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SUMMARY

We present a method for the determination of crustal structure by simultaneous
inversion of seismic refraction and wide-angle reflection traveltimes for 3-D interface
geometry and layer velocity. Crustal structure is represented by layers in which velocity
varies linearly with depth, separated by smooth interfaces with a cubic B-spline para-
metrization. Lateral variations in structure are therefore represented by variations in
interface depth only. The model parametrization we have chosen means that ray paths
consist of piecewise circular arc segments for which analytic expressions of trajectory
and traveltime are calculated. The two-point problem of finding the first-arrival ray
path and traveltime of a specified phase between a given source and receiver is solved
using a shooting technique. A subspace inversion method is used to solve the inverse
problem, which is formulated as a non-linear optimization problem in which we seek to
minimize an objective function that consists of a data residual term and a regularization
term. Before performing the inversion, each data pick must be assigned as a refraction or
reflection from a particular layer or interface. Since our method represents structure
in terms of interfaces, fewer parameters would generally be used in a reconstruction
compared to an equivalent 3-D variable-velocity inversion. The method is well suited to
wide-angle surveys that consist of many sources and relatively few receivers (or vice
versa), such as marine shot lines used in conjunction with land-based receivers. Data
coverage in this kind of survey is often sparse and, especially if near-offset ray paths are
unavailable, highly variable. A 3-D synthetic test with an array consisting of eight
sources lying within a three-sided square of 79 receivers is described. The test model
consists of a three-interface structure that includes a layer pinch-out, and the synthetic
data set comprises 987 refraction and 930 reflection travel times contaminated with
75 ms of data noise. Six iterations of an 18-D subspace method demonstrate that the
method can produce an accurate reconstruction that satisfies the data from a 1-D starting
model. We also find that estimates of a posteriori model covariance and resolution
obtained from linear theory are useful in analysing solution reliability despite the non-
linear nature of the problem. Application of the method to data collected as part of the
1995 TASGO project in Tasmania shows that the method can satisfy 1345 refraction
and reflection traveltime picks with a geologically reasonable and robust 254-parameter
three-interface model. The inversion results indicate that the Moho beneath NW Tasmania
varies in depth from 27 km near the coast to 37 km near central Tasmania, with the
major increase in depth occurring across the Arthur Lineament.

Key words: crustal structure, inversion, ray tracing, refraction seismology, Tasmania.

1 I N T R O D U C T I O N

Seismic refraction and wide-angle reflection data (hereafter

referred to as wide-angle seismic data) have been used extensively

to map the Earth’s crustal structure in recent times, generally

using traveltimes rather than other components of seismic waves

such as amplitudes or waveforms. Interpretation methods for

this type of data are often based on the principles of tomographic

reconstruction. Typically, the procedure involves a forward

step of calculating theoretical data values by line integration

through a structure defined by a set of model parameters, and

*Now at: Research School of Earth Sciences, Australian National

University, Canberra ACT 0200, Australia. E-mail: nick@rses.anu.edu.au

{Now at: School of Earth Sciences, University of Leeds, Leeds, LS2 9JT

Geophys. J. Int. (2001) 145, 381–400

# 2001 RAS 381



an inverse step that manipulates these parameter values to

improve the fit between theoretical and observed data. In this

paper, we apply this inversion method using wide-angle seismic

traveltimes.

To date, most wide-angle seismic traveltime tomography has

been 2-D and has included inversion for velocity parameters,

interface parameters or both, using refraction and/or reflection

traveltimes. Lutter et al. (1990) inverted refraction traveltimes

for velocity, White (1989) inverted refraction traveltimes for

interface depth and velocity, Carroll & Beresford (1996) inverted

reflection traveltimes for velocity, Lutter & Nowack (1990)

inverted reflection traveltimes for interface depth and Bishop

et al. (1985), Williamson (1990) and Farra & Madriaga (1988)

used different approaches to invert reflection traveltimes for

velocity and interface depth. Zelt & Smith (1992) used both

refraction and reflection traveltimes to constrain velocity and

depth parameters. Methods that invert for both velocity

and depth parameters can have difficulty in producing well-

constrained solutions due to the fact that there may be insuffi-

cient information in traveltime data to resolve the difference

between velocity variation and depth variation. Wang & Braile

(1996) illustrated this point by unsuccessfully attempting to

reconstruct a synthetic test model described by velocity and

interface depth parameters using only refraction traveltimes.

They found that including wide-angle and normal-incidence

reflection traveltimes in their inversion dramatically improved

the result.

The 3-D wide-angle tomography problem has not been as

widely investigated as its 2-D counterpart, mainly due to the

increased cost and time required to collect the data and the

added complexities at each step of the inversion process.

However, it deserves consideration when the assumption of

2-D structure is not valid or when an in-line array of sources

and receivers is not possible. 3-D wide-angle inversion methods

and applications have been documented by several authors:

Hole (1992) and Zelt & Barton (1998) inverted first arrivals for

velocity, Hole et al. (1992) inverted first arrivals for interface

geometry, Riahi et al. (1997) inverted wide-angle reflection

traveltimes for interface geometry, and Chiu et al. (1986) inverted

reflection traveltimes for both interface geometry and layer

velocity (assumed constant). Inversion for both laterally varying

velocity and interface geometry using refraction and wide-angle

reflection data was performed by Zelt et al. (1996), although they

used a layer-stripping approach and did not simultaneously

invert refraction and reflection traveltimes. More recently, Zelt

et al. (1999) simultaneously inverted reflection and refraction

data for both laterally varying velocity and multi-interface

structure.

In general, the potential for non-uniqueness in 3-D inver-

sions is greater than in 2-D inversions, since the data/model

parameter ratio is often lower, and uniform sampling of the

subsurface by the data is much more difficult to achieve. For

these reasons, Zelt & Zelt (1998) concluded that, unless a dense

grid of shots and receivers is used, it is hard to justify a fully

3-D experiment over a network of 2-D profiles, even if 3-D

inhomogeneities are present. 3-D structure can be reasonably

inferred from multiple in-line profiles, as demonstrated by Zelt

(1994), who simultaneously inverted in-line traveltimes for

structural and velocity variations beneath intersecting profiles.

However, the nature of the survey region and/or logistical

restrictions may leave a 3-D survey as the only practicable

option. For example, surveys that involve only marine shots

and land-based receivers may provide much more information

if ray paths cover a range of azimuths.

This paper introduces a method for the determination of

3-D crustal structure from wide-angle seismic traveltimes using

the principles of tomographic reconstruction. The method is

applied to models consisting of one or more layers overlying

a half-space separated by smooth interfaces. Within a layer,

velocity varies linearly with depth with no lateral variation,

allowing simple ray tracing to be implemented. Each interface

is described by a mosaic of bicubic B-spline surface patches that

have the property of being C2 continuous across sutures. Both

the velocity parameters and the interface depths are varied in

the reconstruction process. Ray paths within layers consist of

circular arc segments whose trajectory and traveltime are com-

puted from analytical expressions. The two-point problem of

determining the source–receiver ray paths of specific phases is

solved using a shooting method, which uses simple geometric

considerations to iteratively adjust the ray projection vector

at the source so that the emerging ray more accurately targets

the receiver. If multiple two-point paths are found for a single

phase, the path with minimum traveltime is used in the inversion.

The inverse problem requires the adjustment of model parameter

values (velocities and layer depths) to minimize an objective

function that contains a data residual term and a regularization

term. We use a subspace inversion method that requires the

solution of a relatively small system of linear equations and

naturally deals with different parameter classes. All refraction

and reflection data are used in a simultaneous inversion for all

model parameters. The seismic tomography problem is inherently

non-linear, so the forward and inverse steps are performed

iteratively, with new ray paths found at each iteration.

Following the description of the method, we summarize the

results of a 3-D synthetic test used to assess its effectiveness. We

choose a source–receiver geometry that simulates surveys that

rely on marine shots and land-based receivers. Significant

lateral variations in interface structure and a layer pinch-out

are included in the test model. The sensitivity of the method to

data noise is also investigated. Model resolution and a posteriori

model covariance are then calculated assuming a locally linear

relationship between the data and model parameters at the

solution point. The aim here is to show how these quantities

may be used to assess the quality of the solution for this class of

non-linear inverse problem.

Finally, we apply the method to part of the TASGO

wide-angle seismic data set, which was recorded in 1995 by an

array of 44 single-component analogue and digital recorders

distributed throughout Tasmania, with the seismic sources

provided by marine shot lines that circumscribed the island

(Chudyk et al. 1995). In this example, data from an array of

eight receivers that recorded seismic energy from three shot

lines located just offshore NW Tasmania are used.

2 M E T H O D

2.1 Model parametrization

In choosing a suitable model parametrization, our criteria

included (1) ability to represent geologically realistic structure,

(2) satisfying the data using a minimal number of model para-

meters, (3) ability to generate refraction and reflection arrivals,

(4) compatibility with methods used to solve the forward and
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inverse steps, and (5) flexibility to allow for non-uniform node

spacing (related to point 2). To these ends, the model para-

metrization that we employ is for a 3-D stratified velocity

structure described as follows.

The model structure is defined by a set of p layers (with

the bottom layer being a half-space) separated by px1 smooth

continuous interfaces. Within a layer, velocity o varies linearly

with depth,

oðzÞ ¼ o0 � kz , (1)

where z is the vertical coordinate (up is positive), o0=o(0) and k

is the velocity gradient. Each interface is described by a mosaic

of uniform bicubic B-spline surface patches in parametric

form. Given a set of control vertices pi, j=(xi, j, yi, j, zi, j), where

i=1, . . . , m and j=1, . . . , n, the B-spline for the (i, j)th surface

patch (i=2, . . . , mx2; j=2, . . . , nx2) is

Bi, jðu, oÞ ¼
X2

k¼�1

X2

l¼�1

bkðuÞblðoÞpiþk, jþl , (2)

so that any point on the surface is a function of two

independent parameters u (0juj1) and o (0joj1). The

weighting factors {bi} are the uniform cubic B-spline basis

functions (see e.g. Bartels et al. 1987). The spline formulation of

eq. (2) means that the control vertices are not obliged to lie on a

regular grid and, by virtue of its parametric form, the surface

that is constructed need not be a single-valued function of

depth. Other potentially useful properties of the B-spline para-

metrization are that the control vertices do not necessarily lie

on the surface, and that the surface is everywhere continuous in

curvature. Undesirable side effects can be produced by forcing

piecewise polynomials to pass through nodes (Shalev 1993)

and C2 continuity is beneficial to ray tracing methods that rely

on nearby ray trajectories to vary smoothly in order to find a

two-point solution.

Eq. (2) defines (mx3)(nx3) surface patches, but we extend

the definition of the surface out to nodes with i=1, . . . , m

and j=1, . . . , n by invoking suitable boundary conditions.

To do so, we construct a set of perimeter phantom vertices for

i=0 and m+1 and j=0 and n+1 using the condition that

the second partial derivative (with respect to the parametric

direction across the boundary) is zero at the endpoint of each

boundary curve segment (Barsky 1982).

The model parametrization method described above is quite

general with respect to interface geometry, but within a layer,

velocity is assumed to vary linearly with depth. Not allowing

lateral structure within a layer means that a class of geo-

logically realistic models cannot be explored. However, gross

lateral variations within a single layer may be represented by

the inclusion of additional internal interfaces that subdivide the

layer. In practice, the method is sufficient if it can adequately

satisfy the data with a geologically plausible structure.

2.2 Ray tracing

Methods for finding source–receiver traveltimes in 3-D laterally

varying structures include ray tracing (Julian & Gubbins 1977;

Sambridge & Kennett 1990), numerical solution of the eikonal

equation (Vidale 1990; Sethian & Popovici 1999) and network/

graph theory (Cheng & House 1996). Wave front tracking

schemes based on the numerical solution of the eikonal equation

are probably the most commonly used to solve the forward step

of the 3-D wide-angle tomography problem (Hole 1992; Hole

et al. 1992; Zelt et al. 1996; Riahi et al. 1997; Zelt & Barton

1998). Advantages of these schemes over ray tracing include

computational speed, ability to find solutions in shadow zones

and direct computation of first-arrival traveltimes.

We use ray tracing to solve the forward step of the inversion

procedure, however. It is well suited to our choice of model

parametrization because the ray path in a layer is defined by an

analytic expression and each ray is defined by a relatively small

number of circular arc segments.

If a continuous velocity medium is described by o(x, y, z),

then a ray path connecting two points A and B is one that

extremizes the traveltime integral

t ¼
ðB

A

1

oðx, y, zÞ ds , (3)

where s is path length. Using the Euler–Lagrange equation

from the calculus of variations, the equation of the ray path

that extremizes eq. (3) when o is described by eq. (1) is given in

parametric form by

x ¼ oðzoÞ
k

aoðc � coÞ
1 � co2

,
boðc � coÞ

1 � co2
, 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � c2

1 � co2

s2
4

3
5þ xo , (4)

where xo is the origin of the ray segment, [a, b, c] is a unit

vector tangent to the ray path and [ao, bo, co] is a unit vector

tangent to the ray path at xo. Eq. (4) is the parametric equation

of a circle in terms of the z-component of the unit direction

vector c, and is equivalent to the expressions given in Telford

et al. (1976) that use inclination angle i as the parameter rather

than c (cos i=c). The ratio ao/bo describes the azimuth of the

path, which is constant for a ray segment. Any ray path from a

source to a receiver in our model will consist of one or more

circular arc segments. When k is positive, the ray segment is

concave up, and when k is negative, the ray segment is concave

down. The traveltime to a point on the current ray segment is

given by

t ¼ 1

2k
ln

1 þ c

1 � c

	 

1 � co

1 þ co

	 
� �
þ to , (5)

where to is the traveltime from the source to xo.

The point of intersection between a ray and a surface can

be found if we equate eq. (2) with eq. (4) to form a system of

three non-linear equations for the three unknowns u, o and c.

We solve this system using a generalized Newton method.

The initial guess required by this method is determined by

approximating each surface patch with a mosaic of piecewise

triangular plates; the point of intersection between a circular

path and a plane can be determined analytically.

To determine the new direction of the ray after it intersects

the interface, we use Snell’s law. At the point of intersection, let

wi, wr and wt define the unit tangent vectors to the incident ray,

refracted/reflected ray and the surface in the plane defined by

wi and wn (wn is the unit normal vector to the surface at the

point of intersection). Application of Snell’s law and the fact

that wr is a unit vector and must lie in the same plane as wi
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and wt yields

wr .wt

or
¼ wi .wt

oi

jwrj ¼ 1

ðwi|wtÞ .wr ¼ 0

9>>>>=
>>>>;

, (6)

which can be solved analytically for the three components

of wr. The velocity of the ray immediately before and after

intersection is denoted by oi and or respectively. Of the two

possible solutions to eq. (6), the refracted ray is the one that

maximizes wi
.wr. We can use eq. (6) to find the change in

direction of refracted or reflected (or=oi) rays, although in the

latter case, since less calculation is required to determine wn

than wt, we can instead solve

wr .wn ¼ �wi .wn

jwrj ¼ 1

ðwi|wnÞ .wr ¼ 0

9>>>=
>>>;

, (7)

where again the required solution is the one that maximizes

wi
.wr.

Refracted and reflected rays thus may be traced through the

layered models defined in Section 2.1 after defining a source

point and an initial trajectory. The ray path is projected to the

point where it hits an interface, where it is refracted or reflected

and then projected to the next interface. The cycle is repeated

until the ray emerges from the model region. The next step is

to find the specific ray paths that end at a receiver. This is the

so-called two-point problem and is solved here using a four-

step shooting method. The first step of the procedure involves

shooting out a coarse spread of rays in constant increments of

h (typically y2u) and w (typically y8u), the inclination and

azimuth respectively of a ray at the source (see Fig. 1a). The

purpose of this step is to determine the ray projection angles at

the source that bound each refraction and reflection phase type.

Step 2 of the method involves shooting out a more concen-

trated spread of rays of each phase type into the regions defined

by the previous step. The angular distance in h and w between

projected rays is typically reduced by a factor of four or more

from step 1. Step 3 shoots an even more concentrated spread of

rays (we usually decrease the increments of h and w by a factor

of two or three from step 2) into each region bracketed by four

adjacent rays (see Fig. 1b) from step 2 that contains one

or more receivers. Step 4 is an iterative step that targets each

receiver that falls inside a triangle whose vertices are the

endpoints of three adjacent rays from step 3 (Fig. 1c). Let xr be

the position of the receiver being targeted and xp be the point

where the nearest ray (hi, wi) intersects the receiver plane zp=zr.

Also, let sx=xpxxr and sy=ypxyr (see Fig. 1c). A more

accurate estimate (hi+1, wi+1) of the initial ray parameters is

then obtained by solving

Lsx

Lh
Lsx

L�

Lsy

Lh
Lsy

L�

2
6664

3
7775

hiþ1 � hi

�iþ1 � �i

" #
¼

�sxðhi, �iÞ

�syðhi, �iÞ

" #
: (8)

The new ray is then traced from the source and the procedure

is repeated with the derivatives re-evaluated at each iteration

until the ray strikes the receiver plane within a specified

distance from the receiver. We used a tolerance of 50 m for all

ray tracing. The partial derivatives in eq. (8) are approximated

by an explicit finite difference using the three nearby rays. If a

station falls inside more than one triangle then triplication has

occurred. A two-point ray is then found in each case and the

ray with minimum traveltime is selected.

If a model consists of p layers, we can look for the first

arrivals of up to p refraction phases and px1 reflection phases.

Hence, a refraction phase is identified by the deepest layer it

samples while a reflection phase is identified by the reflecting

interface; multiples are not included in either case. Our iterative

method for determining the correct two-point ray is effective

partly because we use interfaces that are C2 continuous. If

we used interfaces composed of piecewise planar segments,

for example, the discontinuities in gradient between segments

would undermine the basic assumption of eq. (8): that h and w
vary smoothly with sx and sy.

2.3 Inversion scheme

The aim of the inversion procedure is to minimize the misfit

between observed and calculated traveltimes by adjusting the

values of the model parameters, subject to regularization con-

straints. In our case, we have three classes of model parameters

Figure 1. (a) Ray projection parameters at source: h (inclination) and w (azimuth). (b) If receivers (triangles) fall within a region bracketed by four

rays from step 2 (dots) at the surface, a more concentrated shoot (step 3) is used to target the region more closely (crosses). (c) For a receiver lying in

the triangle formed by the endpoints of rays A, B and C, the projection parameters of ray A are iteratively adjusted to target the point (xr, yr) using

position derivatives calculated from the three nearest rays (step 4). See text for full explanation.
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that are adjusted: velocities, velocity gradients and the depths

of the interface vertices. Let d denote a data vector of length N

that is dependent on a model vector m of length M as d=g(m).

If we have an initial estimate m0 of the model parameters, then

comparing d=g(m0) with the observed traveltimes dobs gives

an indication of the accuracy of the model. The misfit can be

formalized by constructing an objective function S(m) that

requires minimization. If we assume the error in the relation-

ship dobs#g(mtrue) is Gaussian, then a reasonable form for

S(m) is

SðmÞ ¼ðgðmÞ � dobsÞ
TCd

�1ðgðmÞ � dobsÞ

þ eðm�m0ÞTCm
�1ðm�m0Þ , (9)

where Cd is a data covariance matrix, Cm is an a priori model

covariance matrix and e is a damping factor. The damping

factor e governs the trade-off between how well the data are

fitted and how near the final model is to the initial model. We

do not incorporate a smoothing term into the objective function

(e.g. Sambridge 1990) since our interface parametrization is

naturally smooth (see eq. 2) and node spacing can be adjusted

to suit the resolving power of the data set.

In order to minimize S(m), we use a subspace inversion

method. A number of authors (e.g. Kennett et al. 1988;

Sambridge 1990; Williamson 1990) have described this method

so we only provide a brief summary of the technique and show

how it applies to our particular problem. The basic assumption

of the subspace method, like other gradient-based methods, is

that S(m) is sufficiently smooth to validate a locally quadratic

approximation about some current model,

Sðmþ dmÞ&SðmÞ þ ªdmþ ðdmTHdmÞ=2 , (10)

where dm is a perturbation to the current model and c=hS/hm

and H=h2S/hm2 are the gradient vector and Hessian matrix

respectively. Since g is non-linear, the minimization of S(m)

requires an iterative approach,

miþ1 ¼ mi þ dmi , i ¼ 0, 1, . . . , (11)

where m0 is the initial model. The subspace method works by

restricting the minimization of the quadratic approximation of

S(m) to an n-dimensional subspace of the entire model space, so

that the perturbation dm occurs in the space spanned by a set of

M-dimensional basis vectors {a j},

dm ¼
Xn

j¼1

kja
j ¼ A� , (12)

where A=[a j] is the Mrn projection matrix. The component

mj determines the length of the corresponding vector a j that

minimizes the quadratic form of S(m) in the space spanned

by a j. Hence, m is found by substituting eq. (12) into eq. (10),

differentiating with respect to m and setting the left-hand side

to zero. The minimum of the quadratic form of S(m) in the

n-dimensional subspace is then found when

dm ¼ �A½ATHA��1ATª : (13)

Provided we have c, H and the projection matrix A, the

evaluation of eq. (13) only requires several matrix multi-

plications and the solution of a small nrn system of linear

equations. The gradient vector and the Hessian matrix are

ª ¼ GTCd
�1½gðmÞ � dobs� þ eCm

�1ðm�m0Þ , (14)

H ¼ GTCd
�1Gþ +mG

TCd
�1½gðmÞ � dobs� þ eCm

�1 , (15)

where G=hg/hm is the Fréchet matrix of partial derivatives

that are calculated during the solution of the forward problem

(see Appendix). In our calculations we neglect the second

derivative term in H since its effect is small if g(m) and dobs are

not too dissimilar and the forward problem is approximately

locally linear.

Our problem has up to three parameter classes: interface

depth, velocity and velocity gradient. A strong dependence on

scaling and, often, poor convergence (Kennett et al. 1988) may

be observed when gradient methods such as steepest descent

or conjugate gradients are applied to problems with different

parameter types. By using a judicious choice of basis vectors,

the subspace method can avoid such problems. We construct

the {a j} in terms of the steepest ascent vector in model space

ĉ=Cmc at each iteration. Three separate search directions

can be obtained by partitioning this vector on the basis of

parameter class,

ª“ ¼ a1 þ a2 þ a3 ¼

ª“ 1

0

0

2
6664

3
7775þ

0

ª“ 2

0

2
6664

3
7775þ

0

0

ª“ 3

2
6664

3
7775 , (16)

where a1, a2 and a3 represent ascent vectors that lie in the

parameter space of interface depth, velocity and velocity

gradient respectively. To increase the dimension of the sub-

space (in order to increase the rate of convergence), we obtain

more basis vectors by determining the rate of change of the

ascent vectors. A further nine basis vectors are obtained by pre-

multiplying a1, a2 and a3 by the model space Hessian H“ =CmH
and partitioning the three vectors that result, as is done in

eq. (16). Additional basis vectors can be produced by repeating

the process of pre-multiplication of the latest set of vectors

by the model space Hessian. Once a suitable number of basis

vectors are obtained, they are orthonormalized using Gram–

Schmidt orthogonalization. Choosing an appropriate number

of basis vectors requires finding an acceptable balance between

computational effort and rate of convergence. In the appli-

cation of our method, we have not used subspaces whose

dimensions exceed 18.

The complete inversion method is iterative and, starting

from a suitable initial model, each iteration successively uses

ray tracing to determine new ray paths, model traveltimes

and the Fréchet matrix, and subspace inversion to calculate dm.

The iterations cease either when the observed traveltimes are

satisfied by the model predictions or when the change in S(m)

with iteration becomes sufficiently small. If picking errors are

constant, then the data are satisfied when the rms difference

between observed and model traveltimes falls below the rms

picking error. However, since picking errors need not be

identical for all picks, the x2 misfit, which weights the residuals

according to the size of their uncertainties, is used to analyse

the data fit. The x2 misfit is defined by

s2 ¼ 1

N

XN

i¼1

di
m � di

obs

pi
d

	 
2

, (17)
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where g={d i
m}. The quantity Nx2 is thus equal to the data term

of the objective function (eq. 9). The solution fits the data to

the level of the noise when x2=1.

Picked data must be assigned to a reflection or refraction

phase from a particular layer or interface prior to the inversion.

This may be difficult to do when the velocity contrast across an

interface is small, but incorrect assignment may result in that

portion of the data being poorly satisfied by the solution model,

which suggests either an incorrect assignment or an incorrect

pick. Knowing which traveltime is associated with which phase

is a priori information for the inversion, so if it is possible

to identify different phases in the data, then this information

should be used to help constrain the solution.

2.4 Estimating variance and damping

We assume uncorrelated errors, and thus define the covariance

matrices Cd={dij(sd
j )2} and Cm={dij(sm

j )2}. The square root

of each non-zero element in Cd and Cm thus indicates the

estimated uncertainty in the corresponding traveltime and

initial model parameter respectively. In a real data inversion,

the {sd
j } can be estimated from the picking error of each travel-

time. The {sm
j } estimates are based on a priori information

on the error associated with the initial estimate of each model

parameter. If, for example, 1-D refraction interpretations were

used to construct the initial model, {sm
j } could be estimated by

adjusting the interface and velocity parameters in the refraction

interpretation to determine the range over which they will

reasonably satisfy the data.

The relative values of sd
j control the weight each traveltime

datum carries in the inversion. Similarly, the relative values of

sm
j control the freedom each model parameter has to deviate

from its initial value. The choice of Cd and Cm also influence

the relative magnitudes of the data residual term and the model

term in eq. (9), thereby influencing the trade-off in the inversion

between satisfying the observed data and matching the initial

model estimate. Ultimately, however, this trade-off is con-

trolled by the damping factor e in the objective function (eq. 9).

We require a value of e that results in a model that satisfies the

data well, only differs from the initial model where required by

the data, and is physically reasonable. The choice of e is based

on x2 misfit versus rms model perturbation (ymo) trade-off

curves for a range of damping factors, as demonstrated in the

synthetic tests (see Section 3). The quantity ymo is defined by

tmo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

ðmi � mi
0Þ

2

M

vuuuut
(18)

and is calculated separately for each parameter class so that

separate trade-off curves are generated for interface depth,

velocity and velocity gradient.

2.5 Layer pinch-outs

A layer pinch-out may be represented in the model by two

distinct interfaces that are separate in one region of the model

but elsewhere come together with an identical set of interface

vertices. If a layer pinch-out is expected to occur, then the

two interfaces in question are required to have the same vertex

distribution in the (x, y) domain. In adjusting the model

parameters, we set the condition that no vertex in the upper

interface can lie at a greater depth than the corresponding

vertex in the lower interface. It follows from the B-spline

definition (eq. 2) that the interfaces will not be able to cross

over. If, in an inversion, two surface patches become coincident

in space, then the ray tracing routine treats them as a single

surface patch. Subsequent inversion iterations may separate

them or they can be locked together for the remainder of the

inversion process if desired.

2.6 Analysis of solution quality

Various methods for evaluating the quality or robustness of a

solution to an inverse problem are in use. Parametrizations that

describe continuous velocity fields often opt for resolution tests

that attempt to reconstruct a synthetic model using the same

source–receiver geometry as the real experiment. The so-called

‘checkerboard test’ is a common example and has been used

in local earthquake tomography (e.g. Chiarabba et al. 1997),

teleseismic tomography (e.g. Steck et al. 1998) and wide-angle

tomography (e.g. Zelt & Barton 1998). Problems can arise in

the apparently straightforward task of translating the synthetic

reconstruction results of the checkerboard test into an assess-

ment of solution quality (Lévêque et al. 1993), and ray paths

through a checkerboard model will differ from those through the

solution model if the non-linearity of the problem is accounted

for. However, performing a number of these synthetic recon-

structions using different structures will improve the reliability

of this approach.

Another common approach to analysing solution quality

with non-linear inversions is developed from linear theory

by assuming that the relationship d=g(m) is approximately

linear about the solution point. If local linearity applies, then

a posteriori model covariance CM and model resolution R can

be estimated (Tarantola 1987),

CM&e½GTCd
�1Gþ eCm

�1��1 , (19)

R&I�CMCm
�1 , (20)

where G is evaluated at the approximate solution. The diagonal

elements of CM and R respectively indicate the posterior

uncertainty associated with each model parameter and how

well each model parameter is independently resolved by the

data. Lutter & Nowack (1990), Zelt & Smith (1992) and

McCaughey & Singh (1997) have employed these analysis tools

in 2-D wide-angle traveltime inversion.

In 3-D velocity inversions, the matrix in eq. (19)—

(GTCd
x1G+eCm

x1)—may be very large, making calculation

of its inverse impractical. Consequently, CM and R are not

commonly considered in 3-D problems. The compact para-

metrization used in our model, however, allows us to

economically calculate (using LU decomposition) a posteriori

model covariance and resolution. We apply this method to

the synthetic example in the next section in order to analyse the

validity of these robustness estimates, before proceeding to

apply the same robustness estimates to a solution derived from

real data.
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3 S Y N T H E T I C T E S T S

The aim of this section is to examine the performance of our

inversion method with 3-D synthetic data by (1) specifying

a synthetic (or ‘true’) model and a source–receiver geometry,

(2) generating a synthetic data set by ray tracing through the

true model and recording the traveltimes of both refracted and

reflected rays, (3) inverting the synthetic data for interface

depth and layer velocity starting with a given initial model, and

(4) evaluating the differences between the recovered model

and the synthetic model. Apart from giving an indication of

how well the inversion method can resolve structure, the syn-

thetic tests are also useful for analysing the sensitivity of the

method with respect to data noise. In addition, examination of

the a posteriori model covariance and resolution matrices for

the synthetic tests assists us in interpreting those measures for a

real data inversion.

The model we use for the synthetic tests consists of three

crustal layers overlying a mantle half-space. The three inter-

faces that define the boundaries between upper crust, middle

crust, lower crust and mantle are identically parametrized

with 9r9 vertices (see Fig. 2) spaced evenly in both x and y

(Dx=Dy=20 km) with a horizontal coverage of 160r160 km2.

Layer velocities (see Table 1) are chosen to be typical of con-

tinental crust. The entire model is defined by 251 parameters

comprised of 81 vertical coordinates for each interface and two

velocity parameters for each layer. Significant variations in inter-

face depth are present in the model and the lower crustal layer

pinches out against the Moho in a large region. The model is

depicted in the left-hand column of Fig. 6.

The source–receiver geometry we use for the synthetic tests

consists of 79 receivers spaced 5 km apart along three sides of a

square, with eight sources lying inside the square. Fig. 2 shows

the source–receiver configuration as well as the horizontal

positions of the interface vertices. Note that the ratio of sources

to receivers we use here is typical of land-based surveys (e.g.

Darbyshire et al. 1998), but the array geometry is perhaps more

likely to be encountered in a marine survey (e.g. the TASGO

survey, Chudyk et al. 1995), in which case there would be many

more sources than receivers. The principle of reciprocity in ray

tracing means, however, that we could treat the source array as

the receiver array and vice versa without affecting the inversion

result.

The synthetic data set was constructed by using the ray tracing

method described in Section 2.2 to determine the ray paths

of up to four refraction and three reflection phases for each

source–receiver pair. The resulting synthetic data set consists

of the traveltimes of 1917 ray paths (987 refracted and 930

reflected rays). Fig. 3 shows synthetic traveltime curves from

the shot at (x, y)=(55, 25) km recorded by the receivers that lie

on the line x=15 km. The four refraction phases correspond

to rays that turn in the upper, middle, lower crustal and

mantle layers. The reflection phases are discernible for all three

reflectors. The P2P and PmP phases merge at an offset of

90 km as a result of the lower crustal pinch-out. All traveltimes

determined by the ray tracing are used in the inversion. In

practice, however, the complete offset range of later arrivals

determined by ray theory would probably not be picked from

real wide-angle data. To simulate the noise content of real data,

Gaussian noise with a standard deviation of 75 ms was added

to the synthetic traveltimes.

The initial 3-D model estimate from which the inversion

commences has a 1-D structure consisting of three planar

horizontal interfaces at depths of 7.3, 21.5 and 26.0 km

and arbitrary velocity parameters shown in Table 1. A three-

interface model is required to account for the four refraction

and three reflection curves evident in Fig. 3. Although the

Figure 2. Plan view of the source–receiver array and horizontal

positions of interface vertices for the 3-D synthetic model. The

locations of the sources and receivers are indicated by stars and

triangles respectively. The horizontal positions of the interface vertices

(grey dots) are identical for each of the three interfaces.

Table 1. Velocity parameter values of initial, true and recovered models for the synthetic test. The corresponding

resolution values associated with the recovered model are also given. Layer 1 is the upper crustal (top) layer and layer 4 is

the mantle half-space.

Layer Initial model True model Recovered model Resolution

o0 (km sx1) k (sx1) o0 (km sx1) k (sx1) o0 (km sx1) k (sx1) o0 k

1 4.60 0.060 4.30 0.050 4.30 0.049 1.00 0.97

2 5.00 0.030 5.20 0.040 5.24 0.038 0.99 0.98

3 6.20 0.040 6.00 0.030 6.13 0.024 0.79 0.76

4 7.20 0.030 7.40 0.020 7.42 0.020 0.74 0.74
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reflection phases that merge make it tempting to include lateral

structure in the starting model, a 1-D starting model is

probably a more objective choice if the actual structure is not

known a priori.

In executing the synthetic data inversion, the dimension of

the subspace inversion scheme was set to 18. Of the 18 basis

vectors determined, 10 lie in interface depth parameter space,

four lie in velocity parameter space and four lie in velocity

gradient parameter space. Since there are only four velocity

parameters and four velocity gradient parameters, the basis

vectors span the model space of both of these parameter

classes. We found that this 18-D scheme offered a suitable

compromise between the magnitude of the objective function

reduction per iteration and the computational effort.

Before commencing the inversion process, we require the

values of the damping parameter e, the data covariance

matrix Cd and the a priori model covariance matrix Cm be

specified. The synthetic data were corrupted with Gaussian

noise of standard deviation 75 ms, so this value is used in

Cd : sd
j=7.5r10x2 s, j=1, . . . , N. In the case of the a priori

model covariance, the {sm
j } are here based on the rms differ-

ence between the true and initial depths of each interface, the

true and initial velocities and the true and initial velocity

gradients. The values used are 2.0 km for the top interface,

3.0 km for the middle interface, 5.0 km for the bottom

interface, 0.23 km sx1 for the velocities and 0.01 sx1 for the

velocity gradient. To determine the most appropriate value of e,

several six-iteration inversions were carried out using values

of e between 0 and 100. Fig. 4(a) shows the reduction in the

data residual x2 versus rms perturbation of the solution model

(relative to the initial model) for six different values of e for

each parameter class. In the range 1.0jej 5.0, the solution

is near the minima of the data residual without being highly

perturbed from the initial model (Fig. 4a). We also see

(Fig. 4b) that this range of damping parameters optimizes

the fit of the solution to the true model. Based on this test,

we select e=2.0 as providing the optimal solution, which we

describe below. With real data, the parameter ymt is unknown,

but this test shows that we can use plots such as Fig. 4(a) to

choose a reasonable value for e.

For e=2.0, the x2 misfit (eq. 17) decreases monotonically

(Fig. 5) from an initial value of 69.12 to 1.02 at iteration six.

Correspondingly, the rms traveltime misfit decreases from

624 to 76 ms, a value approximately equal to the standard

deviation of the noise added to the data. The improvement in x2

misfit between iterations three and six is very small (0.1), and is

accompanied by negligible changes in the model parameter

values. Such behaviour is indicative of a stable inversion. Fig. 6

shows a comparison between the interface structures of the true

model and those of the reconstructed model after six iterations.

The basic features of each interface are well recovered except

near the edges of the model, where there are no rays and hence

no data constraints. Inaccuracies in the recovered model are

particularly evident around the edges of interface 3 (Moho),

where the initial depths outside the receiver array differ

significantly from the true depths. Fig. 7 shows, in four cross-

sections at constant x, the starting model, the true model and

the reconstructed model. The contrast in accuracy between the

reconstruction near the edges of the model and inboard of

the receiver array is also evident in these cross-sections.

Velocity parameters are also accurately recovered, as shown

by the comparison between the parameters of the true model

and those of the reconstructed model in Table 1 and Fig. 8.

The average velocity above and below each interface of the

P P1

P

P2

Pn

P Pm

P1

P P2

Figure 3. Traveltime curves of arrivals from source located at

(x, y)=(55, 25) km recorded by receivers that lie along the line

x=15 km. Offset is the receiver distance from the start of the line at

(x, y)=(15, 15) km, and d is the source–receiver distance. Reflections

from the ith interface (PiP) are denoted by dashed lines, refractions that

turn beneath interface i (Pi) by solid lines (P is the direct arrival). Four

refraction phases and three reflection phases are evident, indicating the

presence of three interfaces.

(a)

(b)

Figure 4. (a) x2 data misfit (eq. 17) versus rms model perturbation

ymo (eq. 18), and (b) x2 data misfit versus model inaccuracy ymt

(obtained from eq. 18 by replacing the initial model {mo
i} with the true

model {mt
i}), for various values of the damping factor e after six

iterations of the inversion. The three misfit measures x2, ymo and ymt

are plotted as a percentage of their initial values (i.e. at iteration zero).

The model perturbation ymo (and ymt) is determined separately for

each parameter type: interface node depth (solid line), layer velocity

(dashed line) and layer velocity gradient (dotted line).
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true, initial and reconstructed models is shown in Table 2.

Even for layer 3, where the two velocity parameters are not

particularly well recovered (Table 1), the average velocities at

the top and bottom of this layer are quite accurately recovered

(Table 2) because the overestimate of oo is compensated for by

the underestimate of k. The relatively low number of rays that

turn in layer 3 may account for this trade-off. Table 2 also gives

the rms misfit between the true model interface depths and the

estimated depths at iteration 0 (initial model) and iteration 6

(final model). Significant improvement is seen in all interfaces,

although the final misfit of the bottom interface is significantly

larger than those of the top two, mainly due to errors in the

unconstrained parts of this interface outside the receiver array.

We now examine how the model resolution matrix R (eq. 20)

may be used to measure solution quality in this synthetic test.

In particular, the diagonal elements of R (Fig. 9), which vary

between 0 and 1, indicate how well each parameter has been

resolved by the data set. Comparison of the resolution matrix

entries associated with each interface depth parameter (Fig. 9)

and the ray hit diagram (Fig. 10) shows that good resolution of

the interface parameters is closely dependent on the proximity

of ray–interface hits, particularly of reflections. The most striking

feature of Fig. 9 is the contrast between the resolution of the

parameters that lie outside the square formed by the receivers

and those that lie inside. This contrast is expected because the

ray paths do not sample structure that lies outside the array

(Fig. 10). The low resolution values and ray hit densities correlate

well with those parts of the model that are not accurately recon-

structed. For example (see Fig. 6), at (x, y)=(0, 100+) km and

(x, y)=(160, 100+) km, the inversion has failed to pull the

bottom interface upwards to pinch out the lower crustal layer.

The interface parameters that lie directly adjacent to the receiver

lines are consistently better resolved for interface 1 than for the

two deeper interfaces because the shallow depth of interface 1

results in a concentration of ray–interface hits close to the

sources and receivers (see Fig. 10). It is possible for interface

parameters to have non-zero resolution even when they are not

in the near vicinity of ray–interface hits, since the spline function

that defines each surface patch depends on 16 surrounding

nodes (see eq. 2). Although their resolution is not much greater

than zero, the nodes of interface 1 that lie outside the receiver

array illustrate this effect.

Within the region bounded by the receiver array, the

resolution is generally >0.5 for those parts of the interfaces

that are accurately reconstructed. Where the reconstruction

is less accurate, e.g. at (x, y)=(80, 80) km in interface 2, we

generally see a low value for the corresponding resolution

matrix entry (0.4 in this case). The resolution matrix entries of

the layer velocities and velocity gradients are shown in Table 1.

The velocity parameters of the top two layers are well resolved

(as expected) because they are quite densely penetrated by rays.

The velocity parameters of the third layer are less well resolved,

which is explained by the low number of refracted rays that

turn in this layer. In general, refracted rays are more important in

constraining velocities, while reflected rays are more important

in constraining interface depth.

It is common practice with the diagonal elements of the

resolution matrix to assign a cut-off value, below which the

associated model parameters are considered to be poorly con-

strained by the data and hence unreliable. For example, Zelt &

Smith (1992) used a value of 0.5, while Lutter & Nowack (1990)

used a value of 0.6. We performed several synthetic inversions

with different array geometries and models and conclude that

parameters associated with diagonal elements of the resolution

matrix i0.5 are generally well resolved.

4 A P P L I C A T I O N T O T H E T A S G O
W I D E - A N G L E D A T A S E T

During March–April 1995, as part of the TASGO project

(Hill & Yeates 1995), a 3-D wide-angle seismic experiment

was carried out in Tasmania by the Australian Geological

Survey Organisation (AGSO). AGSO’s research vessel Rig

Seismic circumnavigated Tasmania firing y36 000 air-gun

shots with an average shot spacing of 50 m. A network of 44

vertical-component analogue and digital recorders distributed

throughout Tasmania recorded seismic energy from the shots.

Figure 5. x2 data misfit (eq. 17) versus iteration number for 18-D

subspace inversion of synthetic traveltime data set with damping

parameter e=2.0.

Table 2. Average velocities (in km sx1) immediately above (oA
a ) and below (oA

b ) the initial, true and recovered model

interfaces for the synthetic test. The final two columns show the rms misfit between the true model interface depths and

estimated model interface depths at iteration 0 (initial model) and iteration 6 (recovered model).

Interface Initial model True model Recovered model Rms misfit (km)

oA
a oA

b oA
a oA

b oA
a oA

b its=0 its=6

1 5.04 5.22 4.67 5.49 4.68 5.53 1.17 0.48

2 5.65 7.06 6.07 6.65 6.05 6.65 2.04 0.69

3 7.24 7.98 6.77 7.91 6.75 7.92 4.63 1.96
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Our aim here is to invert a subset of the TASGO wide-angle

data set from NW Tasmania to demonstrate the effectiveness

of the method applied to real data. The preliminary model of

NW Tasmania presented here is the first published 3-D

inversion of data from the TASGO wide-angle survey, but

we emphasize that it is not the role of this paper to provide

extensive analysis of data or interpretation of results. Instead,

we limit our discussion to those aspects of the inversion that

illustrate the effectiveness of the new method described above.

A detailed examination of the survey operation, data reduction

and picking, and interpretation of results using data from all of

Tasmania is the subject of a future paper.

Figure 6. Comparison between true model interface depth (left column) and inverted model interface depth (right column) after six iterations of the

inversion with e=2.0. Interfaces 2 and 3 are given the same greyscale to help identify the pinched-out regions. Figs 6 and 15(a) may be viewed in colour

in the online version of the journal (www.blackwell-synergy.com).
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In this paper, we analyse a data set that consists of three

marine shot lines and eight land-based receivers located in NW

Tasmania (see Fig. 11). Equipment problems and the nature

of the survey region (Chudyk et al. 1995) resulted in not

all source-line to receiver combinations providing good data.

Where possible, however, phases are picked every 2 km along

the lines, resulting in a total of 661 refraction and 684 reflection

traveltimes to be inverted for crustal structure. A picking error

was associated with each identified arrival based on the clarity

of the onset. The rms picking error of all the traveltimes used

in the inversion is 115 ms, with the smallest error (50 ms)

associated with a near-offset first break and the largest error

(210 ms) associated with a Moho reflection.

The next step in the inversion process is to specify the

model parametrization. The model must have the capacity

(i.e. sufficient model parameters) to satisfy the data constraints

adequately. By studying all of the available refraction sections,

we were able to identify three crustal refraction phases and,

usually, their associated reflection phases, as well as a Pn phase

and a PmP phase (Table 3). Strong PmP phases are a feature

common to all the refraction sections, suggesting a significant

velocity contrast between lower crust and lithospheric mantle.

The phases identified from the refraction sections indicate that

the region of interest is best represented by three crustal layers

overlying a mantle half-space. We obtained an approximate

picture of the crustal structure by 1-D inversion of reflection and

refraction traveltimes from the station/shot-line combinations

10/5, 31/5, 31/8 and 27/9 (each considered separately). These

analyses provided depth to interface, layer velocity and layer

velocity gradient. The average (1-D) structure determined from

these 1-D inversions was used as the initial model estimate in

the 3-D inversion. The diagonal entries of the a priori model

covariance matrix are given by the variance of these interface

depths, layer velocities and layer velocity gradients.

For the 3-D inversion, the upper and middle interfaces

are each described by 63 nodes with variable spacing and the

bottom interface by 120 nodes on a regular grid (Fig. 12). We

reduced the node density in the upper two interfaces because

the restricted geometry of the source–receiver array (Fig. 11)

means that these interfaces, which occur at shallow depths,

include large regions that are not intersected by any rays (see

Fig. 15b). We invert for a total of 254 parameters (246 inter-

face, four velocity and four velocity gradient). The source and

receiver locations (Fig. 11) are projected into Cartesian space

using an Albers equal-area conic projection with two standard

parallels. On this scale, corrections for the Earth’s sphericity

are not necessary (Zelt 1999).

Ray tracing through the model is performed with all shot

points at sea level (z=0) and all receivers at their measured

heights above sea level; station 39 has the greatest elevation at

975 m. In the inversion, the dimension of the subspace was set

to 18. As in the synthetic data inversion (Section 3), 10 vectors

lie in interface depth parameter space, four span velocity para-

meter space and four span velocity gradient parameter space,

resulting in a scheme that offers an acceptable compromise

Figure 7. Four cross-sections at constant x through the initial model

(dashed lines), true model (dotted lines) and reconstructed model

(solid lines) after six iterations with e=2.0.

Figure 8. Velocity versus depth at two locations in the initial model

(dashed lines), true model (dotted lines) and reconstructed model (solid

lines). Due to the layer pinch-out, the profile at (x, y)=(100, 120) km

essentially shows a two-interface structure, while the profile at

(x, y)=(110, 30) km shows a three-interface structure.
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between the magnitude of the objective function reduction per

iteration and computational effort. The value of the damping

parameter e was set to 1.0 on the basis of the trade-off between

x2 misfit and rms model perturbation as e is varied from 0 to

100 (Fig. 13a). A plot of x2 misfit versus iteration (Fig. 13b) for

e=1.0 follows a monotonically decreasing path that levels out

close to the optimum value of 1.0 (x2=1.1 at iteration 5). The

corresponding rms data misfit at iteration 5 is 116 ms, which is

1 ms greater than the rms picking error.

Figure 9. Graphical representation of the diagonal elements of the

resolution matrix (calculated after six iterations of the method) for

all interface depth parameters. The circles that indicate the size of the

resolution are grey-filled for values i0.5 and black-filled for values

<0.5.

Figure 10. Ray–interface hits for synthetic test solution model (Fig. 6).

Interface nodes are denoted by grey-filled circles, sources by stars

and receivers by triangles. Rays that transmit through an interface are

denoted by black circles and rays that reflect are denoted by grey

crosses.
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Data recorded at station 10 from line 5 shots are shown in

the wide-angle section of Fig. 14(a), and Fig. 14(b) shows a

comparison between the picked and model traveltimes of both

refracted and reflected phases from this section. The model

traveltimes are generally within picking error, although some of

the shorter-wavelength features evident in the observed data

are not present in the model traveltime curves.

Fig. 15(a) shows the final model interface depth maps after

five iterations with e=1.0. Ray interface intersection points are

shown in Fig. 15(b) and the diagonal elements of the resolution

matrix for the interface node depths (determined at the final

solution) are shown in Fig. 15(c). Three cross-sections of

constant x through the initial and solution models are shown in

Fig. 16. From the ray hit (Fig. 15b) and resolution (Fig. 15c)

Table 3. Phases picked from the available data. P1P, P2P and PmP phases reflect off the top, middle and bottom

interfaces respectively. P, P1 and P2 phases refract or turn back to the surface in the top, middle and bottom crustal

layers respectively while the Pn phase enters the mantle half-space before refracting back to the surface.

Superscripts indicate the number of picks associated with each phase of the indicated station–line combination.

Station Line 5 Line 8 Line 9

refract reflect refract reflect refract reflect

4 PmP25

5 P2
27 PmP28 P2

19

10 P12, P1
45 P2P21, PmP61

P2
41, Pn

30

25 PmP16 PmP28

27 P2
42, Pn

28 PmP63 Pn
36 P2

38, Pn
41 PmP55

31 P12, P1
17 P1P12, P2P18 P1

26, P2
25 P2P19, PmP28 Pn

33 PmP46

P2
25, Pn

23 PmP54

39 P2
23, Pn

11 PmP44 P1
21, P2

9 PmP38

40 P9, P1
33 P1P8, P2P19 Pn

13 PmP39

P2
23, Pn

18 PmP43
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Figure 11. Subset of TASGO source–receiver array in NW Tasmania used in the inversion for crustal structure. Black dots indicate recorders and

thick solid lines indicate shot lines (50 m shot spacing).
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diagrams, it is evident that the top interface is very poorly

constrained by the data; most of the ray hit marks coincide with

the source and receiver symbols. The large offset relative to

interface depth means that reflections are difficult to detect.

In this inversion method, regions that are poorly resolved

tend not to deviate significantly from their initial value and

are unlikely to influence the reconstruction of deeper structure

strongly. Although interface 1 is poorly resolved, its presence

in the model parametrization does not adversely effect the

resolution of the other interface and velocity parameters. The

deflections from the horizontal of interface 1 are of small

amplitude (Fig. 16) and do not affect the traveltimes of deeper

phases enough to have any significant effect on the depths

of deeper interfaces. We verified this assertion by running

the inversion with the upper interface nodes forced to remain

at their initial depths. The bottom two interfaces were then

practically identical to the corresponding interfaces derived

without this constraint, although the overall data fit was not

quite as good. Based on the interpretation of the resolution

parameters (Fig. 15c), the major depth anomalies of interface 2

are resolved near the shot lines, although not inland. The

bottom interface, which represents the Moho, is by far the best

resolved interface (Fig. 15c), mainly because of the profusion

of PmP phases (Fig. 15b) picked from the data.

A comparison of the initial and final layer velocity structures

are given by the three velocity versus depth curves in Fig. 17.

The layer velocities (Tables 4 and 5) have not changed greatly

from their initial estimates, but we found that if we fix the

velocity estimates and invert for interface structure alone,

the final rms data misfit is 76 ms greater than the result we

obtained by inverting for all three parameter classes. Table 4

also shows the resolution of each of the velocity parameters.

Generally, velocity (oo) is well resolved but velocity gradient (k)

is not, especially in the top two layers. The poor resolution of k

is expected because both layers are relatively thin and rays that

turn in these layers are few in number. The average crustal

velocity (all three layers) of the final model is 6.3 km s-1 and the

average velocity of the mantle immediately below the Moho is

8.2 km sx1.

Figure 12. Horizontal node distribution used for each of the three interfaces (numbered in order of increasing depth). Sources and receivers

are indicated by triangles and stars respectively, while interface vertices are denoted by grey-filled circles. Grey lines represent surface patch

boundaries.

(a)

(b)

Figure 13. (a) x2 data misfit (eq. 17) versus rms model perturbation

ymo (eq. 18) for various values of the damping factor e after five

iterations. The two misfit measures x2 and ymo are plotted as a

percentage of their initial values (i.e. at iteration zero). The model

perturbation ymo is determined separately for each parameter type:

interface node depth (solid line), layer velocity (dashed line) and layer

velocity gradient (dotted line). (b) x2 misfit versus iteration number for

the inversion solution shown in Fig. 15 with e=1.0.
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5 D I S C U S S I O N

In the analysis of 2-D wide-angle seismic data sets, crustal

structure is commonly represented by a series of layers of

variable thickness. Interfaces are usually defined by piecewise

polynomials (of degree one or higher) and the velocity para-

metrization of each layer often allows for lateral variation. During

the reconstruction process, both parameter types (interface

depth and velocity) are usually varied in an attempt to satisfy

the data, which normally consist of the traveltimes of both

refracted and reflected phases. For example, Stadtlander et al.

(1999) derived a crustal and upper mantle structure beneath

the southern Ural Mountains, representing upper, middle and

lower crustal layers in addition to an upper mantle half-space.

They also divided the upper crust into a large number of laterally

discontinuous layers. Kodaira et al. (1998) used wide-angle

traveltimes to constrain a crustal model consisting of no fewer

than eight layers, four of which were laterally discontinuous,

beneath the Jan Mayan microcontinent. They inverted for both

interface geometry and layer velocity structure. Others who

have used similar approaches to constrain 2-D multilayered

crustal structure include Kanasewich et al. (1994), Darbyshire

et al. (1998), Navin et al. (1998) and Vogt et al. (1998).

Dealing with complex multiple interface structures with

variable velocity layers is more problematic in three dimensions

than in two. Thus, although a number of tomographic-style

interpretations of 3-D wide-angle data have been performed,

most authors avoid the kind of detail seen in the class of 2-D

models described above. For example, it is common practice to

invert the traveltimes of only the first arrivals of a 3-D data set

for continuous velocity structure (e.g. Hole 1992; Zelt & Barton

1998) or to invert for the structure of a single interface using

first arrivals (e.g. Hole et al. 1992) or reflected phases (e.g. Riahi

et al. 1997). In 3-D problems, a dense coverage of rays is much

more difficult to achieve than in two dimensions, even if both

Table 4. Velocity parameter values of initial and final models for the

NW Tasmania data set. The resolution values associated with the

recovered model are also given. Layer 1 is the upper crustal (top) layer

and layer 4 is the mantle half-space. Note that the actual velocity at a

given depth is defined by eq. (1).

Layer Initial model Recovered model Resolution

o0 (km sx1) k (sx1) o0 (km sx1) k (sx1) o0 k

1 4.90 0.045 4.92 0.044 0.98 0.002

2 5.50 0.037 5.65 0.031 0.98 0.090

3 6.00 0.035 5.98 0.029 0.98 0.520

4 7.00 0.027 7.17 0.031 0.68 0.347

Table 5. Average velocities (in km sx1) immediately above (oA
a ) and

below (oA
b ) the initial and recovered model interfaces for the TASGO

data inversion.

Interface Initial model Recovered model

oA
a

oA
b

oA
a

oA
b

1 4.98 5.57 4.98 5.70

2 5.78 6.26 5.90 6.21

3 7.12 7.86 6.90 8.16

(a)

(b)

Figure 14. (a) Wide-angle data collected at station 10 from line 5 shots (see Fig. 11). Bandpass filtering between 4.0 and 14.0 Hz and nine-trace

stacking have been employed to improve signal:noise ratio. (b) Comparison between observed picks (error bars) from (a) and solution model

traveltimes (solid lines) of refracted and reflected phases.
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refraction and wide-angle reflection data are used. Zelt et al.

(1996) used a layer-stripping approach to invert refraction and

reflection traveltimes for interface structure and layer velocity

beneath the southwestern Canadian Cordillera. The method we

have presented here is designed to invert both refraction and

reflection traveltimes for crustal structure in the form of multiple

laterally continuous interfaces separating subhorizontal layers

that are free to pinch out. Thus, our inversion method has

(a)

(b)

(c)

Figure 15. (a) Interface depth maps for NW Tasmania after five iterations. The top two interfaces are non-rectangular due to the irregular

parametrization (Fig. 12). (b) Ray–interface hits for this model. Rays that cross an interface are denoted by black circles and rays that reflect are

denoted by grey crosses. (c) Diagonal elements of the resolution matrix. Circles are grey-filled for values i0.5 and black-filled for values <0.5.

Receivers are denoted by stars and sources by triangles in all three plots.
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many similarities with those methods commonly used in 2-D

analyses. Perhaps the main difference is that our parametrization

does not include lateral velocity variations within a layer.

However, 3-D data sets such as the TASGO data set may not

provide adequate ray coverage to allow for the satisfactory

resolution of both lateral velocity variation and interface

structure, even allowing for the use of both refraction and

reflection phases. Our approach has been to look for the simplest

model capable of explaining the data. If a model without lateral

velocity variation is capable of satisfying the available data

within observational error, then there is little to justify the

inclusion of more model parameters, which will only produce a

more complex solution.

The interface parametrization based on cubic B-splines (eq. 2)

is quite general in that interface vertices are not restricted to a

rectangular grid and the interface itself need not be a single-

valued function with respect to depth. A non-rectangular grid

of nodes may be useful if ray coverage is highly variable, as

demonstrated in Section 4 with the TASGO data example.

The ray tracing method (Section 2.2) is designed to deal with

interfaces that are not single valued with respect to depth, but it

would be difficult to identify phases picked from a refraction

section with recumbent structures.

The synthetic tests (Section 3) show that the method is

capable of simultaneously inverting refraction and reflection

traveltimes for interface structure and linear velocity variations

with depth within layers. The method is robust in the presence of

Gaussian-distributed data noise, a source–receiver configuration

(Fig. 2) that is far from homogeneous, and initial model esti-

mates that are not close to the true model (see Table 2 and

Fig. 7). The synthetic model (Fig. 6) includes a layer pinch-out,

and the inversion demonstrates that these structures may be

derived from wide-angle data even if an initial model with only

1-D structure is used. The initial model used in Section 3 has an

rms traveltime misfit of 624 ms, which is reduced to 76 ms after

six iterations. The simultaneous inversion of all data for all

model parameters means that, contrary to the layer stripping

approach, each model parameter in the inversion process is

influenced by all of the ray paths that are affected by that

parameter. Although not described in the synthetic tests, low-

velocity layers and layers with negative velocity gradients signi-

ficantly reduce the number of turning rays, which will generally

result in poorly constrained velocity parameters within the

layer.

The results of the TASGO data inversion demonstrate that

the method is capable of producing a solution that satisfies real

data. Undesirable aspects of the data set include large regions

with poor data coverage and a relative lack of rays that reflect

or refract back towards the surface from the upper two inter-

faces. These properties of the data set are revealed in the ray

coverage (Fig. 15b) and model resolution (Fig. 15c) plots,

which indicate that large areas of the upper crustal interfaces

are not resolved by the data. The interface that represents

the Moho is, on the other hand, generally well resolved by the

data, and tests indicate that the lack of resolution in the upper

interfaces is unlikely to affect the accuracy of the Moho

reconstruction.

The TASGO wide-angle data set was collected concurrently

with normal-incidence reflection data. In principle, traveltime

picks from the normal-incidence component of the survey

Figure 16. Three cross-sections taken at constant x through the

reconstructed model (solid lines) after five iterations and the initial

model (dashed lines) of NW Tasmania. Refer to Table 4 for layer

velocities and Fig. 15(a) for cross-section locations.

Figure 17. Velocity versus depth at three locations (see Fig. 15a) in the reconstructed model of NW Tasmania. Dashed lines denote the initial model

and solid lines denote the final model after five iterations.
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could have been used in the inversion, but this would have

required significant additional effort, and while they would pro-

vide extra control beneath the shot lines, they would not help

constrain structure beneath the onshore region bounded by

the shot-line array where resolution is poorest, especially of

interfaces 1 and 2.

According to Brown et al. (1998), Tasmania consists of seven

Proterozoic–early Palaeozoic fault-bounded tectonic elements

overlain by much younger late Palaeozoic–early Mesozoic

and Cenozoic cover. The region of NW Tasmania that we

have modelled is predominantly overlain by clastic carbonate

and metasedimentary units that are approximately 2 km thick

(Williams 1989). This sequence is represented in our model

(Fig. 16) by the thin overlying layer that varies in thickness

between 0.2 and 2.6 km. Inspection of the multichannel reflection

sections also shows a thin upper layer, below which lies a

thicker layer that extends to approximately 7 km depth. The

reflection seismic signature of this second layer has been inter-

preted (Barton 1999) as a series of adjacent granitoid bodies

and Neoproterozoic volcanics. Our 3-D model represents this

zone as a continuous layer whose lower interface varies in depth

between 5.5 and 11 km. Interestingly, the region where the

base of this layer (interface 2) shallows (Fig. 15a: x=160 km,

y=110 km) corresponds to the thinner volcanics and where

it is deeper (Fig. 15a: x=160 km, y=50 km) corresponds to a

deeper-rooted granite body seen in the reflection section inter-

preted by Barton (1999). The lower crustal layer (third layer) in

our model is as much as 30 km thick in some places. In the

reflection section, the corresponding depth range is largely

devoid of any coherent reflections, which suggests that there are

no other important interfaces within this layer. The variations

in depth of the Moho interpreted from the reflection section

along line 5 (Barton 1999) are also consistent with depth

variations derived here from inversion of the wide-angle data.

The resolved portions of the Moho indicate a general thicken-

ing of the crust from the NW to the SE, in broad agreement

with the surface elevation, which increases towards the centre

of the island.

One of the more significant surface features in NW Tasmania

is the Arthur Lineament (Fig. 11), an approximately 10 km

wide belt of strongly deformed, metamorphosed rocks that

trends NE–SW. Little is known about the depth extent and

origin of this structure, although Corbett (1994) has suggested

that it may be a leading-edge effect of deformation caused

by an orogenic event prior to the Cambrian. The upward

deflection of the lower crustal layer seen in our model on the

x=150 km profile (Fig. 16) between y=80 km and y=120 km

lies approximately beneath the Arthur Lineament.

6 C O N C L U S I O N S

We have described a new method for the determination of 3-D

crustal structure by simultaneous inversion of seismic refraction

and wide-angle reflection traveltimes for both interface geo-

metry and layer velocity. The cubic B-spline parametrization

used to describe interface structure permits a wide variety of

geometries to be represented, and the assumption that velocity

varies linearly with depth in each layer allows for analytic

expression of the ray paths and a relatively small number of

model parameters. The forward problem of determining the

traveltime and ray path of a specified phase between source and

receiver is solved using a shooting method that proves to be

robust even in the presence of complex structures. The inverse

problem is solved using a subspace inversion method that is

efficient and allows multiple parameter classes (interface depths,

layer velocities and layer velocity gradients) to be inverted simul-

taneously without the need for arbitrary weighting methods.

Synthetic tests show that the method can produce accurate

reconstructions of multi-interface models despite data noise,

relatively inaccurate initial models and an irregular source–

receiver configuration. These tests also show that estimates

of resolution taken at the solution point and based on linear

theory are a useful tool in assessing the robustness of the

reconstructed model. Application of the method to a subset of

the TASGO wide-angle data set produced a three-layer crustal

model that is consistent with known surface geology and

independent interpretations of normal-incidence reflection data,

yet provides new information about crustal thickness variations

beneath Tasmania. Moho depth beneath NW Tasmania varies

from about 27 to 37 km, with the major change in depth

occurring across the Arthur Lineament.
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A P P E N D I X A F R É C H E T D E R I V A T I V E S

A1 Fréchet derivatives for velocity and velocity gradient

Fréchet derivatives for velocity parameters are usually derived

by assuming that a velocity perturbation does not cause a

perturbation of the ray path, resulting in first-order accurate

expressions according to Fermat’s principle (e.g. White 1989).

We derive analytic expressions for the Fréchet derivatives

assuming only that the endpoints of ray segments are fixed.

Where this assumption is valid, exact analytic expressions for

the Fréchet derivatives are obtained (e.g. for rays that do not

interact with any interface). Where interfaces are involved, the

resulting expressions provide accurate approximations. The

basic problem, to find the derivatives ht/ho0 and ht/hk for a

ray between two points in a layer, can be considered in two

dimensions since all ray path segments must lie in a vertical

plane. In the following derivations, notation is consistent with

that used in the main body of the paper.

Consider a ray path segment that originates at (xo, zo) and

ends at (xe, ze) with the x-axis defined such that xe>xo. The ray

path between the two points is given parametrically by

xe ¼
oðzoÞ

k

ðce � coÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � co2

p
" #

þ xo , (A1)

ze ¼
oðzoÞ

k
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ce2

1 � co2

s2
4

3
5þ zo , (A2)

Inversion for 3-D layered crustal structure 399

# 2001 RAS, GJI 145, 381–400



and the traveltime is

t ¼ 1

2k
ln

1 þ ce

1 � ce

	 

1 � co

1 þ co

	 
� �
, (A3)

where co and ce are the vertical components of the unit tangent

vector to the ray segment at (xo, zo) and (xe, ze) respectively.

The partial derivative of traveltime with respect to the velocity

parameter o0 is

Lt

Lo0
¼ Lt

Lco

Lco

Lo0
þ Lt

Lce

Lce

Lo0
: (A4)

ht/hco and ht/hce are easily calculated from eq. (A3) as

Lt

Lco
¼ 1

kðco2 � 1Þ and
Lt

Lce
¼ 1

kð1 � ce2Þ : (A5)

To obtain hco/ho0 and hce/ho0, we rearrange eqs (A1) and (A2)

to obtain, respectively,

ce ¼ co þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � co2

p
and 1 � ce

2 ¼ s2ð1 � co
2Þ , (A6)

where r=k(xexxo)/(o0xkzo) and s=1xk(zexzo)/(o0xkzo).

Implicit differentiation of each expression in eq. (A6) with

respect to o0 and solving the resulting system of two linear

equations for the two unknowns hco/ho0 and hce/ho0 yields

Lco

Lo0
¼ kð1 � co

2Þ½ceðxo � xeÞ � sðzo � zeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � co2

p
�

oðzoÞ2½rceco þ ðcos2 � ceÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � co2

p
�

, (A7)

Lce

Lo0
¼ skð1 � co

2Þ½cosðxo � xeÞ þ ðzo � zeÞðrco �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � co2

p
Þ�

oðzoÞ2½rceco þ ðcos2 � ceÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � co2

p
�

:

(A8)

The partial derivative of traveltime with respect to the velocity

gradient parameter k is

Lt

Lk
¼ Lt

Lco

Lco

Lk
þ Lt

Lce

Lce

Lk
� 1

2k2
ln

1 þ ce

1 � ce

	 

1 � co

1 þ co

	 
� �
, (A9)

where the third term on the right-hand side is included since k

appears explicitly in eq. (A3). The partial derivatives hco/hk

and hce/hk can be determined using the approach we employed

to calculate hco/ho0 and hce/ho0, which gives

Lco

Lk
¼ ooð1 � co

2Þ½ceðxe � xoÞ þ sðzo � zeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � co2

p
�

oðzoÞ2½rceco þ ðcos2 � ceÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � co2

p
�

, (A10)

Lce

Lk
¼ sooð1 � co

2Þ½cosðxe � xoÞ þ ðze � zoÞðrco �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � co2

p
Þ�

oðzoÞ2½rceco þ ðcos2 � ceÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � co2

p
�

:

(A11)

A2 Fréchet derivatives for interface depth

The shape of a single surface patch depends on 16 vertices,

so a single ray–interface intersection will contribute 16 partial

derivatives of the form [ht/hzv
k,l], where k, l=1, . . . , 4 and zv

refers to the z-coordinate of an interface vertex. Exact analytic

expressions for the Fréchet derivatives are out of the question,

but relatively simple analytic formulae that are accurate to first

order can be obtained. The basic approach for doing this has

been outlined by a number of authors (e.g. Nowack & Lyslo

1989; Sambridge 1990; Zelt & Smith 1992). Hence, we will only

derive the component of the solution that is relevant to a

uniform B-spline parametrization. As above, the notation used

here is consistent with the main body of the paper.

The perturbation in traveltime caused by the perturbation of

an interface node is calculated by partitioning the problem

Lt

Lzvk,l ¼
dt

dhint

dhint

dzint

Lzint

Lzvk,l , (A12)

where hint is displacement normal to the interface at the point

of intersection by the ray and zint is the z-coordinate of the

intersection point. Simple analytic formulae can be given for

the two total derivatives in eq. (A12) if we assume that an

interface perturbation does not result in a perturbation of the

ray path. The aspect of eq. (A12) that is specific to B-splines is

hzint/hzv
k,l, and given the form of eq. (2) it is simple to calculate

Lzint

Lzvk,l ¼ bkðuintÞblðointÞ : (A13)

Hence, the full expression is

Lt

Lzvk,l &
wj

.wn

oj
� wjþ1

.wn

ojþ1

� �
½wn .wz�bkðuintÞblðointÞ , (A14)

where oj and oj+1 are respectively the velocity in the upper and

lower layers at the intersection point, wj and wj+1 are unit

vectors parallel to the ray in layers j and j+1 respectively,

wz=[0, 0, 1] and wn is a unit normal vector to the interface at

the intersection point (see Fig. A1). wj always points towards

the interface and wj+1 always points away from the interface

irrespective of whether the ray is upgoing or downgoing. For

reflections, wj+1
.wn=xwj

.wn and oj+1=oj in eq. (A14).

All three classes of Fréchet derivative calculation defined

in this Appendix have been tested by comparison with finite

difference approximations obtained by shooting rays through a

model, perturbing a model parameter and reshooting the rays.

Several of these tests were performed and good agreement

between the analytic and numerical solutions occurred in all

cases.

Figure A1. Notation for interface partial derivatives: wn is a unit

normal vector to the surface at the intersection point, wj is a unit

tangent vector to the ray in layer j that points towards the intersection

point, wj+1 is a unit tangent vector to the ray in layer j+1 that points

away from the intersection point and wz=[0, 0, 1]. oj and oj+1 are the

velocities in layers j and j+1 respectively.
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