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Multiple reflection and transmission phases in complex layered media
using a multistage fast marching method

N. Rawlinson1 and M. Sambridge1

ABSTRACT

Traditional grid-based eikonal schemes for computing
traveltimes are usually confined to obtaining first arrivals
only. However, later arrivals can be numerous and of
greater amplitude, making them a potentially valuable
resource for practical applications such as seismic imag-
ing. The aim of this paper is to introduce a grid-based
method for tracking multivalued wavefronts composed
of any number of reflection and refraction branches in
layered media. A finite-difference eikonal solver known
as the fast marching method (FMM) is used to propagate
wavefronts from one interface to the next. By treating
each layer that the wavefront enters as a separate com-
putational domain, one obtains a refracted branch by
reinitializing FMM in the adjacent layer and a reflected
branch by reinitializing FMM in the incident layer.

To improve accuracy, a local grid refinement scheme
is used in the vicinity of the source where wavefront cur-
vature is high. Several examples are presented which
demonstrate the viability of the new method in highly
complex layered media. Even in the presence of velocity
variations as large as 8:1 and interfaces of high curvature,
wavefronts composed of many reflection and transmis-
sion events are tracked rapidly and accurately. This is be-
cause the scheme retains the two desirable properties of
a single-stage FMM: computational speed and stability.
Local grid refinement about the source also can increase
accuracy by an order of magnitude with little increase in
computational cost.

INTRODUCTION

The complex nature of many seismic wavetrains can usu-
ally be attributed to elastic wave energy multipathing between
source and receiver, caused by both continuous and discon-
tinuous variations in seismic wavespeed. This paper focuses
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on the latter case, when reflections and transmissions at inter-
faces generate a variety of phases. A vast array of techniques
are currently available for modeling the propagation of (high-
frequency) seismic waves in laterally heterogeneous media,
but most are only capable of consistently locating first arrivals
and/or single reflection phases between source and receiver.

Ray tracing has traditionally been the method of choice for
tracking the path taken by seismic energy between two points.
Shooting methods (e.g., Julian and Gubbins, 1977; Červený,
1987; Sambridge, 1990; Bulant, 1996; Rawlinson et al., 2001)
formulate the ray equation as an initial value problem and iter-
atively adjust the ray take-off angle until a source–receiver path
is located. Bending methods (Julian and Gubbins, 1977; Um
and Thurber, 1987; Grechka and McMechan, 1996) iteratively
adjust the geometry of an initial arbitrary path that joins the
source and receiver until it satisfies Fermat’s principle. Many
ray-tracing methods have been developed to find first arrivals
in continuous media (e.g., Julian and Gubbins, 1977; Pereyra
et al., 1980; Prothero et al., 1988) and to locate refraction and
reflection arrivals in layered media (e.g., Farra and Madariaga,
1988; Lutter and Nowack, 1990; Zelt and Smith, 1992; Zhao
et al., 1997; Rawlinson et al., 2001). Although ray tracing can
be rapid and highly accurate, it is not robust and may fail to lo-
cate a two-point path even in the presence of relatively simple
velocity structures, e.g., near critical refractions in horizontal
stratification (Kim and Baag, 2002).

An alternative approach to ray tracing is to seek finite-
difference solutions of the eikonal equation throughout a grid-
ded velocity field (e.g., Vidale, 1988, 1990; Podvin and Lecomte,
1991; van Trier and Symes, 1991; Hole and Zelt, 1995; Kim and
Cook, 1999; Afnimar and Koketsu, 2000; Kim, 2002; Qian and
Symes, 2002). While this approach can be fast, accurate, and
robust, it only calculates the absolute first-arrival traveltime to
all points in a continuous medium.

Relatively few studies have used eikonal solvers to com-
pute reflection and refraction traveltimes in layered media.
To find reflections, Podvin and Lecomte (1991) and Riahi and
Juhlin (1994) track the first-arrival traveltime fields from both
the source and the receiver to the entire interface. Fermat’s
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principle of stationary time is then used to locate reflection
points along the interface. The advantage of this approach is
that more than one reflection path between two points can be
identified, but the clear drawback is that a traveltime field needs
to be computed for each source and receiver. Hole and Zelt
(1995) overcome this problem by assuming that the incident
wavefront from the source and the interface are sufficiently
smooth to validate a local planar approximation. Thus, the re-
flected traveltimes to the nodes that are adjacent to the inter-
face can be determined using only the depth to the reflector, the
normal vector to the reflector, and the direction vectors of the
incident and reflected rays (from Snell’s law). Strong wavefront
or reflector curvature will degrade the accuracy of this scheme.

Li and Ulrych (1993) compute reflected and refracted travel-
times in two dimensions by using a local regridding technique
to decompose a cell containing an interface into several rect-
angular and triangular cells so that the true interface shape
is better represented on the computational grid. The incident
traveltime field is computed using the scheme of Vidale (1988),
and the reflected traveltime field is obtained by reinitializing
the computational front from the point of minimum traveltime
on the interface. Although this scheme has some similarities to
the one we present, it is tested only on relatively simple models
with planar interfaces.

Shortest path ray tracing is another popular method for de-
termining first arrivals to all points of a gridded velocity field
(e.g., Nakanishi and Yamaguchi, 1986; Moser, 1991; Fischer and
Lees, 1993; Cheng and House, 1996). Rather than solve a differ-
ential equation, a network or graph is formed by connecting
neighboring nodes with traveltime path segments. The prob-
lem is then to find the path of minimum traveltime between
source and receiver through the network, which may be solved
using Dijkstra-like algorithms. By definition, shortest path ray
tracing finds first-arrival traveltimes, but it is possible to im-
pose constraints on the path so that some other arrivals such
as reflections can be determined. Moser (1991) demonstrates a
method for finding reflections which requires the shortest path
to visit a specified set of nodes that lie on the interface. Accord-
ing to Leidenfrost et al. (1999), finite-difference methods offer
a better compromise between speed and accuracy than does the
shortest path ray-tracing method, but the latter is often consid-
ered more numerically stable (see Cheng and House, 1996).

In this paper, we present an elegant and robust grid-based
approach for tracking wavefronts composed of any number of
reflection and refraction branches in strongly heterogeneous
layered media. At its core, the new scheme uses the fast march-
ing method, or FMM (Sethian, 1996), which tracks the evolu-
tion of wavefronts via finite-difference solution of the eikonal
equation. As discussed previously, this class of scheme is re-
stricted to finding only the absolute first arrival in continuous
media, but FMM distinguishes itself by combining both speed
and unconditional stability.

To track arrivals composed of multiple reflection and refrac-
tion branches, we treat each layer that the wavefront enters as
an independent computational domain. Thus, a wavefront is
propagated through a layer until it impinges on all points of an
interface. At this stage, FMM is halted and we are left with a
narrow band of traveltime values defined along the interface.
From here, a refracted branch can be tracked by reinitializing
FMM from the narrow band into the adjacent layer, and a re-
flected branch can be obtained by reinitializing FMM in the

incident layer. Wavefronts composed of any number of reflec-
tion and refraction events can therefore be built up by using
this multistage approach. A triangulation routine is used to lo-
cally suture interface nodes to neighboring velocity nodes in
order to facilitate the tracking of wavefronts to and from the
interface. To improve accuracy, local grid refinement about the
source is implemented.

After describing the multistage FMM, we present several
examples that explore the stability and accuracy of the method
in simple and complex 2D layered media. We aim to demon-
strate that the scheme retains the desirable characteristics of
the single-stage FMM and is a practical way of tracking multi-
ple phases in layered media using a grid-based method.

METHOD

The fast marching method

FMM is a grid-based numerical scheme for tracking the
evolution of monotonically advancing interfaces by seeking
finite-difference solutions to the eikonal equation |∇xT | = s(x),
where T is traveltime and s(x) is slowness as a function of
position x. To date, it has been applied to a wide variety of
problems in the physical sciences, including seismic wave prop-
agation, photolithographical development, geodesics, deposi-
tion of sediments, medical imaging, and optimal path planning
(see Sethian, 1999; Sethian and Popovici, 1999; Popovici and
Sethian, 2002). Following is a brief description of the method;
for more details, refer to Sethian (1996, 1999).

To achieve unconditional stability and computational speed,
FMM combines solution of the eikonal equation using entropy
satisfying upwind finite-difference operators with a narrow-
band approach for the ordered update of gridpoints. A signifi-
cant obstacle faced by all eikonal solvers is that the first-arrival
wavefront may be discontinuous in gradient. When this occurs,
it is difficult to solve the eikonal equation because it requires
that ∇xT be defined. One way to overcome this problem is
to solve the viscous version of the eikonal equation, which
smooths out discontinuities; the limit of smooth solutions is a
weak solution that corresponds to the first-arriving wavefront.
It turns out that the viscous limit solution can also be obtained
by solving the nonviscous eikonal equation using entropy-
satisfying operators. The entropy condition states that the first-
arrival wavefront can only pass through a point once and must
be strictly enforced to guarantee unconditional stability.

Our entropy-satisfying upwind scheme has been used by a
number of authors (e.g., Sethian and Popovici, 1999; Chopp,
2001; Popovici and Sethian, 2002). For 2D media it may be
written as[

max
(
D−x

a T,−D+x
b T, 0

)2+
max

(
D−z

c T,−D+z
d T, 0

)2

] 1
2

i, j

= si, j , (1)

where (i, j ) are grid increment variables in (x, z), and the in-
teger variables a, b, c, d define the order of accuracy of the up-
wind finite-difference operator used in each of the four cases.
In the case of D−xTi , the first- and second-order accurate op-
erators are

D−x
1 Ti = Ti − Ti−1

δx
,
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D−x
2 Ti = 3Ti − 4Ti−1 + Ti−2

2δx
, (2)

where δx is the grid spacing in x. In the examples that follow,
we compare the accuracy of a purely first-order scheme with a
mixed-order scheme that preferentially uses D2 operators but
reverts to D1 operators when the required upwind traveltimes
are unavailable. For convenience, we refer to this mixed-order
scheme as a second-order scheme. Strictly speaking, the uncon-
ditional stability of FMM has only been proven for the first-
order scheme; however, our results show that the second-order
method is effective even in highly complex media.

The narrowband concept used by FMM to determine the
order in which gridpoints are updated is illustrated in Figure 1.
All gridpoints are labeled as Alive, Close, or Far. Alive points
lie upwind of the narrow band and have correct traveltime
values; Close points lie within the narrow band and have trial
values calculated using equation 1 with Alive points only; Far
points lie downwind of the narrow band and have no traveltime
values calculated. The narrow band is evolved by identifying
the Close point with minimum traveltime (using a heap sort
algorithm), tagging it as Alive, and then tagging all neighboring
Far points as Close. Finally, all Close points adjacent to the new
Alive point have their traveltimes updated using equation 1.
The shape of the narrow band approximates the shape of the
first-arrival wavefront, and the idea is to propagate the band
through the grid until all points become Alive. The use of a
heap sort algorithm means that FMM has an operation count
of O(M log M), where M is the total number of gridpoints.

Multistage FMM for layered media

The basic FMM method outlined above is designed for a reg-
ularly gridded continuous velocity field. In a layered medium
with undulating interfaces, a purely regular grid is not suitable.
Instead, we define velocity on a regular grid and then use an
adaptive triangular mesh to suture interface nodes to neighbor-
ing velocity nodes, as illustrated in Figure 2. Interface nodes are
defined by the intersection points of the interface (defined by
cubic B-splines in our examples) with the cell boundaries of the
rectangular velocity grid. Within this framework, the irregular
mesh is constructed so that (1) triangles do not span more than
one rectangular velocity cell or pass through the interface and
(2) the presence of obtuse triangles is minimized.

Figure 1. Principle of the narrowband method. Close points
have trial values computed from Alive points, which lie upwind
and have correct traveltime values. Far points lie downwind and
are yet to have the wavefront pass through them.

Equation 1 is used to update gridpoints in the regular mesh,
and a first-order accurate scheme for triangular elements is
used to evolve the wavefront through the irregular mesh. To
devise such a scheme, consider the triangular element shown
in Figure 3a and assume that traveltimes to points A (TA) and
B (TB) are known. The eikonal equation can be used to deter-
mine the traveltime to point O (TO) with first-order accuracy
by assuming that the traveltime gradient within the triangle is
constant. If t is the local traveltime from TA to TO and TB > TA,
then a quadratic equation for t is given by [see Sethian (1999)
for a derivation]

(a2 + b2 − 2a · b)t2 + 2u(a · b− b2)t

+ (b2u2 − s2
O[a2b2 − (a · b)2]

) = 0, (3)

where sO is slowness at O, u= TB− TA, a and b are displacement
vectors (see Figure 3a), a= |a|, and b= |b|. Note that equation 3
avoids the trigonometric functions used in the equivalent ex-
pression given by Sethian (1999).

Provided that the traveltime vector at point O lies between
points A and B and u< t , equation 3 can be legitimately
used to produce a first-order accurate solution TO= t + TA. If
these conditions are not satisfied, then the solution is given by
TO= min{bsO+ TA,asO+ TB}, which is only first-order accu-
rate if the traveltime gradient is parallel to either vector a or
b. If point O is connected to more than one triangle, then the
traveltime prediction for each of these triangles needs to be
calculated and the minimum chosen as the correct solution.

To guarantee that points within the triangular mesh are up-
dated with first-order accuracy, adjacent mesh lines emanating
from a node must be acute. To understand why this restriction
exists, consider Figure 3b, which shows a wavefront impinging
on a triangle with an obtuse angle at point O. If the wave-
front normal lies within the zone subtended by θ , then clearly
the wavefront will pass through both A and B before reaching
point O; however, if the wavefront normal lies within the zones
defined by φ1 or φ2, then the wavefront will only pass through
A or B, respectively, before reaching point O. In this case, first-
order accuracy occurs only if the wavefront normal is parallel
with AO or BO.

Figure 2. An adaptive triangular mesh is used to locally su-
ture the irregular interface nodes to the regular nodes of the
velocity grid (circles). The interface is plotted as a piecewise
linear curve between the interface nodes. For visual purposes,
the grid is much coarser than would be used in practical appli-
cations. A single source and 21 receivers located on the surface
are denoted by a star and triangles, respectively.
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For the local adaptive triangulation scheme illustrated in
Figure 2, obtuse triangles can be generated, but only when the
interface cuts a corner off a cell. An example of this effect is
shown in Figure 3c, where the angle at point O is obtuse as
a result of the low gradient of the interface joining OC. To fix
this problem, we can use a different splitting strategy, which in-
volves replacing mesh line AC with BO (see Figure 3d). Thus,
to update point C, the mesh shown in Figure 3c is used; to up-

Figure 3. Updating traveltimes in a tri-
angulated domain. (a) If the traveltime
gradient is assumed to be constant within
a triangle, point O can be updated using
known traveltimes at points A and B. (b)
The presence of obtuse triangles can result
in traveltimes that are not first-order accu-
rate. (c). (d) Dealing with obtuse triangles
by using a different splitting strategy.

Figure 4. Schematic of how a reflected or refracted wavefront can be tracked by partitioning layers into separate
computational domains in which FMM is applied. (a) Incident wavefront generated from a point source; (b) narrow
band defined by the set of interface nodes; (c) reflected wavefront tracked; (d) refracted wavefront tracked. In both
(c) and (d), FMM reinitializes from the interface node with minimum traveltime.

date point O, the mesh shown in Figure 3d is used. A more
detailed description of the meshing routine and the first-order
FMM for triangular elements can be found in Rawlinson and
Sambridge (2004).

To understand how FMM can be used to track more than one
arrival, consider Figure 4a, which shows a wavefront emanating
from a point source and impinging upon an interface. Rather
than continue propagating through to the adjacent layer, the
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wavefront is only tracked as far as the interface, which is treated
as one of the four boundaries of the computational domain.
Once all points contained in the layer are Alive, the narrow
band ceases to exist and the FMM process terminates. The next
step is to track a transmitted or reflected wavefront using the
traveltime information we have obtained as a starting point.
Interestingly, this can be done by using interface node travel-
times only, because they store sufficient information for first-
order accurate estimates of traveltime to neighboring nodes.
The complete set of interface nodes is therefore used as the
starting narrow band for the next FMM stage (Figure 4b).
The fact that this narrow band will not in general conform
to the shape of the wavefront does not matter, provided it is
understood that the wavefront cannot reflect from or transmit
through the interface more than once.

From the initial narrow band described by the set of interface
nodes, a reflected wavefront can be tracked by setting all other
nodes within the incident layer to Far and restarting FMM (see
Figure 4c). A refracted wavefront is tracked in the same fash-
ion, except that only the nodes in the adjacent layer are set
to Far so the wavefront continues to propagate into the next
layer (see Figure 4d) rather than reflect back into the incident
layer. This basic approach of partitioning each layer into sep-
arate computational domains as the wavefront evolves can be
repeated any number of times to track any required phase. Sig-
nificantly, memory resources are proportional to the number

Table 1. Summary of speed and accuracy tests for the reflection example shown in Figure 6. CPU times are for a SunBlade 150
and include the time taken to read in the velocity field and interface surfaces.

rms error (ms) CPU time (s)
Grid spacing Number of
(m) gridpoints 1st O. 1st O. R. 2nd O. 2nd O. R. 1st O. 1st O. R. 2nd O. 2nd O. R.

1000 4141 253.0 184.9 50.6 10.3 0.1 0.1 0.1 0.1
500 16 281 150.7 116.8 23.5 2.8 0.3 0.3 0.3 0.4
250 64 561 86.9 69.9 11.3 0.8 1.1 1.2 1.3 1.4
125 257 121 49.0 40.5 5.5 0.3 4.8 4.9 5.4 5.5

O = Order. R = Refined grid about source.

Figure 5. Implementation of source-grid refinement. When the narrow band (thick grey line) reaches the boundary of
the refined grid, it is mapped onto the coarse grid (triangles) before continuing to evolve. Refined gridpoints that do
not coincide with the coarse gridpoints are denoted by circles. The source is denoted by a large grey circle.

of nodes within a layer, not the total number of nodes traversed
by the wavefront. Consequently, the number of bounces and
transmissions a wavefront can experience is limited by CPU
time only. In practice, the total energy carried by the wave-
front decreases monotonically with time, so one may not need
to track phases composed of large numbers of refraction and
reflection events to model real observations.

As previously noted, when a wavefront is required to trans-
mit through an interface, it can be stopped at the interface and
then reinitialized using the interface nodes as the initial narrow
band. Our method allows for two further possibilities: (1) FMM
is not reinitialized at the interface and the wavefront propa-
gates directly through to the adjacent layer (i.e., both layers lie
within the same computational domain); (2) the interface and
associated irregular grid are excluded and the layer boundary
is instead represented by a sharp velocity gradient. The first
option means that the wavefront is permitted to pass through
an interface more than once during a single FMM step. The sec-
ond option allows layer pinch-outs to be represented without
superimposing irregular meshes from adjacent interfaces.

Error minimization in the source neighborhood

A point source is an upwind singularity of the traveltime field
and can be a major contributor to the overall error of FMM
because of high wavefront curvature and first-order accuracy
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in its vicinity. This problem has been recognized and addressed
in a variety of ways. For example, Alkhalifah and Fomel (2001)
use spherical grids centered on the source point; Kim and Cook
(1999) use local grid refinement in the source neighborhood;

Figure 6. Tracking a simple reflection through a medium in which velocity varies linearly with depth. Wavefronts
are plotted at 0.4-s intervals in all cases. (a) Incident wavefront emanating from the source; (b) reflected wavefront;
(c) evolution of the complete multivalued wavefront (thick line denotes the leading wavefront); (d) raypaths (to 21
receivers) corresponding to the reflected phase. The rms traveltime to all receivers is given by Trms; (e)-(h) traveltime
accuracy of four different schemes using four different grid sizes (1000 m, 500 m, 250 m, 125 m).

Qian and Symes (2002) use adaptive gridding with grid refine-
ment and coarsening based on a posteriori error estimation.

Our approach for minimizing near-source error is based on
specifying a finely spaced grid in the vicinity of the source and
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a coarser grid away from the source; therefore, it is similar to
the method advocated by Kim and Cook (1999), who use an
essentially nonoscillatory (ENO) scheme to solve the eikonal
equation. The introduction of local grid refinement means that
the computational front must at some stage pass from a finely
spaced grid to a coarsely spaced grid and possibly back again.
The latter case can produce numerical instabilities if simple
interpolation is used (see Sethian, 1999). In the case of ENO
schemes, the computational front is an expanding box; so, pro-
vided a rectangular grid of refined nodes is used, this situation
will not arise. However, in the case of FMM, the computational
front approximates the shape of the first-arrival wavefront. Un-
less the boundary of the refined grid has the same geometry,
the wavefront may need to be upsampled at some stage.

To overcome this problem, we define a rectangular grid of
refined nodes about the source but downsample the computed
traveltime field to the coarse grid spacing when the first node
on the edge of the refined grid becomes Alive (see Figure 5).
As a result, the true edge of the refined grid conforms to the
shape of the narrow band so that information only flows out of
the refined grid and never back into it. This approach to local
grid refinement ensures the stability of FMM. In the follow-
ing examples, the refined grid extends 10 coarse node points
horizontally and vertically outward from the source and has a
fivefold decrease in node spacing. For example, a velocity grid
with a 1-km spacing has a refined grid with a 200-m node spac-
ing surrounding the source to a distance of 10 km horizontally
and vertically. Although this choice of refined grid appears ad
hoc, we found that increasing the area of the refined grid and
decreasing the node spacing has only a marginal effect on the
accuracy of computed traveltimes.

EXAMPLES

Application of FMM requires that the velocity field and in-
terfaces be discretely sampled; the node spacing chosen, along
with the order of the upwind difference operator used, deter-
mines the accuracy of the calculated traveltimes. In our exam-
ples, the velocity field and interfaces are described by cubic
B-spline functions in parametric form (Bartels et al., 1987),
which are controlled by separate sets of velocity and interface
vertices. Discrete sampling of these functions to any desired
resolution is easily accomplished. Following, we present sev-
eral examples of varying complexity to examine the behavior
of the FMM scheme presented above.

The first example comprises a single reflection from an un-
dulating interface that lies within a velocity field with a con-
stant vertical gradient of 0.04 s−1 (see Figure 6). To track this
phase, FMM is invoked twice: once for the incident travel-
time field (Figure 6a) and once for the reflected traveltime
field (Figure 6b). The geometry of the complete wavefront as
it propagates through the medium can be obtained by stitching
together matching isochrons from the incident and reflected

traveltime fields (Figure 6c). Source–receiver raypaths are
computed a posteriori by following the traveltime gradient
from the receiver back through the traveltime fields to the
source (Figure 6d).

The velocity medium in Figure 6 is too complex to facili-
tate analytic solutions, so we use the ray-tracing method of
Rawlinson et al. (2001) to examine the accuracy of the FMM
scheme. The ray tracer is designed to find first-arrival reflected
and refracted paths in layered media where the velocity varies
linearly with depth and layer boundaries are described by cubic
B-splines; this permits direct comparison with our FMM solu-
tions. The desirable properties of the ray-tracing method are
that it uses analytic solutions to track raypaths within a layer
and an iterative Newton scheme to locate the intersection point
of the raypath and the interface. The accuracy of the intersec-
tion point can be controlled, so highly accurate solutions are
possible. In the following comparison, the ray–interface inter-
section points are accurate to 0.5 mm, and the ray–receiver
intersection points are accurate to 5 mm. Such small values
result in ray-tracing traveltimes that, for our purposes, can be
considered exact.

Figures 6e–6h show error plots for four different FMM
schemes with velocity grid spacings of 1000, 500, 250, and 125 m
(see also Table 1). The error estimate 1t is equal to the differ-
ence between the FMM solution and the ray-tracing solution at
each of the 21 receivers. The first-order scheme (Figure 6e) ex-
hibits first-order convergence; including local grid refinement
about the source (Figure 6f) improves the accuracy, but the
size of the improvement suggests that errors introduced in the
vicinity of the source are not principally responsible for the
overall error. The second-order scheme (Figure 6g) is much
more accurate than the first-order scheme (both with and with-
out grid refinement) and converges more rapidly as the node
spacing is reduced. When grid refinement about the source is
used together with the second-order scheme (Figure 6h), the
improvement in accuracy is again significant, and the conver-
gence becomes near second order.

The second example (Figure 7) shows a multiple tracked
through a structure composed of three layers. As in the Fig-
ure 6 example, velocity varies linearly with depth within each
layer, but now we are trying to track four branches comprising
three reflection events and two transmission events, as shown
schematically in Figure 7a. Consequently, FMM is invoked four
times to track the first-arrival wavefront corresponding to each
branch (see Figures 7b–7e). A snapshot of the complete wave-
front is shown in Figure 7f, and source–receiver raypaths are
shown in Figure 7g.

The accuracy of the multistage FMM cannot be analyzed
using the ray-tracing scheme in this case because it is not de-
signed to compute multiples. Instead, we appeal to the stabil-
ity of FMM and use traveltimes computed on a very fine grid
as a proxy for the exact solution. In Figures 7h–7j, error esti-
mates for the source–receiver traveltimes are plotted for four

←
Figure 7. Tracking a multiple through a layered medium in which velocity varies linearly with depth. Wavefronts are plotted at 0.4-s
intervals in all cases. (a) Schematic illustration showing the four branches of the multiple that comprise the complete phase; (b)
wavefronts corresponding to branch 1 (these emanate from the source); (c) wavefronts corresponding to branch 2; (d) wavefronts
corresponding to branch 3; (e) wavefronts corresponding to branch 4; (f) evolution of the complete multivalued wavefront (thick
line denotes the leading wavefront); (g) raypaths (to 21 receivers) corresponding to the fourfold multiple. The rms traveltime of the
wavefront to all 21 receivers is given by Trms; (h)–(j) estimates of traveltime accuracy of three different schemes using four different
grid sizes (1000, 500, 250, and 125 m).
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different grid spacings (see also Table 2). The reference solu-
tion is obtained by applying the second-order FMM scheme
on a 50-m grid with local grid refinement about the source.
It is clear from these plots and Table 2 that the convergence
behavior and accuracy of the different schemes are similar to
the Figure 6 example. The only exception is the second-order
scheme with grid refinement; the convergence appears to be
approximately first order.

The multistage FMM scheme can track any number of phases
in a layered medium. Figure 8 shows 10 different multipaths
tracked between a single source and receiver through the struc-
ture used in Figure 7. The most complex of these paths comprise
18 reflection branches and two transmission branches. Two of
the paths are pure transmissions: the direct arrival and a re-
fraction phase that turns in the second layer. The latter phase
was tracked using a three-stage FMM.

The next example is designed to test the robustness of
the multistage FMM scheme by tracking a tenfold phase
(Figure 9a) through a highly heterogeneous layered medium
with lateral velocity contrasts as great as 8:1. The complexity
of the evolving wavefront can be observed in Figure 9b, which
clearly illustrates the multivalued nature of the wavefield. The
corresponding raypaths to 21 receivers located on the surface
(Figure 9c) also testify to the extreme heterogeneity of the
velocity and interface structure. Since FMM is restricted to
locating only first arrivals within a computational domain, the
two-point ray paths favor the fast areas of the model.

Although the variations in wavespeed and interface struc-
ture are greater than we would expect to encounter in the
earth, Figure 9d shows that traveltimes predicted by the first-
order scheme to the 21 receivers appear to converge without
instability as the grid size is reduced (see also Table 3). As in
Figure 7, our proxy for the exact solution is obtained by using a
second-order FMM with local grid refinement on a 50-m grid.
The interesting feature of the second-order scheme (Figure 9e)

Table 2. Summary of speed and accuracy tests for the reflection multiple example shown in Figure 7. CPU times are for a
SunBlade 150 and include the time taken to read in the velocity field and interface surfaces.

rms error (ms) CPU time (s)
Grid spacing Number of
(m) gridpoints 1st O. 1st O. R. 2nd O. 2nd O. R. 1st O. 1st O. R. 2nd O. 2nd O. R.

1000 4141 328.6 257.1 38.9 8.5 0.1 0.2 0.1 0.2
500 16 281 189.5 153.8 15.7 4.3 0.5 0.5 0.5 0.6
250 64 561 107.3 89.4 8.3 1.9 1.7 1.8 2.0 2.1
125 257 121 59.2 50.3 4.2 0.7 7.6 7.7 8.6 8.8

O = Order. R = Refined grid about source.

Table 3. Summary of speed and accuracy tests for the complex phase example shown in Figure 9. CPU times are for a SunBlade
150 and include the time taken to read in the velocity field and interface surfaces.

rms error (ms) CPU time (s)
Grid spacing Number of
(m) gridpoints 1st O. 1st O. R. 2nd O. 2nd O. R. 1st O. 1st O. R. 2nd O. 2nd O. R.

1000 4141 460.7 430.4 130.8 118.0 0.2 0.3 0.2 0.3
500 16 281 255.2 249.7 40.2 36.0 0.6 0.7 0.7 0.8
250 64 561 148.1 145.5 13.9 11.5 2.4 2.5 2.7 2.8
125 257 121 87.1 85.7 4.3 3.5 9.9 10.1 11.4 11.6

O = Order. R = Refined grid about source.

is that it converges more quickly than the first-order scheme;
but when local grid refinement is applied, there is little im-
provement in accuracy.

Figure 10 shows a collection of 10 multiple arrivals tracked
through the structure shown in Figure 9 between a single
source and receiver. The most complex of these phases com-
prises 20 reflections and 22 transmissions. Compared to Fig-
ure 8, the paths are more clustered, a feature which may be
attributed to the highly heterogeneous nature of the velocity
distribution.

Our final example (Figure 11) shows a wavefront tracked
through a medium similar to that used in Figure 9, except that
the middle layer pinches out at both ends of the model. The
phase in this case involves a reverberation between the bot-
tom two interfaces; the wave bounces back and forth 19 times
before returning to the surface. The complex nature of the
wavefront that evolves from this process is clearly shown in
Figure 11. Although the variations in wavespeed and interface

Figure 8. Ten different phases tracked between a source and
receiver using the multistage FMM. The velocity and interface
model is the same as that used in Figure 7.
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structure exhibited by the model are extreme and the ampli-
tude of the phase would be small, this example illustrates that
the multistage FMM will work in any complex model.

DISCUSSION

The previous suite of examples shows that the multistage
FMM preserves the computational speed and robustness of the
original single-stage FMM and at the same time tracks a com-
plete class of later arriving phases in layered media. The stabil-
ity of the scheme can be observed even in the relatively simple
case of Figure 7, where a fourfold multiple is constructed. In
Figure 7d, a wavefront discontinuity at about x= 60 km im-

Figure 9. Tracking a tenfold multiple through a layered medium with extreme velocity and interface variations. (a) The
10 branches of the multiple that comprise the complete phase. (b) Evolution of the complete multivalued wavefield.
Wavefronts (thin lines) are contoured at 0.4-s intervals; thick line shows the leading wavefront. (c) Raypaths to 21
receivers corresponding to the tenfold multiple. The rms traveltime of the wavefront to all 21 receivers is given by Trms.
(d)–(f) Estimates of traveltime accuracy for three different schemes using four different grid sizes (1000, 500, 250, and
125 m).

pinges upon the deepest interface; Figure 7e shows this discon-
tinuity preserved in the reflected wavefront. The stable prop-
agation of wavefront discontinuities has traditionally been a
major challenge for eikonal methods. Figure 7h shows that the
traveltimes computed using the first-order scheme converge as
the grid spacing is reduced, despite the complex nature of the
wavefield. This convergence can even be observed in the some-
what pathological example of Figure 9, where a tenfold phase
is tracked through a medium containing severe velocity and
interface variations. The second-order scheme also appears to
be stable in complex media.

The summary of speed and accuracy tests contained in
Tables 1–3 shows that the multistage FMM is a computationally
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practical method for determining traveltimes, even if the
required phase contains many reflection and refraction
branches. It is also clear that a second-order scheme results
in a significant increase in accuracy over a first-order scheme
with little additional computational cost, and local grid refine-
ment about the source can provide additional gains in accuracy.
For instance, with a 125-m grid spacing in Figure 6 (Table 1),
the second-order scheme with grid refinement is two orders
of magnitude more accurate than the first-order scheme but
requires only 15% more CPU time. The second-order scheme
without grid refinement is an order of magnitude more accu-
rate than the first-order scheme (at 125-m grid spacing) and
takes 13% more CPU time.

As the complexity of the medium increases, the relative im-
provement of the second-order scheme compared to the first-
order scheme appears to be approximately constant. However,
the added benefit of local grid refinement about the source be-
comes less pronounced. For the example shown in Figure 6
(Table 1), the second-order scheme on a 125-m grid has an es-
timated error of 5.5 ms compared to 0.3 ms when local grid re-
finement is introduced. For the Figure 9 example, which is much
more complex, the equivalent values are 4.3 and 3.5 ms, a much
smaller difference. An explanation for this change is that the
raypaths in Figure 9c emanate from the source at near-vertical

Figure 10. Ten different phases tracked between a source and
receiver using the multistage FMM. The velocity and interface
model is the same as that used in Figure 9.

Figure 11. A snapshot of a twentyfold reflection phase through
a complex model that includes a layer pinch-out. The multi-
valued wavefield is represented by thin lines plotted at 0.4-s
intervals. The thick line denotes the leading wavefront.

trajectories, which is almost parallel to the vertical grid lines, a
direction in which source error is a minimum (see Sethian and
Popovici, 1999). Therefore, Grid refinement has little effect in
decreasing the overall error. The fact that the second-order
method converges more rapidly in Figure 9 than in Figure 6
also suggests that errors generated in the source vicinity are
not as dominant in the former case.

A comparison of Tables 1 and 3 shows that increasing the
heterogeneity of a velocity medium will decrease the accu-
racy of FMM. For example, at 1 km grid spacing, the second-
order scheme with grid refinement has an estimated error of
50.6 ms (0.36%) for Figure 6 and 118.0 ms (0.93%) for Fig-
ure 9; at 125 m grid spacing, this reduces to 0.3 ms (0.002%)
and 3.5 ms (0.027%), respectively. The velocity structure and
phase shown in Figure 9 are much more complex than one
would expect to encounter in the earth, so the level of error
summarized in Table 3 is unlikely to be exceeded in practical
applications. The multistage FMM compares favorably with
other grid-based methods in terms of speed and accuracy (see
Leidenfrost et al., 1999), and the added attraction of stabil-
ity (unconditional in the first-order case) makes it a desirable
scheme for complex media.

A limitation of the multistage FMM that we have alluded to
before is that within a computational domain (i.e., one or more
layers), only the first arrival is tracked. This can be seen clearly
in Figures 7b–7e; the observed wavefront discontinuities mark
the points at which later arriving information is lost. If all ar-
rivals were tracked, then we would expect to see the formation
of triplications (swallowtails), which would eventually lead to
a significantly greater number of arrivals. Phases involving one
or more consecutive bounces from the same interface also can-
not be found using the multistage FMM; self-intersecting wave-
fronts must be tracked simultaneously if these arrivals are to
be found.

The entropy-driven nature of FMM means that our new
scheme only solves part of the complete multiarrival prob-
lem in layered media. However, robust grid-based methods
can be tuned to work effectively in layered media, where re-
flections and transmissions form an integral part of the wave-
field. It should therefore be possible to adapt other grid-based
wavefront trackers—even those that are capable of construct-
ing multiarrivals in continuous media—to work in layered me-
dia using our partitioning approach. To date, several papers
develop the idea of exploiting phase space to find multivalued
solutions of partial differential equations that describe high-
frequency wave propagation in continuous media (Engquist
et al., 2002; Fomel and Sethian, 2002; Osher et al., 2002). Our
scheme for layered media would benefit from implementing
these generalized techniques but at a greatly increased com-
putational cost.

An alternative means of tracking multiple arrivals within
a layer which is more consistent with the multistage FMM
paradigm is to partition the multivalued solution into a se-
ries of single-valued solutions. A detailed examination of this
approach is given by Benamou (1999); other interesting pa-
pers on the subject include those by Symes (1998) and Bevc
(1997). The principal advantage of a partitioning approach is
that first-arrival schemes are used to track wavefronts, so rapid
computation is achieved. Combining these ideas with the wave-
front reinitialization scheme in layered media would result in
a powerful wavefront tracking tool.
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As it currently stands, the multistage FMM can be practically
applied to a number of problems encountered in observational
seismology. For example, it can be used in coincident reflection
or wide-angle traveltime tomography; in earthquake reloca-
tion at a local scale or in local earthquake tomography; and
in reflection processing to help suppress multiples and remove
the effects of reverberations. The determination of amplitudes
in addition to traveltimes would benefit these applications be-
cause it would help identify multiple arrivals which carry sig-
nificant energy. One way of doing this is to solve the transport
equation using the computed traveltime field (e.g., Qian and
Symes 2002); however, third-order accurate traveltimes are re-
quired to obtain first-order accurate amplitudes.

CONCLUSIONS

We have presented a multistage FMM for tracking multiple
phases in complex layered media. The desirable properties of
the new method include 1) stability (unconditional for first-
order scheme), 2) computational speed and accuracy, and 3)
the ability to track arrivals composed of any number of reflec-
tion and refraction branches. Application of the new scheme
to highly heterogeneous media comprising severe variations
in wavespeed and interface curvature supports these conclu-
sions. We have also shown that the use of local grid refinement
in the vicinity of the source can largely remove errors caused by
a known singularity in the traveltime field. Numerical results
suggest that an order of magnitude improvement in traveltime
accuracy and near-quadratic convergence with a second-order
scheme are possible. Although later arrivals (such as swallow-
tails) caused by continuous variations in wavespeed cannot be
tracked with the multistage FMM, interface generated phases
form a major class of multiple arrival; as such, the new method
may be applied in a wide range of areas including wide-angle
tomography and the processing of coincident reflection data.
Future work includes extension of the method to three di-
mensions, incorporating amplitudes, and tracking multiarrivals
within a single layer.
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