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ABSTRACT

We demonstrate the potential of a recently developed grid-
based eikonal solver for tracking phases comprising reflection 
branches, transmission branches, or a combination of these, in 3D 
heterogeneous layered media. The scheme is based on a multi-stage 
fast marching approach that reinitialises the wavefront from each 
interface it encounters as either a reflection or transmission. The 
use of spherical coordinates allows wavefronts and traveltimes to 
be computed at local, regional, and semi-global scales. Traveltime 
datasets for a large variety of seismic experiments can be predicted, 
including reflection, wide-angle reflection and refraction, local 
earthquake, and teleseismic.

A series of examples are presented to demonstrate potential 
applications of the method. These include: (1) tracking active 
and passive source wavefronts in the presence of a complex 
subduction zone; (2) earthquake hypocentre relocation in a 
laterally heterogeneous 3D medium; (3) joint inversion of wide-
angle and teleseismic datasets for P-wave velocity structure 
in the crust and upper mantle. Results from these numerical 
experiments show that the new scheme is highly flexible, robust 
and efficient, a combination seldom found in either grid- or ray-
based traveltime solvers. The ability to track arrivals for multiple 
data classes such as wide-angle and teleseismic is of particular 
importance, given the recent momentum in the seismic imaging 
community towards combining active and passive source datasets 
in a single tomographic inversion.

INTRODUCTION

Over the last few decades, a large variety of grid- and ray-based 
methods have been developed to solve one of the most common and 
challenging problems in seismology: the prediction of the source-
receiver path and traveltime of seismic energy in heterogeneous 
media. Common ray-based schemes include shooting, bending, 
and pseudo bending (e.g., Julian and Gubbins, 1977; Pereyra et 
al., 1980; Um and Thurber, 1987; Sambridge and Kennett, 1990; 
Rawlinson et al., 2001), and common grid-based schemes include 
finite-difference solution of the eikonal equation (e.g., Vidale, 
1988; Qin et al., 1992; Cao and Greenhalgh, 1994; Hole and 
Zelt, 1995; Qian and Symes, 2002) and network or shortest-path 
methods (e.g., Nakanishi and Yamaguchi, 1986; Moser, 1991; Bai 
and Greenhalgh, 2005).

Although ray tracing schemes have traditionally been the 
method of choice in many applications, grid-based schemes 
have evolved rapidly in recent times and now offer an efficient 
and robust alternative. Their advantages include: (1) computing 
traveltimes to all points of a velocity medium, including diffracted 
arrivals in ray shadow zones; (2) stability in the presence of 
significant velocity heterogeneity; and (3) consistently finding the 
first-arrival traveltime in continuous media. Ray tracing schemes 
may fail to converge to the true two-point path even in mildly 
heterogeneous media, and provide no guarantee as to whether the 
located ray corresponds to a first or later arrival. On the other hand, 
provided a two-point path is located, ray tracing can be efficient, 
and often produces more accurate traveltimes than any grid-based 
alternative. However, for many realistic problems, grid-based 
schemes can be very efficient in computing traveltimes to the 
required accuracy, particularly when there is a large ratio between 
the number of sources and receivers or vice versa.

A recently developed grid-based eikonal solver, which is both 
computationally efficient and highly robust (unconditionally stable 
for the first-order case), is the so-called fast marching method or 
FMM (Sethian, 1996; Sethian, 1999; Sethian and Popovici, 1999). 
FMM implicitly tracks the evolution of first-arrival wavefronts 
by combining a causal narrow-band evolution scheme with an 
upwind entropy-satisfying finite difference solution of the eikonal 
equation. The speed and stability of FMM makes it well suited to 
problems involving large datasets such as reflection migration and 
3D tomography, where it has already been successfully applied 
(e.g., Popovici and Sethian, 2002; Rawlinson et al., 2006).

A limitation of most grid-based traveltime solvers is that they 
can only track first arrivals in continuous media; however, it is 
frequently the case that a majority of the seismic energy from an 
event arrives later in the wavetrain. In layered media, it is possible 
to adapt grid-based schemes to track later-arriving reflection and 
refraction phases. For example, wavefronts can be tracked from 
both source and receiver to an interface, and Fermat’s Principle 
of stationary time applied to locate reflection points (e.g., Podvin 
and Lecomte, 1991; Riahi and Juhlin, 1994). In another approach, 
Hole and Zelt (1995) use the 3D scheme of Vidale (1990) to 
compute the traveltimes of the reflected wavefield by assuming 
that the impinging wavefront and reflector are sufficiently smooth 
to validate a local planar approximation, which then allows Snell’s 
Law to be applied explicitly. Moser (1991) uses a network ray-
tracing approach to find reflections by requiring that the shortest 
path visit a specified set of nodes that lie on the interface.

In an attempt to develop a robust and general scheme for 
tracking phases comprising any number of reflection and 
refraction branches in layered media, Rawlinson and Sambridge 
(2004a, 2004b, 2005) formulate a multi-stage FMM scheme in 
2D Cartesian coordinates. The multi-stage FMM propagates a 
wavefront through a layer until all points of a bounding interface 
are intersected. A reflected wavefront can then be tracked by 
reinitialising FMM from the interface back into the incident layer; 
a transmitted wavefront can be tracked by reinitialising FMM into 
the adjacent layer. Repeated application of this technique allows 
phases composed of any number of reflection and refraction 
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branches to be tracked, without the need for explicit application of 
Fermat’s Principle or Snell’s Law. Tests of the multi-stage scheme 
in the presence of highly heterogeneous structure show it to be 
both computationally efficient and extremely robust.

In a recent paper, de Kool et al. (2006) build on the ideas of 
Rawlinson and Sambridge (2004a, b) to extend the multi-stage 
FMM scheme to 3D spherical coordinates. The use of spherical 
coordinates means that traveltime prediction problems at a variety 
of scales can be solved. Additional features of the 3D multi-stage 
scheme include the ability to track multiple reflections from a 
single interface (e.g., the global PP phase) and P-S conversions at 
interfaces. A series of numerical tests with a variety of simple and 
complex velocity models show the new method to be comparable 
to its 2D counterpart in terms of robustness and computational 
efficiency.

In this paper, we set out to demonstrate both the flexibility and 
usefulness of the new method in a variety of applications with 
synthetic data. The first test demonstrates the ability of the scheme 
to track reflection, refraction, local earthquake, and teleseismic 
phases through a complex subduction zone model which features 
layer pinch-outs, strong interface curvature, and significant lateral 
velocity heterogeneity. The second test uses an iterative non-linear 
subspace inversion scheme to relocate earthquake hypocentres in 
the presence of strong velocity variation. The final test combines 
refraction, wide-angle reflection, and teleseismic data to perform an 
inversion for 3D crust, Moho, and upper mantle structure. With this 
diverse set of examples, we demonstrate that a well-developed grid-
based method is more robust and at least as flexible and efficient as 
any ray-tracing scheme, and is therefore appropriate for a wide class 
of seismic problems.

THE MULTI-STAGE FAST MARCHING METHOD IN 3D 
SPHERICAL COORDINATES

A brief description of the 3D multi-stage scheme is given 
below; for more details refer to Rawlinson and Sambridge 
(2004a,b) and de Kool et al. (2006). The eikonal equation, which 
governs the propagation of seismic waves in the high frequency 
limit, may be written

xT = s(x)  ,  (1)

where ∇x is the gradient operator, T is traveltime and s(x) is 
slowness as a function of position x. FMM solves equation (1) 
using upwind entropy satisfying finite differences that naturally 
deal with wavefront discontinuities that arise from discarding later 
arriving information. In our case, we use the following scheme, 
which has been employed by a number of authors, including 
Sethian and Popovici (1999), Chopp (2001), and Popovici and 
Sethian (2002):

max Da
rT , Db

+rT ,0( )
2

max Dc T , Dd
+ T ,0( )

2

max De T , Df
+ T ,0( )

2

i, j ,k

1
2

= si, j ,k  , 

 

(2)

where (i, j, k) are grid increment variables in any orthogonal 
coordinate system (r,θ,φ), and the integer variables a, b, c, d, 
e, f define the order of accuracy of the upwind finite-difference 
operator used in each of the six cases. If (r,θ,φ) represent a 
spherical coordinate system, then the first two gradient operators 
in each of the three directions can be written
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Fig. 1. Principle of the narrow band method for tracking the first arrival wavefront in continuous media. Alive points (upwind of the computational 
front) have correct traveltimes, Close points have trial traveltimes, and Far points (downwind of the computational front) have no traveltimes 
computed. The narrow band (NB) evolves by locating the Close point with minimum traveltime, tagging it as Alive, and then computing traveltimes 
to any adjacent Close or Far points.

Fig. 2. Schematic diagram (in 2D for clarity) illustrating the relationship 
between interface nodes (grey squares) and velocity nodes (black dots) 
in a layered medium. Interface nodes occur at the intersection between 
the interface surface (thick dashed line) and the mesh lines (thin grey 
lines) of the regular velocity grid. In 3D, the same principle applies.

Rawlinson and others Seismic wavefront tracking in 3D
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Which operator is used in equation (2) depends on the 
availability of upwind traveltimes and the maximum order allowed. 
By default, we use a mixed order scheme which preferentially 
uses D2 operators but reverts to D1 if Ti-2, j, k , Ti, j-2, k , or Ti, j, k-2 is 
unavailable (e.g., near a point source). Mixed order schemes using 
higher order operators such as D3 may also be devised.

Equation (2) describes the finite difference scheme for updating 
the traveltime associated with a particular grid point, but does not 
specify the order in which points are to be updated. To satisfy 
causality, the order should be consistent with the direction of 
information flow, that is, from smaller to large values of T. FMM 
achieves this by systematically constructing traveltimes in a 
downwind fashion from known values upwind, using a narrow-
band approach (see Figure 1). Close points have trial traveltime 
values which only become Alive when they are the global 
minimum value of all Close points. When this occurs, the narrow 
band is locally evolved to retain the division of the traveltime time 
field into Alive and Far points. Thus, the shape of the narrow band 
approximates the shape of the first arrival wavefront, and the idea 
is to propagate the band through the grid until all points become 
Alive. The use of a heap-sort algorithm means that FMM has an 
operation count of O(NlogN) where N is the total number of grid 
points. The fact that the computation cost scales with grid size in 
this way is responsible for the overall efficiency of FMM.

Rawlinson and Sambridge (2004b) show that in most cases, the 
dominant error in FMM calculations is accumulated in the source 
neighbourhood as a result of high wavefront curvature. They 
show that accuracy can be greatly increased without significant 
computational cost by introducing a refined grid in the source 
vicinity, which is resampled to the global coarse grid when the 
narrow band reaches the refined grid boundary. This scheme is 
also implemented in the 3D multi-stage version; typical values for 
the refined grid are an increase in resolution by a factor of 5, and 
a refined grid extending 50 nodes away from the source in each 
direction.

The FMM scheme described above is for a regular grid 
implementation; however, when wave propagation occurs in a 
layered medium with undulating interfaces, the boundary of each 
velocity continuum may be irregular. Rawlinson and Sambridge 
(2004a,b) deal with this problem by using an adaptive triangular 
meshing scheme in the neighbourhood of each interface to connect 
interface nodes with adjacent velocity nodes. Interface nodes are 

defined by the point of intersection between the interface surface 
and the grid lines of the velocity mesh (see Figure 2). Wavefronts 
are then propagated through the irregular grid using a first-order 
version of equation (2) for triangular elements (equivalent to a plane 
wave approximation). In 3D, an adaptive tetrahedral mesh would 
be much harder to implement, so instead, updates to interface or 
surrounding velocity nodes are made by considering impinging 
plane waves from all possible combinations of neighbouring Alive 
velocity and interface nodes. The correct wavefront orientation 
yields the minimum arrival time (see de Kool et al., 2006, for 
more details).

The principle underlying the multi-stage FMM approach is 
shown in Figure 3; a wavefront is tracked from the source until 
all interface nodes become Alive. All Alive points are then reset 
to Close and FMM is reinitialised into the incident layer for a 
reflection, or into the adjacent layer for a refraction. This can be 
repeated any number of times to construct phases comprising any 
number of refraction or reflection branches. Conversions between 
P and S waves can be tracked simply by replacing the incident 
or adjacent velocity field with the appropriate P or S wavespeed 
model prior to reinitialisation of FMM. Ray paths for any phase 
type can be found a posteriori by simply integrating along the 
traveltime field gradient from the receiver back to the source.

A class of phase that cannot be tracked using this multi-stage 
FMM approach is one that involves consecutive interactions with 
the same interface (e.g., PP); this is because it no longer represents 
the interface-intersecting global minimum arrival within the layer. 
In our implementation of the 3D multi-stage scheme, phases such 
as PP can be computed by initialising FMM from both the source 
and receiver and tracking the resulting wavefronts to a common 
interface. The complete phase can then be obtained by matching 
the traveltime gradients from the two impinging wavefronts at the 
interface; where they are equal in magnitude and opposite in sign 
corresponds to a legitimate reflection point. This approach also 
allows multiple later-arriving reflections from a single interface to 
be found if they exist. However, a drawback in finding this class of 
later arriving phase is that FMM must be initiated from both source 
and receiver, which increases computation time.

In addition to tracking wavefronts from point sources within the 
model volume, the multi-stage FMM can also be initialised from a 
teleseismic wavefront. This is done by computing traveltimes from 
distant sources to the boundary of the model using, for example, 

Fig. 3. Principle behind the multi-stage FMM approach. The incident wavefront is tracked to all points on the wavefront, before reinitialisation of 
FMM in the incident (for reflection) or adjacent (for transmission) layer.

Rawlinson and others Seismic wavefront tracking in 3D
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a global reference model such as ak135 (Kennett et al., 1995). 
Initialisation of the teleseismic wavefront from the boundary of 
the model is carried out in the same way as from an interface: the 
Alive grid points are set to Close and the narrow band evolves 
from the point with minimum traveltime. Using this approach, any 
global phase (e.g., P, PcP, PKiKP) can be tracked through the local 
model. This style of wavefront propagation is often employed in 
teleseismic tomography (e.g., Graeber et al., 2002; Rawlinson et 
al., 2006).

EXAMPLES

In the following series of examples, the velocity field within 
each layer is independently described by a regular grid of nodes in 
spherical coordinates. These nodes are used as the control vertices 
of a mosaic of cubic B-spline volume elements, which define the 
continuum. Layer interfaces are described by a regular mesh in 
latitude and longitude and use a mosaic of cubic B-spline surface 
patches to describe the complete interface. Cubic B-spline functions 
are desirable because they exhibit local control (i.e., changing the 
value of a single node only effects the interface or velocity field in 
the vicinity of the node), continuity of the second derivative, and 
can be rapidly evaluated. This last property is important because 
in order to use the multi-stage FMM, a propagation grid must be 
defined over which the narrow band evolves; typically, this will 
involve many evaluations of the spline function.

Multiple phases in a subduction zone

One of the more complex geological structures encountered 
at the lithospheric scale is a subduction zone, which involves the 
edge of one tectonic plate (usually oceanic) subducting beneath 
another at a convergent margin. The accurate representation 
of such a structure with a 3D wavespeed model would require 
that layer pinch-outs, a subducting slab, and strong lateral 
wavespeed perturbations be included. Although the presence of 
these complexities makes the task of tracking wavefronts and 
computing traveltimes a difficult one, it may well be necessary 
in some circumstances, for instance, in tomographic inversion of 
multiple datasets. With this in mind, we demonstrate the ability 
of the multi-stage scheme to track reflection, refraction, local 
earthquake, and teleseismic phases in a subduction zone setting.

Figure 4 shows a synthetic subduction zone model, comprising 
an oceanic slab subducting beneath a laterally discontinuous 
continental mass. Interface topography is relatively complex and 
lateral variations in wavespeed within a layer are as great as 25%. 
Although the velocity variations indicated in the scale bar of 
Figure 4 are probably larger than would be encountered in the Earth, 
the purpose of this example is to demonstrate the robustness of the 
scheme. For the sake of clarity, the subduction zone in Figure 4 is 
2.5D; that is, it fills a 3D volume but only varies in longitude and 
depth; this allows ray paths to be meaningfully visualised. Ray paths 
from five sources – one teleseismic, two local earthquakes within 
the slab, one refraction, and one reflection – to 30 receivers in-line 
on the surface, are superimposed on the velocity model in Figure 4. 
Ray paths from the teleseismic source clearly reflect the distortion 
experienced by the wavefront as it propagates through the subduction 
zone. Of the two local earthquake sources, a direct transmission is 
tracked from the shallower event, while a reflection multiple is 
tracked from the deeper event. Rays from the easternmost surface 
source show that even near-critical refraction paths can be retrieved. 
The trade-off between accuracy and computation time is difficult to 
quantify in the absence of analytic solutions, but convergence tests 
involving the progressive increase in density of the propagation 
grid suggest that all 150 traveltimes can be computed with an RMS 
error of less than 100 ms in approximately 150 s on a 1.6 GHz 
Opteron workstation.

Figure 5 shows a second subduction zone example in which 
variations in structure are fully 3D. In this case, paths for 
both teleseismic and local earthquake sources are computed. 
P-S converted phases are shown for the two sources that lie in 
the subducting slab. The main aim of these subduction zone 
examples is to highlight both the flexibility and robustness of 
the multi-stage FMM in 3D. That the stability of the scheme is 
uninhibited by the complexity of the structure, and that many 
classes of dataset can be synthesised, means that the multi-stage 
FMM has the potential to form the basis of a flexible nonlinear 
tomographic imaging scheme.

Earthquake relocation

The accurate determination of earthquake hypocentres is 
important for many reasons, including seismic hazard analysis, 

Fig. 4. Teleseismic, local earthquake, reflection, and refraction paths tracked through a complex subduction zone example using the multi-stage FMM 
scheme. The model volume varies in latitude between 37°S and 44°S, but the model structure only varies with longitude and depth. Red stars denote 
sources and blue triangles denote receivers.

Rawlinson and others Seismic wavefront tracking in 3D
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seismic imaging (e.g., regional tomography), and structural inference 
(e.g., fault delineation). In this example (Figure 6), we apply a 
gradient-based iterative non-linear inversion routine, which exploits 
traveltime derivatives with respect to source location parameters, 
to relocate (in space and time) a cluster of five local earthquakes 
in the presence of significant 3D heterogeneity. Figure 6a shows 
the true location of the earthquakes and Figure 6b shows the initial 
locations used in the inversion. The synthetic dataset comprises first-
arrival traveltimes from all sources to 100 receivers located at the 
surface. The corresponding raypaths for the true locations are shown 
in Figure 6a. A source origin time error of 0.25 s is added to all 
traveltimes in the synthetic dataset. The inversion routine involves 
iterative application of the multi-stage FMM and a subspace 
inversion scheme (Kennett et al., 1988; Rawlinson and Sambridge, 
2003), which naturally deals with multiple parameter classes. In 
the subspace scheme, minimisation is carried out simultaneously 
along several search directions that together span a subspace of the 
model space. The search directions used in this case are based on the 
gradient vector in model space and its repeated pre-multiplication 
by the model space Hessian (see Rawlinson and Sambridge, 2003). 
For this example, a 20D subspace scheme offers a good compromise 
between computing time per iteration and rate of convergence.

Figure 6c shows the result after 6 iterations of the inversion 
scheme; in all five cases, the earthquake hypocentres have been 
relocated very accurately. Table 1 summarises the spatial and 
temporal errors associated with the initial and recovered locations. 
The trade-off between interface depth and source time error is not 

fully resolved for sources 4 and 5, but this is not surprising given 
the ray path geometry (Figure 6a). The success of this example 
in a strongly heterogeneous 3D medium shows that the multi-
stage FMM has the potential to be used in routine earthquake 
relocation algorithms where there is sufficient a priori knowledge 
of lateral variations in structure. Although an iterative non-linear 
approach to relocation is employed here, the multi-stage FMM 
is also particularly well suited to fully non-linear relocation 
algorithms (e.g., Kennett, 2004) that rely on relatively dense 
sampling of parameter space. This is because grid-based methods 
compute traveltimes from a source to all points that define the 
model volume. Thus, the multi-stage FMM need only be solved 
once for each receiver, with the resulting traveltime fields stored 
in look-up tables. Using the principal of traveltime reciprocity, 
source-receiver traveltimes at an arbitrary point can then be rapidly 
extracted. In complex velocity models with poor initial locations, 
a fully non-linear or global search algorithm is preferable to an 
iterative non-linear one, which is liable to either diverge or become 
trapped in a local minimum.

Joint inversion of wide-angle and teleseismic traveltimes

The traditional approach to local and regional scale body 
wave tomography in 3D has been to invert traveltime data of a 
single class, such as teleseismic (Aki et al., 1977; Humphreys and 
Clayton, 1990; Graeber et al., 2002; Rawlinson et al., 2006), local 
earthquake (Eberhart-Phillips, 1986; Walck, 1988; Graeber and 
Asch, 1999), or wide-angle (Hole et al., 1992; Zelt and Barton, 
1998; Rawlinson et al., 2001). Although several efforts have been 
made in the past to combine multiple datasets in a single inversion 
(e.g., Ankeny et al., 1986; Sato et al., 1996; Parsons and Zoback, 
1997), it is still far from a routine practice. However, with the 
rapidly increasing volume of seismic data recorded in various 
regions of the Earth, it is becoming clear that the opportunities for 
combining multiple datasets are on the rise. The obvious benefit 
of more than one dataset is the increased path coverage, which 
is likely to yield more detailed and robust models. For example, 
wide-angle surveys often provide good coverage of the crust, but 
sample the upper mantle poorly. On the other hand, teleseismic 
surveys often result in good path coverage through the upper 
mantle, but sample the crust poorly.

In the next application of the multi-stage FMM (Figure 7), 
synthetic wide-angle and teleseismic datasets are simultaneously 
inverted for the geometry of the Moho and the P wavespeed 
structure of the crust and upper mantle. The tomographic inversion 
routine that is used is similar to the one previously applied for 
earthquake hypocentre relocation, except that interface depth 
and velocity node parameters are inverted for rather than source 
parameters. The iterative application of the multi-stage FMM 
and the subspace inversion scheme accounts for the non-linear 
relationship between traveltime and wavespeed/interface depth 

Fig. 5. Tracking converted phases (P-S) through a fully 3D subduction 
zone from local and teleseismic sources. Green and purple rays denote 
the two point paths taken by P and S phases respectively.

Table 1. Summary of results from the earthquake hypocentre relocation example. The initial, recovered, and true source locations are shown in 
Figure 6.

Initial source error Relocated source error

Latitude
(°)

Longitude
(°)

Depth
(km)

Time
(s)

Latitude
(°)

Longitude 
(°)

Depth 
(km)

Time
(s)

Source

1 −0.200 −0.200 10.0 0.250 −0.001 0.000 −0.1 −0.006 

2 0.100 0.200 0.0 0.250 0.000 0.001 0.0 0.002 

3 −0.100 0.000 −10.0 0.250 0.000 −0.001 0.4 0.011 

4 0.200 −0.300 10.0 0.250 −0.001 −0.001 −0.5 −0.023 

5 −0.200 0.300 10.0 0.250 0.001 0.002 −0.5 −0.085 
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perturbations. As in the previous example, a 20D subspace scheme 
is used. In addition to minimising the difference between observed 
and predicted traveltimes, the inversion also includes damping 
regularisation, which penalises solution models that are strongly 
perturbed from the initial or starting model.

Figure 7a shows a plot of the “true” model used to generate the 
synthetic dataset. It comprises a crustal layer and an upper mantle 

layer separated by an undulating Moho. Lateral perturbations in 
wavespeed from a 1D reference model are shown; in this case, the 
reference model is described by ak135 (Kennett et al., 1995) in 
the upper mantle, and a constant velocity gradient of 0.016 s-1 in 
the crust, with a velocity of 5.4 km/s at the surface. The synthetic 
velocity structure comprises a 3D checkerboard pattern in both 
layers, with a finer scale checkerboard used in the crust, where 
more detail can be resolved. A total of 14 540 nodes describe the 

Fig. 6. Results from the earthquake hypocentre relocation example (see also Table 1). (a) True, (b) initial, and (c) recovered locations of five local 
earthquake sources. Ray paths are also projected on the E-W cross-section and the horizontal section for the true source locations. Note that the 
horizontal slices at 30 km depth feature velocity discontinuities as a result of the undulating Moho. Magenta stars denote sources and blue triangles 
denote receivers. Source numbering is consistent with Table 1.

Rawlinson and others Seismic wavefront tracking in 3D



328Exploration Geophysics (2006) Vol 37, No. 4

entire 3D velocity field. The synthetic interface structure varies in 
depth between 33 and 47 km, and is described by 196 depth nodes. 
Figure 7b shows the laterally invariant starting model used for the 
tomographic inversion and the associated ray path coverage. The 
starting velocity model is simply the 1D reference model, and 
the initial depth of the interface is 40 km. The teleseismic dataset 
comprises traveltime residuals from 12 distant events recorded 
by 100 receivers evenly distributed on a grid at the surface. The 
wide-angle dataset consists of crustal refraction (Pg) and reflection 
(PmP) traveltimes generated by nine surface sources and recorded 
by the same 100 receivers. In total, the synthetic dataset comprises 
3000 traveltimes.

The tomographic solution model, obtained after six iterations 
of the non-linear scheme, is shown in Figure 7c. The checkerboard 
pattern in the crust is clearly recovered, with minimal smearing. The 
checkerboard pattern in the upper mantle is also well recovered, 
although there is clear evidence of vertical smearing which prevents 
the uppermost part of the checkerboard in the bottom layer from 
being recovered. This behaviour is typical of teleseismic datasets. 
The inclusion of significantly more teleseismic events, or refraction 
paths from the surface sources which penetrate the uppermost mantle 
(Pn), would probably improve the imaging result in this region. The 
structure of the Moho is generally well recovered, and shows that the 
trade-off between interface depth and velocity perturbation has been 

Fig. 7. Imaging results from the combined inversion of synthetic wide-angle and teleseismic data for the 3D velocity and Moho structure of the 
lithosphere. (a) True, (b) initial, (c) recovered velocity and interface structure. From top to bottom, plots correspond to a depth slice at 20 km, an 
E-W slice at 40.25°S, a N-S slice at 140.25°E, and Moho depth. Ray path coverage for the initial model is shown in (b). Magenta stars denote sources 
and blue triangles denote receivers.
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satisfactorily resolved. The complete non-linear inversion process, 
which constrains 14 736 velocity and interface parameters using 
3000 traveltimes, takes approximately 25 minutes on a 1.6 GHz 
Opteron workstation running Linux. The RMS traveltime misfits of 
the initial and recovered models are 369 ms and 33 ms respectively, 
which show that the data are well satisfied by the solution. This 
could possibly be improved slightly by applying more iterations 
or increasing the density of the FMM propagation grid (to increase 
traveltime accuracy), but in practical applications there would be 
little point because of the noise inherent in all observational datasets, 
and the assumptions imposed by the parameterisation.

The results summarised in Figure 7 show that the multi-
stage FMM can be effectively used in sophisticated tomographic 
inversion routines that combine multiple data classes in order to 
image complex structures. In addition to teleseismic and wide-angle 
datasets, coincident reflection and local earthquake data may also be 
incorporated (hypocentre, velocity and interface parameters could 
all be inverted for simultaneously), and multi-layered structures that 
include features such as layer pinch-outs could be imaged provided 
there is sufficient data coverage. The flexibility offered by a spherical 
coordinate representation means that the scale of application need 
not be limited to small regions of the Earth; however, at this stage the 
scheme is not well suited to global tomography because periodicity 
is not accounted for, and the degeneracy of the spherical coordinate 
system at the poles is not recognised. This could be rectified without 
having to substantially change the code.

CONCLUSIONS

In this paper, a brief description of a new multi-stage FMM 
scheme for tracking phases in 3D heterogeneous layered media is 
given, along with several examples that demonstrate its flexibility 
and robustness in realistic problems. These include: tracking 
arrivals associated with local earthquake, teleseismic, reflection, 
and refraction sources through a complex subduction zone; 
accurately relocating a group of earthquake hypocentres in the 
presence of significant lateral heterogeneity; and imaging 3D 
crust and upper mantle structure (including Moho geometry) 
by combining wide-angle and teleseismic datasets in a single 
tomographic inversion. Other problems, such as seismic migration, 
continental-scale body wave tomography, and the imaging of 
mantle discontinuities using P-S phase conversions, could also 
be addressed using the new scheme. In many of these areas, ray 
tracing is still the default tool used for computing traveltimes, but 
this may soon change with the introduction of grid-based schemes 
such as the multi-stage FMM, which offer far greater robustness, 
and in many cases improved efficiency and flexibility.

The source code for the 3D multi-stage FMM scheme used in 
this paper is freely available for general use from <http://rses.anu.
edu.au/seismology/fmmcode>, along with detailed instructions 
and examples.
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