Atlas and interplate Rif mountains of
Morocco, J. Geophys. Res., 101, 3125–3138.

Sethian, J. A., 1999. Level Set Methods and Fast marching Methods, Cambridge University Press,
Cambridge.

Sethian, J. A. & Popovici, A. M., 1999. 3-D traveltime computation using the fast marching method,
Geophysics, 64, 516–523.

Shalev, E., 1993. Cubic B-slines: Strategies of translating a simple structure to B-spline parameter-
ization, Bull. Seism. Soc. Am., 83, 1617–1627.

Shaw, P. R. & Orcutt, A., 1985. Waveform inversion of seismic refraction data and applications to
young Pacific crust, Geophys. J. Royal Astr. Soc., 82, 375–414.

Smith, W. H. F. & Wessel, P., 1990. Gridding with continuous curvature splines in tension, Geo-
physics, 55, 293–305.



REFERENCES 87

Snieder, R., 1998. The role of nonlinearity in inverse problems, Inverse Problems, 14, 387–404.

Snieder, R. & Sambridge, M., 1993. The ambiguity in ray perturbation theory, J. Geophys. Res., 98,
22,021–22,034.

Spakman, W., 1991. Delay-time tomography of the upper mantle below Europe, the Mediterranean
and Asia Minor, Geophys. J. Int., 107, 309–332.

Spakman, W., 1993. Iterative strategies for nonlinear travel-time tomography using global earth-
quake data, in Seismic tomography: theory and practice, edited by H. M. Iyer & K. Hirahara, pp.
190–226, Chapman & Hall, London.
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