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a b s t r a c t

The goal of this paper is to provide an overview of the current state of the art in seismic tomography,
and trace its origins from pioneering work in the early 1970s to its present status as the pre-eminent
tool for imaging the Earth’s interior at a variety of scales. Due to length limitations, we cannot hope to
cover every aspect of this diverse topic or include mathematical derivations of the underlying principles;
rather, we will provide a largely descriptive coverage of the methodology that is targeted at readers
not intimately familiar with the topic. The relative merits of local versus global parameterization, ray
tracing versus wavefront tracking, backprojection versus gradient based inversion and synthetic testing
eywords:
eismic tomography
nversion
ody wave
urface wave
arth structure

versus model covariance are explored. A variety of key application areas are also discussed, including
body wave traveltime tomography, surface wave tomography, attenuation tomography and ambient
noise tomography. Established and emerging trends, many of which are driven by the ongoing rapid
increases in available computing power, will also be examined, including finite frequency tomography,
full waveform tomography and joint tomography using multiple datasets. Several practical applications of
ay tracing
seismic tomography, including body wave traveltime, attenuation and surface waveform, are presented
in order to reinforce prior discussion of theory.

© 2009 Elsevier B.V. All rights reserved.
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. Introduction

.1. What is seismic tomography?

Seismic tomography is a data inference technique that exploits
nformation contained in seismic records to constrain 2D or 3D

odels of the Earth’s interior. It generally requires the solution of a
arge inverse problem to obtain a heterogeneous seismic model that
s consistent with observations. More formally, provided that we
an establish an approximate relationship d = g(m) between seis-
ic data d and seismic structure m – so that for a given model m
e can predict d – then the seismic tomography problem amounts

o finding m such that d explains the data observations dobs. In
ost cases d and m are discrete vectors of high dimension, which
eans that many data records are used to constrain a detailed
odel. Implicitly, this detail must apply to both vertical and lat-

ral structure. As such, the radial Earth model produced by Backus
nd Gilbert (1969), based on the theory in their seminal paper of
he preceding year (Backus and Gilbert, 1968), is not usually viewed
s an early example of seismic tomography despite the similarity
n methodology.

A simple example of seismic traveltime tomography, which
erves to illustrate several features typical to most applications, is
hown in Fig. 1. In this artificial test, a synthetic model in spherical
hell coordinates is generated (Fig. 1a) which consists of 780 grid
oints evenly spaced in latitude and longitude with cubic B-spline
unctions used to describe a smooth velocity field. For a given set of
ources and receivers, first-arriving geometric ray traveltimes are
hen computed (Fig. 1b) through the model. These traveltimes con-
titute the synthetic data set that is equivalent to the information
ne may obtain from seismograms recorded in the field. The rela-
ionship d = g(m), where d represents the traveltime dataset and

the velocity model, is non-linear in this case because the path
aken by the seismic energy is a function of velocity. Almost with-
ut exception, only the first-arrivals of any phase are exploited in
raveltime tomography, because later arrivals due to multi-pathing
wavefront folding) are difficult to pick. One property of first
rrivals is that they tend to avoid low velocity anomalies, and pref-
rentially sample high velocity anomalies, as can be see in Fig. 1b.

Due to the non-linearity of the inverse problem, the traveltime
isfit surface (some measure of the difference between observa-

ion and model prediction) may not be a simple smooth function
ith a well defined minimum. While a fully non-linear solution

echnique may therefore seem appropriate, the size of the prob-
em usually makes this computationally prohibitive. Instead, some
radient-based technique is often used, which relies on having an
nitial model “close” to the solution model. Fig. 1c shows the ini-
ial model used in this case, which has a uniform velocity, resulting

n great circle paths. The node spacing is identical to that of the
ynthetic model (Fig. 1a), which will favourably bias the recovery
f structure. Repeated application of forward ray tracing and lin-
arized inversion eventually produces the solution model shown
n Fig. 1d, which remains unchanged with further iterations, and
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

satisfies the synthetic dataset. This basic approach, which relies
on accurate a priori information in the form of an initial model,
some class of forward solver, and a local inversion technique, is
ubiquitous to most forms of tomography, be it traveltime, surface
waveform, anisotropy or attenuation.

Comparison of Figs. 1a and d reveals a number of interesting
similarities and differences between the synthetic and recovered
models. Clearly, regions near the edge of the model that have no
path coverage do not deviate from the initial model. In cases where
rays exist but have a similar azimuth, recovered anomalies have
a tendency to be severely smeared out in the dominant ray path
direction (e.g. the two high velocity anomalies in the southwest
and northeast corners of the model). Within the bounds of the
receiver array, where path coverage is dense, the recovery of struc-
ture appears to be accurate, with the exception of the four distinct
low velocity anomalies, whose amplitudes are severely underesti-
mated. This problem arises from the fact that first-arrivals avoid low
velocity regions, as shown clearly in Fig. 1b, and therefore poorly
constrain them. Most forms of seismic tomography, even those that
do not directly exploit traveltimes (e.g. attenuation tomography),
are affected in some way by this phenomenon, because they usu-
ally rely on the paths provided by first-arrival tomography to solve
the data prediction problem. Other issues, including solution non-
uniqueness (where more than one solution satisfies the data to
the same extent) and the validity of geometric ray theory, will be
discussed in the following sections.

1.2. Pioneering work

The name most commonly associated with the origins of seismic
tomography is that of Keiiti Aki, who published a seminal paper in
1976 on 3D velocity determination beneath California from local
earthquakes (Aki and Lee, 1976). In this paper, traveltime data col-
lected at 60 stations from 32 local earthquakes are inverted for
3D crustal structure, described by a total of 264 constant slowness
(inverse of velocity) blocks, and hypocenter corrections. The inver-
sion is linear, because ray paths are assumed to be straight, and a
damped least squares approach is used to find a solution. Estimates
of model covariance and resolution are also made to assess solution
robustness A year later, this publication was followed by an equally
influential paper which employs teleseismic tomography to image
the 3D velocity structure beneath the Norwegian Seismic Array
(Norsar) in southeast Norway (Aki et al., 1977). Traveltime resid-
ual information from distant (teleseismic) earthquakes is used to
constrain structure, which is confined to a local region beneath the
array. Constant slowness blocks are again used to describe the litho-
sphere, although this time, the initial model is defined by constant
velocity layers, so ray paths are permitted to bend. However, the

inversion is still linear as path geometry is not updated to account
for the recovered heterogeneity.

The early work of Aki undoubtedly catalyzed the numerous seis-
mic tomography studies of the crust and lithosphere that soon
followed, but a number of other influential developments, arguably
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Fig. 1. Synthetic reconstruction test illustrating several typical characteristics of seismic traveltime tomography. (a) Synthetic test model with sources (grey stars) and
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eceivers (blue triangles) superimposed; (b) same model as in (a) but with all first
nversion; (d) recovered model, which can be compared with (a). (For interpretatio
f the article.)

f similar importance, occurred at around the same time. In global
omography, Adam Dziewonski published a paper in 1977 that uses
early 700,000 P wave travel time residuals from the bulletins of
he International Seismological Centre (ISC) to image the velocity
tructure of the Earth’s mantle, described using a spherical har-
onic parameterization (Dziewonski et al., 1977). Despite the size

f the traveltime dataset, the number of unknowns in the inverse
roblem is restricted to only 150, presumably due to limitations in
omputing power.

Although not as frequently cited as Aki and Dziewonski’s sem-
nal works, an earlier paper by Bois et al. (1972) implements a
cheme that clearly conforms to the above definition of seismic
omography. In this study, the authors use cross-hole (or well to
ell) active source seismic imaging to examine part of the Lacq

il field of southwest France. Small charges were inserted down
ne hole, and their detonation recorded by geophones placed down
nother hole. Traveltimes picked from the resultant seismograms
re then inverted for the 2D velocity structure of the cross-section
eparating the two boreholes. Rather than use a constant block
arameterization, a regular grid of nodes is specified together with
n interpolant that ensures continuity of the velocity field and
ts first derivative at every point. The traveltime prediction prob-
em is solved using a shooting method of ray tracing that fully
ccounts for isotropic heterogeneity, and an iterative non-linear

pproach, similar to that demonstrated in Fig. 1, is used to recon-
ile observed and model traveltimes (Bois et al., 1971). Although
he number of unknowns that are solved for is 110, and the max-
mum number of ray paths used is 90, the proposed technique is
ophisticated, particularly considering the minimal development
al paths plotted; (c) starting model and path coverage for the iterative non-linear
e references to color in this figure legend, the reader is referred to the web version

that had occurred in the field prior to this application. One might
argue that seismic tomography implies 3D imaging, but in terms of
the underlying theory, there is no real difference, except for the
size of the inverse problem, and the complexity of the forward
solver.

1.3. The last three decades: a brief history

1.3.1. Local studies of the crust and upper mantle
Following the pioneering efforts in seismic tomography

described above, a veritable cascade of new applications and
developments soon followed. In cross-hole tomography, various
techniques for ray tracing and inversion were trialled (McMechan,
1983, 1987; Bregman et al., 1989), but essentially, the underly-
ing method of Bois et al. (1971) was not significantly advanced
upon. Backprojection inversion techniques, inherited from medical
imaging, were generally more popular than gradient-based meth-
ods, perhaps due to similarities in acquisition geometry. Greater
innovation came in the form of diffraction and wave equation
tomography (Pratt and Worthington, 1988; Pratt and Goulty, 1991;
Song et al., 1995; Pratt and Shipp, 1999), which attempt to exploit
more of the recorded waveform. Other classes of seismic tomog-
raphy that have their origins in exploration include reflection
tomography and wide-angle (refraction and wide-angle reflec-

tion) tomography, which use artificial sources such as explosions,
airguns and vibroseis to generate seismic energy. Reflection tomog-
raphy is a natural compliment to migration imaging, because it
offers a means to constrain velocity and interface depth using
traveltimes and, less commonly, geometric spreading amplitudes
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nd reflection/transmission coefficients. One of the first studies
o implement reflection tomography was that of Bishop et al.
1985), which combines ray shooting and a gradient based inver-
ion technique to constrain a 2D model described by constant
elocity gradient blocks and cubic spline interfaces. Similar stud-
es have also been carried out by Farra and Madariaga (1988)
nd Williamson (1990). In general, coincident reflection travel-
ime data alone appears to be insufficient to satisfactorily resolve
he trade-off between interface depth and layer velocity. Con-
equently, more recent efforts have been directed towards joint
nversion of traveltime and amplitudes (Wang and Pratt, 1997;

ang et al., 2000), joint inversion of reflection and wide-angle trav-
ltimes (Wang and Braile, 1996; McCaughey and Singh, 1997) and
ull waveform tomography (Hicks and Pratt, 2001; de Hoop et al.,
006).

Wide-angle tomography is similar to reflection tomography, but
he source–receiver offset tends to be much greater in order to
etect refracted rays from significant depths (e.g. Pn waves from
he Moho). Both 2D and 3D experiments are common, and over the
ast few decades have played a major role in unravelling the crustal
rchitecture of continents and margins in various parts of the world
ncluding Canada (e.g. Hole, 1992; Kanasewich et al., 1994; Clowes
t al., 1995; Zelt and White, 1995; Morozov et al., 1998; Zelt et
l., 2001, 2006) and Europe (e.g. Riahi and Juhlin, 1994; Staples et
l., 1997; Darbyshire et al., 1998; Louden and Fan, 1998; Mjelde et
l., 1998; Korenaga et al., 2000; Morgan et al., 2000; Bleibinhaus
nd Gebrande, 2006). Early efforts in this field tended to treat the
ide-angle reflection and refraction data separately, but it was

oon recognised (e.g. Kanasewich and Chiu, 1985) that their joint
nversion dramatically increased the likelihood of resolving both
nterface structure and velocity variation. In recent years, wide-
ngle tomography has been the subject of much interest in the
merging field of full waveform tomography, where the prospect of
ar greater resolution has motivated a number of different studies
Pratt et al., 1996; Sirgue and Pratt, 2004; Brenders and Pratt, 2007;
aiswal et al., 2008).

Following the early work of Aki and Lee (1976), local earthquake
omography (or LET) has become a popular tool for imaging subsur-
ace structure in seismogenic regions. One distinguishing feature
f the technique is the need to relocate hypocenters in tandem
ith recovering seismic structure. Although the conceptual basis

f LET has not really changed since Aki’s original paper, several
dvances have been made, including full 3D ray tracing and itera-
ive non-linear inversion (Eberhart-Phillips, 1990); direct inversion
or VP/VS or QP/QS ratio (e.g. Walck, 1988); development of meth-
ds for constraining 3D anisotropic velocity variations (Hirahara,
988; Eberhart-Phillips and Henderson, 2004) and attenuation
tructure (Sanders, 1993; Tsumura et al., 2000); and double differ-
nce tomography (Zhang and Thurber, 2003; Monteiller and Got,
005), which aims to significantly improve hypocenter relocation.
n subduction zone settings, recent advances include tomographic
nversion of shear wave splitting measurements for anisotropic fab-
ic (e.g. Abt and Fischer, 2008), and of velocity and attenuation
nomalies for water content, temperature and composition (Shito
t al., 2006).

Teleseismic tomography has been used extensively to map
he structure of the crust and lithosphere in 3D (e.g. Oncescu
t al., 1984; Humphreys and Clayton, 1990; Benz et al., 1992;
lahn and Granet, 1993; Achauer, 1994; Saltzer and Humphreys,
997; Graeber et al., 2002; Rawlinson et al., 2006b; Rawlinson and
ennett, 2008). Compared to the original technique of Aki et al.
1977), most teleseismic tomography now uses iterative non-linear
nversion coupled with 3D ray racing or wavefront tracking (e.g.
anDecar and Snieder, 1994; Steck et al., 1998; Rawlinson et al.,
006b). In most cases, teleseismic tomography is still based on
he recovery of isotropic velocity models from arrival time residu-
lanetary Interiors 178 (2010) 101–135

als, although attempts have been made to recover anisotropy (e.g.
Plomerová et al., 2008).

Detailed local studies of the upper mantle have also been con-
ducted using data from surface waves. For regions with close
spacing of broadband seismometers, interstation measurements
or array techniques (Friederich and Wielandt, 1995; Forsyth and
Li, 2005; Pedersen et al., 2003) can be used to estimate the local
dispersion characteristics within the zone of interest. These meth-
ods have been applied in a number of locations to produce detailed
tomographic images of the lithospheric mantle (e.g. Weeraratne et
al., 2003; Bruneton et al., 2004; Li and Burke, 2006; Darbyshire and
Lebedev, 2009).

1.3.2. Regional and global tomography
The different classes of seismic tomography discussed above

tend to use temporary deployments of recorders to target a lim-
ited geographical region; hence they can be described as “local”
methods. By contrast, regional and global tomography studies more
commonly utilize information from permanent networks that span
large continental regions or much of the globe, such as the GSN
(Global Seismic Network), in addition to any available data from
temporary arrays. Targets include the upper mantle, whole mantle
or the entire Earth. Since the pioneering work of Dziewonski et al.
(1977), which used the traveltimes of P-waves, efforts have been
focused on improving resolution by exploiting an ever increasing
volume of recorded data. Current global P-wave mantle models that
exploit traveltime data from the ISC commonly constrain structure
at a scale length of a few 100 km or less using millions of paths
(Zhao, 2004; Burdick et al., 2008).

In addition to direct P-waves, other phases such as PcP and
PKP are now commonly used to improve coverage, particularly in
the core (Vasco and Johnson, 1998; Boschi and Dziewonski, 2000;
Karason and van der Hilst, 2001). While spherical harmonics are
still preferred in some cases, most body wave studies now opt for
local parameterizations, such as blocks or grids, which are better
suited for recovering detailed structures such as mantle plumes or
subducting slabs (van der Hilst et al., 1997; Bijwaard et al., 1998;
Karason and van der Hilst, 2001; Zhao, 2004). The highly uneven
data coverage that typifies regional and global body wave studies –
due largely to irregular distribution of earthquakes and recording
stations – has stimulated the idea of using irregular parameter-
izations, where blocks or nodes are placed only where they are
required by the data. Bijwaard et al. (1998), Bijwaard and Spakman
(2000) and Spakman and Bijwaard (2001) use a spatially vari-
able cell size parameterization based on ray sampling, in which
an underlying regular grid is used to construct a mosaic of non-
overlapping irregular cells. Sambridge and Gudmundsson (1998)
propose a more sophisticated scheme based on Delaunay and
Voronoi cells, which is subsequently applied to whole Earth tomog-
raphy (Sambridge and Faletic, 2003; Sambridge and Rawlinson,
2005).

Body wave tomography using S-waves is also common in
regional and global studies (e.g. Grand et al., 1997; Vasco and
Johnson, 1998; Widiyantoro et al., 2002), and can either be done in
isolation or simultaneously with P-waves to obtain VP/VS ratio as in
LET. An alternative is to jointly resolve bulk sound and shear veloc-
ity (Su and Dziewonski, 1997; Kennett, 1998), quantities that can
be more readily linked to experimental laboratory measurements
of the physical properties of mantle minerals.

Surface waves and normal modes can also be used to construct
tomographic images of the Earth’s interior. Compared to body

waves, surface waves have the advantage that they can sample the
upper mantle beneath ocean basins at sufficient density to produce
well constrained models of oceanic lithosphere; on the other hand,
they cannot probe into the deep mantle at high resolution, and have
difficultly resolving crustal structure. A variety of different method-
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logies have been applied to obtain information from the surface
avetrain. Some global studies use long paths and attempt to mea-

ure phase velocity directly for the fundamental mode for each
ath (e.g. Ekström et al., 1997; Laske and Masters, 1996). Group
elocities can be extracted using filter analysis, and have been
sed to produce maps at both regional (e.g. Ritzwoller and Levshin,
998; Danesi and Morelli, 2000; Pasyanos and Nyblade, 2007), and
lobal scales (Shapiro and Ritzwoller, 2002). Additional informa-
ion from surface wave overtones provides better resolution with
epth; with this in mind, van Heijst and Woodhouse (1997) develop
new method for measuring overtone phase velocities. Combining

hese data with information from body waves, Ritsema et al. (2004)
roduce a shear wavespeed model of the mantle, with particular
mphasis on the upper mantle transition zone. Alternatively, an
nversion procedure can be used to fit the surface waveform (and
n some cases long period S-waves). This style of approach has also
een used to produce shear wavespeed models at both regional
e.g. van der Lee and Nolet, 1997; Simons et al., 1999; Friederich,
003; Heintz et al., 2005; Fishwick et al., 2005; Priestley et al., 2008)
nd global scales (Debayle et al., 2005; Lebedev and van der Hilst,
008).

Normal modes or free oscillations of the Earth, which can be
iewed as very long period standing surface waves, also offer a
eans to constrain seismic structure. Individual peaks of the dis-

rete spectrum are often split due to Earth rotation, ellipticity and
ateral heterogeneity. Isolating the latter effect enables both man-
le structure (Li et al., 1991; Resovsky and Ritzwoller, 1999), and
ore structure (Ishii and Tromp, 2004) to be imaged. The advantage
f this approach is that data coverage is relatively uniform, but due
o the very low frequencies of detectable normal modes, the scale
ength of recovered heterogeneity tends to be extremely broad.

Another area of active research in global seismology is atten-
ation tomography, in which lateral variations in the anelastic
arameter Q are retrieved. A key challenge with this technique

s to successfully extract the anelastic signal from the recorded
aveform, which is dominated by elastic effects. Studies to date

end to use surface waves and hence focus on the upper man-
le (Romanowicz, 1995; Billien and Lèvêque, 2000; Selby and

oodhouse, 2002; Gung and Romanowicz, 2004; Dalton and
kström, 2006; Dalton et al., 2008), although body wave studies
ave also been carried out (Bhattacharyya et al., 1996; Reid et al.,
001; Warren and Shearer, 2002). One of the attractions of attenua-
ion tomography is its strong sensitivity to temperature variations,
nd therefore its potential to image hot spots, mantle plumes and
ubduction zones.

Anisotropy is a potentially complex issue in all tomographic
tudies from local to global scales, as it pervades many regions of the
arth including the crust, upper mantle, core–mantle boundary and
nner core. The main barrier to its accurate recovery in tomography
s the under-determined nature of the inverse problem; it is difficult
nough to resolve isotropic velocity variations, let alone all 21 inde-
endent elastic constants required to describe arbitrary anisotropic
nomalies. As a result, studies that attempt to include anisotropy
o so with a limited subset of the elastic moduli. One of the first
tudies to resolve upper mantle transverse isotropy with a vertical
xis of symmetry – otherwise known as radial anisotropy (requiring
ve independent parameters) – was that of Nataf et al. (1984), who

nverted both Love and Rayleigh wave data for velocity structure,
escribed by degree 6 spherical harmonics, to a depth of approxi-
ately 450 km. By assuming this class of anisotropy, downwelling

nd upwelling features associated with slab subduction were suc-

essfully imaged. Radial anisotropy is now frequently incorporated
nto global shear velocity studies (e.g. Panning and Romanowicz,
006; Kustowski et al., 2008). A form of anisotropy that is more
ommonly assumed in surface wave tomography studies is that
f azimuthal anisotropy (e.g. transverse isotropy with a horizon-
lanetary Interiors 178 (2010) 101–135 105

tal axis of symmetry), which allows velocity to vary as a function
of horizontal direction, and is therefore more well tuned to upper
mantle dynamics associated with contemporary plate tectonics.
Early work in this area was carried out by Tanimoto and Anderson
(1984, 1985), who found variations of anisotropy in the upper man-
tle to be as large as 1.5%, albeit with low order spherical harmonics.
Montagner and Nataf (1986) and Montagner and Tanimoto (1991)
develop a scheme which they describe as “vectorial” tomography,
which allows radial and azimuthal anisotropy to be simultaneously
constrained by inversion of surface waveforms and regionalization
of phase or group dispersion curves. The incorporation of seismic
anisotropy in one form or another in surface wave tomography has
now become almost routine (e.g. Debayle, 1999; Simons et al., 2002;
Debayle et al., 2005; Sebai et al., 2006), but issues still remain as to
the appropriate choice of elastic parameters, and how they may
trade-off in an intrinsically under-determined inverse problem.

Shear wave splitting provides insight into the strength and
orientation of anisotropy by measuring the differential arrival
time between orthogonal components of an arriving shear wave.
However, due to the path integral nature of the measurements,
it provides limited information on the spatial distribution of
anisotropy. In the last few years, this limitation has been addressed
in the form of shear wave splitting tomography (e.g. Zhang et al.,
2007; Abt and Fischer, 2008), which attempts to map the anisotropy
inferred from the splitting measurements into a volumetric model.
In related developments, splitting intensity measurements from
SKS waves (Favier and Chevrot, 2003) have also been used to per-
form anisotropy tomography (Chevrot, 2006; Long et al., 2008).

1.4. Recent trends: ambient noise and finite frequency
tomography

Recordings of identifiable wavetrains from sources such as
earthquakes or explosions form the basis of traditional methods of
seismic tomography as described above. However, since the turn of
the millennium, virtual-source seismology has gradually emerged
to become an important field in modern seismology, thanks to the
work of a number of researchers who have both theoretically and
experimentally demonstrated a remarkable property of fully dif-
fuse or random wavefields: information they accumulate about the
medium through which they propagate can be extracted by the
long-term cross-correlation of waveforms recorded at two sepa-
rate locations (e.g. Lobkis and Weaver, 2001; Campillo and Paul,
2003; Shapiro and Campillo, 2004; Snieder, 2004; Wapenaar et al.,
2005; Sabra et al., 2005; Wapenaar and Fokkema, 2006). It turns
out that the cross-correlation produces an estimate of the Green’s
function between two points; that is, the signal that would arrive
at one point if the source waveform were a delta function (or point
impulse) located at the other point. This is a particularly useful piece
of information, because the travel time and shape of the wavelet
are purely a function of the properties of the intervening medium.
In the seismic case, the cross-correlation of ambient seismic noise
recorded at two stations (Shapiro and Campillo, 2004), or the seis-
mic coda associated with distant earthquakes (Campillo and Paul,
2003), can be used to extract empirical Green’s functions. For the
seismic coda, multiple scattering from small-scale heterogeneity
in the lithosphere appears to generate a sufficiently diffuse wave-
field. Oceanic and atmospheric disturbances, further randomized
by scattering caused by solid Earth heterogeneity, is one of the main
energy sources for ambient noise tomography.

Ambient noise tomography has now become an established

technique for imaging Earth structure at a variety of scales, but
its development continues at a rapid pace. The most common
approach is to extract Rayleigh wave group traveltimes from the
cross-correlated waveforms and invert for group velocity at differ-
ent periods (e.g. Shapiro et al., 2005; Sabra et al., 2005; Kang and
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hin, 2006; Yao et al., 2006; Yang et al., 2007; Zheng et al., 2008).
his is often done under the assumption of straight/great circle ray
aths, but several studies have used bent rays via solution of the
ikonal equation, and have therefore addressed the non-linearity
f the problem (Rawlinson et al., 2008; Saygin and Kennett, 2009).
n the seminal study of Shapiro et al. (2005), only one month of
ata from the US Array stations was required to produce high res-
lution images of the California crust, which clearly discriminates
etween regions of thick sedimentary cover and crystalline base-
ent. More recent efforts have been directed towards recovering

hase velocity in addition to group velocity (Benson et al., 2008),
nd attempting to resolve 3D shear wave velocity structure from
he inversion of Rayleigh and Love wave dispersion maps (Benson
t al., 2009).

Geometric ray theory forms the basis of the forward prediction
roblem in most forms of seismic tomography, but its validity is

imited to cases where the seismic wavelength is much smaller than
he scale length of heterogeneity that characterizes the medium
hrough which it passes. In fact, unless the seismic energy has
nfinitely high frequency (which of course is unphysical), the actual
round motion recorded by a seismometer will have a partial
ependence on the medium in the neighbourhood of the geomet-
ic ray. Unless properly accounted for, this finite frequency effect
ill essentially blur the final image. Recognition of this fact has

een longstanding in the seismic imaging community, but until
ecently, a workable solution was impeded by limits in both com-
uting power and theoretical development. One of the first surface
ave studies that attempted to account for finite frequency effects
as that of Snieder (1988a,b), who used so-called first-order per-

urbation theory (or Born theory) to account for scattering. The
ew technique was used in the inversion of waveform phase and
mplitude to construct phase velocity maps of Europe and the
editerranean.
In the context of body wave tomography, sensitivity kernels for

raveltimes or waveforms have been formulated by a variety of
esearchers (e.g. Luo and Shuster, 1991; Yomogida, 1992; Vasco
nd Mayer, 1993; Li and Romanowicz, 1995; Friederich, 1999;
arquering et al., 1999; Dahlen et al., 2000; Zhao et al., 2000). The

ntriguing result that body wave traveltimes are insensitive to het-
rogeneity exactly along the geometric ray path led Marquering
o use the terminology “banana doughnut” kernel. Using such sen-
itivity kernels, finite frequency body wave tomography has been
pplied to a number of different datasets with often interesting
esults (e.g. Montelli et al., 2004; Yang et al., 2009), not least of
hich are the well defined mantle plumes revealed in the study of
ontelli et al. (2004).
It is briefly worth noting that the beginnings of finite frequency

omography were accompanied by some discussion as to its validity
n general heterogeneous media and the degree of improvement it
rought to conventional ray-based tomography (de Hoop and van
er Hilst, 2005a,b; Dahlen and Nolet, 2005; Montelli et al., 2006;
rampert and Spetzler, 2006). However, with increasing use of the
echnique, and validation against wave equation solvers (Tromp et
l., 2005), these discussions have become less relevant. Besides the
tudy of Montelli et al. (2004), others to have used finite frequency
omography include Hung et al. (2004), who report increased reso-
ution in the upper mantle transition zone beneath Iceland; Chevrot
nd Zhao (2007), who use finite frequency Rayleigh wave tomog-
aphy to image the Kaapval craton; and Sigloch et al. (2008), who
xploit teleseismic P-waves to elucidate the structure of subducted
lates beneath western North America.
Compared to seismic traveltime tomography based on geo-
etric ray theory, the advantage of finite frequency traveltime

omography is that a larger range of phase information is used
o constrain structure. For a single source–receiver arrival, filter-
ng over a large range of frequencies will produce a set of delay
Fig. 2. Increase in the number of transistors as a function of time for a range of Intel
microprocessors. [Source: 60 years of the Transistor: 1947–2007, Intel website.]

times (e.g. extracted using cross-correlation with a synthetic pulse
- see Nolet, 2008) that can be inverted for structure. The advan-
tage of phase information is that it behaves more linearly than
the waveform, and is hence more amenable to inversion by lin-
earized techniques. Another benefit of finite frequency tomography
is that it is feasible to invert amplitude information (e.g. Sigloch et
al., 2008) due to the phenomenon of wavefront healing. Geomet-
ric ray amplitudes behave in a much more non-linear fashion, and
are therefore difficult to incorporate in tomography. Provided that
broadband observables are available, finite frequency tomography
has the potential to improve seismic imaging on many fronts.

1.5. Seismic tomography and computing power

The rise of seismic tomography is inextricably linked with the
rapid advances in digital computing and microprocessor technol-
ogy that began in the 1960s. This branch of seismology would
simply not be feasible without the ability to make millions to tril-
lions of calculations per second. An often used proxy for the growth
in computing power is Moore’s law, which stems from his semi-
nal paper (Moore, 1965) in which he predicted that the number of
components on an integrated circuit would increase exponentially,
approximately doubling every two years up until at least 1975.
Today, this rule of thumb is applied to the number of transistors on
a microprocessor. Fig. 2 shows the “Moore’s law” plot for Intel pro-
cessors between 1971 and 2007. Linear regression demonstrates
that an exponential increase appears to be a valid approximation,
at least until recently. With recent emphasis on cluster comput-
ing and multiple core processors, the rapid increases in computing
power appear set to continue.

Early applications of seismic tomography were challenged by
what we would probably today regard as breathtakingly limited
hardware. For example, at about the time that Keiiti Aki’s pio-
neering work on seismic tomography was published (Aki and Lee,
1976; Aki et al., 1977), the cutting edge in computing power was
the Cray I, the first commercially successful vector computer. It
was capable of a peak performance of 250 million FLOPS (float-
ing point operations per second)—though usually ran at about
80 million FLOPS, had about 8 megabytes of main memory, and
weighed nearly 2.5 tons (Schefter, 1979). Although impressive for
its time, the stunning advances in computing power over the last

few decades means that a standard desktop computer is now many
times faster. For example, computers using a single Intel Core i7
processor can expect performance of around 60+ billion FLOPS
(source: www.hardcoreware.net), some 750 times faster than the

http://www.hardcoreware.net/
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RAY 1 in normal operating mode. While this increase in power
s considerable, it should be considered in the context of the vast
uantities of high quality digital seismic data that are now being
ecorded and archived, and the need to represent the Earth by
any parameters to properly accommodate such large quantities

f information in tomographic studies. For example, recent regional
nd global body wave tomography studies use over 107 traveltimes
o constrain models with 105–106 unknowns (e.g. Burdick et al.,
008).

The remainder of this review paper will describe methods
sed in seismic tomography for representing structure, solving
he forward and inverse problems, and assessing solution non-
niqueness. Several case studies of local and regional tomography
re then presented to provide the reader with a broad cross-section
f the different types of studies that are commonly carried out, and
he particular issues associated with them. The final section of the
aper will discuss future directions in seismic tomography. Within
he confines of a relatively short review paper, it is not possible
o cover every aspect of this large and diverse field. In addition to
he many references that are provided in specific subject areas, we
an recommend several other review articles and books. The edited
olumes of Nolet (1987) and Iyer and Hirahara (1993) are notable
or being two of the earliest books to be published on the subject
nd contain a wealth of useful information. However, they do not
rovide a gentle introduction to the subject. The recent book by
olet (2008) provides an authoritative, coherent and wide ranging
issertation on seismic tomography and is highly recommended.
he review article of Rawlinson and Sambridge (2003b) provides
ood coverage of crustal and lithospheric traveltime tomography,
nd the review paper of Romanowicz (2003) is a good introduction
o global mantle tomography.

. Representation of structure

Ideally, one would like to extract structural information from
eismic data without first imposing limitations on the nature of its
patial variation. In the synthetic example shown in Fig. 1, cubic
-splines on a regular grid were used to represent velocity struc-
ure, which limited the minimum scale length of heterogeneity
o the chosen grid spacing, and only allowed smooth variations
n wavespeed. In reality, the Earth may contain both continuous
nd discontinuous (e.g. Moho, faults) variations in wavespeed, and
xhibit structural heterogeneity at multiple scale-lengths. Hence,
ur choice of parameterization immediately restricts the field of
ermissible models, and can be viewed as a form of ad hoc regular-

zation. The use of splines on a regular grid to represent structure,
s in Fig. 1, is an example of a regular static parameterization, which
s by far the most common approach used in seismic tomogra-
hy. Other options include irregular parameterizations, where the
inimum scale length of structure is variable, and adaptive param-

terizations, where the inversion process plays a role in adjusting
he number and/or location of parameters to suit the resolving
ower of the data. While several studies have used static irregular
arameterizations, they are generally applied within an adaptive
ramework. Apart from limiting the range of structure that can be
ecovered, the choice of parameterization is important because it
mpacts on the solution technique chosen for both the forward and
nverse problems.

.1. Common regular parameterizations
Regular parameterizations are attractive because they are
onceptually simple, easy to formulate, and generally do not com-
licate the forward and inverse solvers. Cells or blocks (Fig. 3a) with
niform seismic properties (e.g. velocity or slowness) are the most
lanetary Interiors 178 (2010) 101–135 107

basic form of parameterization, and make initial value ray tracing
simple because path segments in each block are straight lines. On
the other hand, the artificial discontinuities between each block
are unrealistic, and can lead to unwarranted ray shadow zones
and triplications, which may make the two-point ray tracing prob-
lem more non-linear. Using a large number of blocks with some
form of smoothing regularization can mitigate these problems, but
it will be at the expense of increased computing time. Constant
slowness/velocity blocks have been widely used in most forms of
tomography, including teleseismic (Aki et al., 1977; Oncescu et
al., 1984; Humphreys and Clayton, 1988, 1990; Benz et al., 1992;
Achauer, 1994; Saltzer and Humphreys, 1997), local earthquake
(Aki and Lee, 1976; Nakanishi, 1985), wide-angle (Zhu and Ebel,
1994; Hildebrand et al., 1989; Williamson, 1990; Blundell, 1993)
and global (Grand et al., 1997; Vasco and Johnson, 1998; van der
Hilst et al., 1997; Boschi and Dziewonski, 1999). A slightly more
sophisticated approach is to use triangular cells (2D) or tetrahe-
dra (3D) with a constant velocity gradient, which like constant
velocity blocks, facilitates analytic ray tracing (e.g. Chapman and
Drummond, 1982; White, 1989).

An alternative to block parameterizations is to define seis-
mic properties at the vertices of a regular grid (Fig. 3b) together
with some interpolation function. One of the first implementa-
tions of this approach was by Thurber (1983), who used trilinear
interpolation between a rectangular grid of nodes to define a con-
tinuously varying velocity field for local earthquake tomography.
This scheme is now commonly used in earthquake tomography
(Eberhart-Phillips, 1986, 1990; Zhao et al., 1992; Eberhart-Phillips
and Michael, 1993; Scott et al., 1994; Graeber and Asch, 1999),
and can be found in other forms of tomography, including tele-
seismic tomography (Zhao et al., 1994; Steck et al., 1998). The
use of higher order interpolation results in a smoother contin-
uum, but requires a larger basis. For example, trilinear interpolation
means that any point within a cell is defined by the 8 points that
describe the cell, but produces C0 continuity (i.e. continuous, but
not differentiable everywhere). On the other hand, the use of cubic
B-splines means that any point within a cell is a function of 64
surrounding points, but results in C2 continuity (i.e. continuous
second derivatives). Thus, there is generally a trade-off between
smoothness, the width of the local basis, and consequently, com-
puting time. Exceptions include natural cubic splines, which are
cubic polynomials that interpolate each grid point and have a global
basis (i.e. any point defined by the spline is a function of all grid
points). Cubic spline functions with a local basis are used widely in
tomography: Thomson and Gubbins (1982) and Sambridge (1990)
use Cardinal splines in teleseismic and local earthquake tomogra-
phy respectively; Farra and Madariaga (1988) and McCaughey and
Singh (1997) use cubic B-splines in wide-angle tomography; and
Rawlinson et al. (2006b) use cubic B-splines in teleseismic tomog-
raphy. Splines under tension (Smith and Wessel, 1990) is a flexible
form of parameterization that essentially allows variation between
quasi-trilinear interpolation and cubic spline interpolation. The
ideal tension factor results in a smooth model that minimizes unre-
alistic oscillations yet maximizes local control. Neele et al. (1993),
VanDecar et al. (1995) and Ritsema et al. (1998) all use this approach
in teleseismic tomography.

In regional and global tomography, regular blocks or grids in
spherical coordinates are faced with the additional challenge of an
artificial increase in spatial resolution towards the poles and central
axis. To address this problem Wang and Dahlen (1995) and Wang et
al. (1998) develop spherical surface splines which essentially corre-

spond to a cubic B-spline basis on a triangular grid of approximately
equally spaced knot points. In global waveform tomography, the
so-called “cubed-sphere” (Ronchi et al., 1996), which is an ana-
lytic mapping from the cube to the sphere, has become popular,
particularly in conjunction with the spectral element method for
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Fig. 3. 2D velocity field defined using (a) co

umerical solution of the elastic wave equation (Komatitsch et al.,
002).

A common alternative to the discretization of seismic proper-
ies in the spatial domain is to instead use the wavenumber domain.
pectral parameterizations that use some form of truncated Fourier
eries fall into this category (e.g. Wang and Houseman, 1997); the
nknown parameters in the inversion problem then become the
mplitude coefficients of the harmonic terms, rather than the val-
es at grid nodes or within blocks that is generally the case when
he spatial domain is parameterized. At the local scale, spectral
arameterizations have been used in wide-angle traveltime inver-
ion by Hildebrand et al. (1989), Hammer et al. (1994) and Wiggins
t al. (1996). In global tomography, spherical harmonics are fre-
uently used for structural representation (Dziewonski et al., 1977;
ziewonski and Woodhouse, 1987; Li et al., 1991; Trampert and
oodhouse, 1995; Reid et al., 2001; Romanowicz and Gung, 2002)

ue to their natural affinity with the shape of the Earth, their rela-
ive simplicity in controlling the wavelength of recovered structure,
nd their common usage in other global geophysical studies (e.g.
ravity, magnetism), which helps facilitate direct comparison. The
rawback of infinitely differentiable functions of this type is that
hey have a global basis (i.e. adjustment of any single harmonic
erm will have a global influence on the model), so poorly resolved
ortions of a model may detrimentally influence (or “leak”) into
ther regions. Furthermore, compute time can become significant
or models described by a large number of harmonic terms, since
hey all contribute to the value of the function at any given point.
mirbekyan et al. (2008) attempt to address these shortcomings
y developing a harmonic spherical spline parameterization, which
ombines spherical harmonics with the spatial localization prop-
rties of spline functions.

Representing the Earth by a function which assumes continuous
ariation of seismic properties is valid in many circumstances, but
here are cases where explicit inclusion of interfaces is required. For
xample, in wide-angle tomography, refracted and reflected waves

re the primary observables, and cannot be synthesized without
he presence of discontinuities (one could argue that sharp veloc-
ty gradients will give rise to similar phenomena, but the data will
enerally not be able to resolve such features, so explicit interfaces
re a valid approximation). There are two basic styles of interface

ig. 4. Two schemes for representing media which contain both continuous and discontin
eismic structure wi(x, z) varies smoothly; (b) flexible framework based on an aggregate o
velocity blocks; (b) cubic B-spline patches.

parameterization that are used in seismic tomography. The most
common represents the subsurface as one or more sub-horizontal
layers overlying a half-space (Fig. 4a); each layer laterally traverses
the entire model, but may pinch together in one or more places
(Rawlinson and Sambridge, 2003b). This is often used in coincident
reflection and wide-angle tomography, where ubiquitous inter-
faces such as the Moho are well suited to this form of representation
(e.g. Chiu et al., 1986; Farra and Madariaga, 1988; Williamson,
1990; Sambridge, 1990; Wang and Houseman, 1994; Zelt, 1999;
Rawlinson et al., 2001a; Rawlinson and Urvoy, 2006). The velocity
(or other seismic property) within each layer can be represented
using any of the techniques described above, and need not nec-
essarily be linked to the interface geometry or adjacent layers. The
relative simplicity of this representation makes it amenable to rapid
data prediction, yet allows many different classes of later arriving
phases to be computed.

In some instances, a priori information is sufficiently detailed
that more sophisticated parameterizations that mix continuous
and discontinuous variations in seismic properties are warranted.
For example, in exploration seismology, data coverage is usually
dense, and near surface complexities (such as faults) often need
to be accurately represented. Furthermore, there is often detailed
information from field mapping and other geophysical techniques
that is available. A parameterization that may be more suitable
in these circumstances involves dividing the model region up
into an aggregate of irregularly shaped volume elements (Fig. 4b),
within which seismic properties vary smoothly, but is discontinu-
ous across element boundaries (e.g. Pereyra, 1996; Bulant, 1999).
This allows most geological features such as faults, folds, lenses,
overthrusts, intrusions etc. to be faithfully represented, but makes
both the forward prediction and inverse problems more challeng-
ing to solve.

The mathematical functions used to describe interfaces are
largely analogous with those used to describe seismic continua. For
example, piecewise linear segments are somewhat equivalent to

constant velocity cells, and produce artificial ray shadow zones on
account of the gradient discontinuities between each line segment
(Williamson, 1990; Zelt and Smith, 1992). The logical extension of
this to 3D is to represent surfaces using piecewise triangular area
elements (Sambridge, 1990; Guiziou et al., 1996), as illustrated in

uous variations in seismic property (a) laterally continuous interfaces within which
f irregular blocks within which seismic structure wi(x, z) varies smoothly.
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Michelini (1995), who adjusts the velocity and position of cubic
B-spline control vertices in 2D cross-hole tomography. While the
topology of the control mesh in this case is regular, the use of
parametric splines allows some irregularity in the position of
Fig. 5. Multi-valued surface constructed using (a) a mesh of tria

ig. 5a. Both of these parameterizations make multi-valued surfaces
traightforward to represent, but cause two-point ray tracing and
ence the data prediction problem to become less robust. Interfaces
ay also be defined on a grid of depth nodes, with some inter-

olation function used to describe the complete surface (Fig. 5b).
ubic splines are widely used in 2D and 3D wide-angle tomog-
aphy, where sub-horizontal interfaces are commonly included
e.g. Farra and Madariaga, 1988; White, 1989; Lutter and Nowack,
990; Pereyra, 1996; McCaughey and Singh, 1997; Rawlinson and
ouseman, 1998; Rawlinson et al., 2001a; Rawlinson and Urvoy,
006).

.2. Irregular parameterizations

In regional and global tomography, it has long been recognised
hat the limited geographical distribution of sources and receivers
ften leads to highly irregular sampling of the subsurface by the
ecorded seismic energy. This problem also exists for more targeted
xperiments such as local earthquake and teleseismic tomography,
lthough station distribution tends to be more uniform. Studies
hich control the location of sources, such as vibroseis, explo-

ions, air-guns and ambient noise experiments, are less liable to
xperience uneven data coverage, but it still remains an issue. The
se of uniform basis functions, as described above, to represent
tructural information extracted from such data is therefore incon-
istent, because it does not recognise its spatially varying resolving
ower. An alternative approach is to use a parameterization which
an itself adapt to the spatially varying constraints supplied by the
ata.

Pioneering work in this area goes back several decades, with the
tudies of Chou and Booker (1979) and Tarantola and Nercessian
1984), who propose “block-less” parameterizations for seismic
omography. These allow local smoothing scale lengths to vary
patially, and are in principle similar to the more recent and com-
only used variable mesh schemes. “Continuous regionalization”,

s developed by Montagner and Nataf (1986), is one manifesta-
ion of the “block-less” approach to structural representation that
s commonly used in surface wave tomography (e.g. Debayle, 1999;
ebayle and Kennett, 2003). It produces a smooth model of vari-
ble scale length by using a Gaussian prior covariance function to
nforce correlation between adjacent points. This takes the form of
prior variance and horizontal correlation length, which constrain

he allowable amplitude and lateral length scale of anomalies. The
hoice of correlation length can be based on ray path coverage,
hich helps address the problem of uneven data sampling. One of
he main drawbacks of the scheme is computational cost, which
cales with M2, where M is the number of data. Montagner and
animoto (1990) introduce several approximations to the orig-
nal scheme to improve efficiency, and Debayle and Sambridge
2004) implement sophisticated geometrical algorithms to exclude
r area elements; (b) a mosaic of cubic B-spline surface patches.

regions that contribute little to the prior covariance function. This
has the dual benefit of further improving efficiency and making the
algorithm highly suited to parallelization. Consequently, the new
scheme can be applied to much larger problems (of the order of
50,000 paths for example).

In an alternative approach, Fukao et al. (1992) use non-
uniformly sized rectangular 3D blocks to account for uneven ray
sampling, and Abers and Roecker (1991) introduce a scheme in
which fine scale uniform 3D blocks are joined to form larger irreg-
ular cells (a “bottom-up” approach). Sambridge et al. (1995) and
Sambridge and Gudmundsson (1998) were the first to propose the
use of Delaunay tetrahedra and Voronoi polyhedra, which are com-
pletely unstructured meshes, in seismic tomography (see Fig. 6 for
an example of Delaunay triangulation—a continuum can be read-
ily described for any arbitrary distribution of nodes). The main
challenges in using such schemes include: (1) increased compute
time to solve the forward problem; (2) developing an appropri-
ate technique for fitting the mesh to the data constraints; (3)
interpreting the results, which will exhibit structure at multiple
scale lengths. Static schemes use a fixed parameterization through-
out the inversion, while adaptive schemes dynamically adjust the
parameterization during the inversion.

One of the first studies to use an adaptive scheme was that of
Fig. 6. Irregular parameterization using optimal Delaunay triangulation to describe
a continuum based on a discrete set of control nodes.
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ig. 7. Principle of the (a) shooting method; (b) bending method of ray tracing. In
oint path.

odes. Curtis and Snieder (1997) also consider the 2D cross-hole
roblem, but use Delaunay triangulation to represent structure. A
enetic algorithm is used to find the position of the node which
inimizes the condition number of the tomographic system of

quations. In 3D reflection tomography, Vesnaver et al. (2000) and
öhm et al. (2000) develop an adaptive scheme which uses Delau-
ay triangles and Voronoi polyhedra. Zhang and Thurber (2005)
lso devise an adaptive scheme based on tetrahedral and Voronoi
iagrams to match the data distribution, and apply it to local earth-
uake and shot data to image the 3D structure beneath Parkfield,
alifornia.

Bijwaard et al. (1998), Bijwaard and Spakman (2000) and
pakman and Bijwaard (2001) perform global P-wave traveltime
omography using an approach similar to Abers and Roecker (1991)
n which the 3D mesh is matched to the ray path density prior to
nversion (i.e. a static approach). One of the first studies to carry
ut adaptive whole Earth tomography was that of Sambridge and
aletic (2003), who parameterize the Earth in terms of Delaunay
etrahedra. A “top-down” approach to mesh adaptation is used, in
hich new nodes are added to the edge of tetrahedra where the

ocal velocity gradient is highest. Four updates are performed, with
linear tomographic system based on rays in a laterally homoge-
eous Earth solved after each update. This approach to adaptation

s simple to implement, but regions of good data constraints are

ot always characterized by significant velocity gradients. Other
tudies to use Delaunay tetrahedra in global body wave tomogra-
hy include those of Montelli et al. (2004) and Nolet and Montelli
2005). In fact, most global body wave imaging studies now use
rregular meshes of one sort or another (e.g. Burdick et al., 2008).
ases, iterative refinement of some initial path is required to locate the correct two

A review of this topic can be found in Sambridge and Rawlinson
(2005).

As noted earlier, spectral parameterizations such as spherical
harmonics are not well suited to problems that exhibit signif-
icant variations in data coverage. An alternative approach that
shows great promise in addressing the multi-scale nature of seis-
mic tomography is the use of wavelet decomposition. Chiao and
Kuo (2001) investigate the use of Harr wavelets on a sphere for
representing lateral shear wave speed variations in D′′, as con-
strained by S-SKS traveltimes. They conclude from their results that
wavelets provide a natural regularization scheme based on ray path
sampling, with recovered detail varying according to the resolving
power of the data. Tikhotsky and Achauer (2008) invert both con-
trolled source seismic and gravity data for 3D velocity and interface
structure also represented using Haar wavelets. Loris et al. (2007)
use more sophisticated wavelets that allow for smoother repre-
sentations of structure than the discontinuous Haar wavelets. They
also minimize an objective function that, in addition to the usual
L2 data misfit term, contains an L1-norm measure of the wavelet
coefficients, the aim being to promote a parsimonious description
of structure that only has detail where required by the data.

A statistical method known as partition modelling, which is an
ensemble inference approach used within a Bayesian framework,
has recently been introduced to seismic tomography (Bodin and

Sambridge, 2009). It uses a dynamic parameterization which is able
to adapt to the uneven spatial distribution of information that char-
acterizes most datasets, and does not require explicit regularization
(damping and smoothing terms can be discarded). In the paper of
Bodin and Sambridge (2009), a Markov chain Monte Carlo method
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s used to invert traveltime data (assuming straight rays) with a
odel comprising a small number of constant velocity Voronoi

ells. Remarkably, even though each model in the pool of best fitting
olutions has a very blocky appearance, their average is a smooth
odel that is superior to that obtained using a conventional regular

rid approach.

. The data prediction problem

Seismic tomography may exploit one or more observables from
seismic record, including traveltime, amplitude, frequency con-

ent or the full waveform. The need for accurate, efficient and robust
redictions of these quantities has driven the development of a
ide range of techniques, most of which are based on the high-

requency assumption of geometric optics. The descriptions and
iscussion below will focus mainly on ray and grid-based tech-
iques for solving the two-point problem of finding the path taken
y seismic energy between source and receiver.

.1. Ray-based methods

The full elastic wave equation can be greatly simplified in cases
here the high frequency assumption is valid. It can be shown for

oth P and S waves in an isotropic medium (e.g. Rawlinson et al.,
007) that the elastic wave equation will reduce to:

∇T | = s, (1)

∇A · ∇T + A∇2T = 0 (2)

here T is traveltime, s is slowness and A is amplitude. Eq. (1) is the
ikonal equation, which governs the propagation of seismic waves
hrough isotropic media. Eq. (2) is the transport equation, which
an be used to compute the amplitude of the propagating wave. In
ully anisotropic media (Červený, 2001), the eikonal and transport
quations have a slightly more complex form due to the presence of
he elastic tensor c. Instead of directly solving the eikonal equation,
t is possible to only consider its characteristics, which are trajec-
ories orthogonal to the wavefront (in isotropic media). These are
escribed by the kinematic ray equation:

d
dl

[
s

dr

dl

]
= ∇s. (3)

here l is path length and r is a position vector of a point along the
ay. In anisotropic media, the Hamiltonian formalism of classical
echanics (Červený, 2001; Chapman, 2004) is a more convenient

orm of representation. The behaviour of rays in the presence of
nterfaces is simply described by Snell’s law, which can be gener-
lized for anisotropic media (e.g. Slawinski et al., 2000). Dynamic
ay tracing can be applied to yield amplitudes, and this can be done
ost easily by using the paraxial ray approximation (Červený and

šenčik, 1983; Červený and Firbas, 1984; Červený, 1987; Farra and
adariaga, 1988; Virieux and Farra, 1991; Červený, 2001; Červený

t al., 2007; Tian et al., 2007a), which essentially involves using
rst-order perturbation theory to deduce characteristics of the
avefield in the neighbourhood of a reference ray.

.1.1. Shooting methods
Shooting methods of ray tracing formulate Eq. (3) as an initial

alue problem, which allows a complete ray path to be traced (with
pplication of Snell’s law at interfaces if necessary) given some ini-
ial trajectory. The two-point problem of locating a source–receiver

ath is more difficult to solve, because it is essentially a (potentially
ighly) non-linear inverse problem, with the initial ray direction as
he unknown, and some measure of the distance between receiver
nd ray end point as the function to be minimized. In media
escribed by constant velocity (or slowness) blocks, the initial value
lanetary Interiors 178 (2010) 101–135 111

problem is simple to solve (via repeated application of Snell’s law),
but the two-point problem is not (Williamson, 1990). Analytic ray
tracing can also be used in media with a constant velocity gradi-
ent (e.g. White, 1989; Rawlinson et al., 2001a), constant gradient
of ln v, and constant gradient of the nth power of slowness 1/vn

(Červený, 2001). Other than these few cases, numerical solution of
Eq. (1) is required. In the presence of interfaces, one potentially dif-
ficult problem is to efficiently locate the ray-interface intersection
point, particularly when sophisticated interface parameterizations
are used. However, a number of practical methods are available
(Sambridge, 1990; Virieux and Farra, 1991; Rawlinson et al., 2001a).

The boundary value problem is most commonly solved using
an iterative non-linear approach, in which the source trajectory of
some initial guess ray path is perturbed until it hits the desired
end point (see Fig. 7a). Julian and Gubbins (1977) propose two
different iterative non-linear techniques for solving the two-point
problem: one is based on Newton’s method, and the other on the
method of false position. Both techniques have been widely used
(e.g. Sambridge, 1990; Rawlinson et al., 2001a). Fig. 8 shows two
point paths computed using the shooting method of Rawlinson et
al. (2001a). A variety of methods have been proposed for locating a
suitably accurate initial guess ray, including shooting a broad fan of
rays towards the receiver and then iteratively refining the ray fan
(Virieux and Farra, 1991), and using the correct two point path for
a laterally averaged version of the model (Thurber and Ellsworth,
1980; Sambridge, 1990). As the non-linearity of the boundary value
problem increases, iterative non-linear solvers require more accu-
rate initial guess rays (see Fig. 10 of Rawlinson et al., 2007, for a clear
illustration). Although not frequently acknowledged in the litera-
ture, practical applications of shooting, particularly in regions of
significant heterogeneity, often settle for some “acceptable” trade-
off between the percentage of two-point paths located, and total
compute time.

Fully non-linear shooting methods, based on sampling algo-
rithms like simulated annealing, have been devised and tested (e.g.
Velis and Ulrych, 1996, 2001), but they have not proved popular.
Perhaps this is because ray tracing is at its most useful when veloc-
ity heterogeneity is not too severe, so that local sampling of the ray
field is still a valid approach for the detection of two-point paths.
When this is no longer the case, global techniques like grid based
eikonal solvers (see below) will be much more efficient. Shooting
methods of ray tracing are widely used in seismic tomography, due
to their conceptual simplicity, and potential for high accuracy and
efficiency (Cassell, 1982; Benz and Smith, 1984; Langan et al., 1985;
Farra and Madariaga, 1988; Sambridge, 1990; Zelt and Smith, 1992;
VanDecar et al., 1995; McCaughey and Singh, 1997; Rawlinson et
al., 2001b).

3.2. Bending methods

Bending methods of ray tracing iteratively adjust the geome-
try of some arbitrary two point path until it becomes a true ray
path (see Fig. 7b) i.e. it satisfies Fermat’s principle of stationary
time. A common approach to implementing the bending method
is to derive a boundary value formulation of Eq. (3), which can
then be solved iteratively (Julian and Gubbins, 1977). Pereyra et
al. (1980) devise a bending method similar to that of Julian and
Gubbins (1977), but extend it to allow for the presence of inter-
faces. In complex media Pereyra (1996) use ray shooting to help
locate an initial guess ray.

Pseudo-bending methods use the same principle of adjusting

ray geometry to locate a true ray, but avoid direct solution of the
ray equations. One of the first pseudo-bending schemes was devel-
oped by Um and Thurber (1987), who describe a ray path by a
set of linearly interpolated points. For some initial arbitrary path
described by a small number of points, the scheme proceeds by
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Fig. 8. Two point paths through a 3D medium computed using the shoo

djusting the location of each point by directly exploiting Fermat’s
rinciple of stationary time. Once some convergence criterion is
atisfied, new points are interpolated between pre-existing points,
nd the iterative procedure continues until sufficient accuracy is
chieved. Despite the relatively crude approximations made in
seudo-bending, Um and Thurber (1987) find it to be much more
omputationally efficient than conventional bending schemes.
onsequently, it has become popular for problems that require

arge travel-time datasets to be predicted, such as in 3D local
arthquake tomography (Eberhart-Phillips, 1990; Scott et al., 1994;
berhart-Phillips and Reyners, 1997; Graeber and Asch, 1999). Zhao
t al. (1992) modify the pseudo-bending scheme of Um and Thurber
1987) to allow for the presence of interfaces, and Koketsu and
ekine (1998) devise a similar scheme in 3D spherical coordinates.

Like ray shooting, fully non-linear bending methods have also
een devised; for example, Sadeghi et al. (1999) develop a method
hich uses genetic algorithms to globally search for the minimum

ime path between two fixed points. Again, like fully non-linear
hooting, one could argue that the exhaustive interrogation of the
ay field for each source–receiver pair would make other classes
f techniques that guarantee to find the global minimum (like
ikonal solvers) more practical. Apart from shooting and bending
ethods, the boundary value problem can also be solved using

echniques based on structural perturbation (Červený, 2001). In
his class of scheme, a known two-point path exists in a reference

edium, and the aim is to locate the equivalent two point path in a
lightly modified medium. Solution of this class of problem can be
btained using ray perturbation theory (Farra and Madariaga, 1987;
nieder and Sambridge, 1992; Snieder, 1993; Pulliam and Snieder,
996). Although relevant to iterative non-linear tomography, this
pproach is not widely used.

.3. Grid-based methods

Instead of tracing rays between source and receiver, an alterna-
ive strategy is to compute the global traveltime field as defined by
grid of points. This will implicitly contain the wavefront geome-

ry as a function of time (i.e. contours of T(x)), and all possible ray
rajectories (specified by �T). Compared to conventional shooting

nd bending methods of ray tracing, grid-based traveltime schemes
ave several clear advantages: (1) they compute traveltimes to all
oints in the medium, including (in most cases) diffractions in ray
hadow zones; (2) they exhibit high stability in strongly hetero-
eneous media; (3) they efficiently compute traveltime and path
ethod of Rawlinson et al. (2001a). (a) Reflected rays; (b) refracted rays.

information, particularly when the ratio of sources to receivers
(or vice versa) is high; (4) they consistently yield first-arrivals.
The advantages of grid-based schemes are offset somewhat by
the following drawbacks: (1) their accuracy is a function of grid-
spacing—in 3D, halving the grid spacing will increase compute time
by at least a factor of eight; (2) in most cases, they only produce
first-arrivals; (3) they have difficulty computing quantities other
than traveltime (e.g. amplitude); (4) anisotropy, easily dealt with
by ray methods, is more of a challenge. Two grid-based schemes –
finite difference solution of the eikonal equation and shortest path
methods – have emerged as popular alternatives to ray tracing.

3.3.1. Eikonal solvers
The use of eikonal solvers in seismology was largely pioneered

by Vidale (1988, 1990), who developed a technique for finite differ-
ence solution of the eikonal equation on a grid. Relatively simple
centred difference stencils are formulated for approximating the
gradient terms in Eq. (1), so that traveltimes can be computed at
new points using known values at adjacent points. An expand-
ing square is adopted for the computational front, which sweeps
through the medium from the source point until the complete trav-
eltime field is computed. Ray paths can be found retrospectively by
simply following the traveltime gradient from each receiver back
to the source. The resulting scheme is fast and sufficiently accurate
for most seismic applications, with CPU time being approximately
proportional to the number of points defining the grid. The use of
an expanding square formalism to define the shape of the com-
putational front cannot always respect the direction of flow of
information through the medium. For example, it is possible that
a first arrival will need to sample a region outside the expanding
square before returning back into it. Consequently, first arrivals are
not always guaranteed, which can lead to instability. Nonetheless,
the basic scheme proposed by Vidale (1988, 1990) remains popu-
lar, and its stability has been improved thanks to new features such
as special headwave operators (Hole and Zelt, 1995; Afnimar and
Koketsu, 2000), and post-sweeping to correct for the non-causal
nature of the expanding square (Hole and Zelt, 1995). van Trier and
Symes (1991) use entropy-satisfying first-order upwind operators
to improve computational efficiency and deal with wavefront dis-

continuities. Comparable improvements are made by Podvin and
Lecomte (1991), who employ Huygen’s principle in the finite dif-
ference approximation.

The above techniques, which have largely been independently
developed in seismology, bears some similarity with essentially
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ig. 9. Reflected wavefront and traveltime field computed using the FMM scheme
f Rawlinson and Sambridge (2004a).

on-oscillatory (ENO) finite difference schemes developed in the
eld of computational mathematics (Shu and Osher, 1988, 1989).
he attraction of ENO schemes is that they can be readily expanded
o very high orders of accuracy, yet remain stable. Kim and Cook
1999) devise a scheme which they describe as ENO–DNO–PS
o efficiently compute first-arrival traveltime fields. The DNO (or
own ‘n’ out) refers to an expanding box computational front, and
S refers to post-sweeping. Therefore, apart from the finite differ-
nce stencil, it is very similar to the scheme of Hole and Zelt (1995).
ENO (weighted ENO) schemes, which offer improved computa-

ion time and stability compared with ENO schemes, have also been
eveloped (Liu et al., 1994; Jiang and Shu, 1996; Jiang and Peng,
000). Qian and Symes (2002) use a WENO scheme with adaptive
ridding to compute traveltimes, and Buske and Kästner (2004)
mplement a WENO scheme in polar coordinates to compute trav-
ltimes that are sufficiently accurate to solve the transport equation
or amplitudes.

In order to overcome the limitations of the expanding square
ormalism, Qin et al. (1992) and Cao and Greenhalgh (1994) use
he first-arriving wave-front as the computational front, which is
ocally evolved by always choosing the point with minimum trav-
ltime along the edge of the computed field to update adjacent
oints. This ensures that the shape of the computational front con-
orms to the first-arrival wavefront, and will not result in causality
reaches. The drawback of this approach is the additional computa-
ional expense involved in locating the global minimum traveltime
oint along the computational front. For example, if heap sorting is
sed, then computing time will be proportional to N log N, where
is the total number of grid points used to describe the velocity

eld.
Another eikonal solver that was developed in the field of com-

utational mathematics is the so-called Fast Marching Method or
MM (Sethian, 1996; Sethian and Popovici, 1999; Popovici and
ethian, 2002). It uses upwind entropy-satisfying finite difference
tencils to solve the eikonal equation, and a computational front
narrow band) that encapsulates the first-arriving wavefront. The
nite difference stencils account for the fact that the first-arrival
raveltime field is not always differentiable (i.e. the �T term in
q. (1) is not necessarily defined everywhere), and result in a very
obust method. Rawlinson and Sambridge (2004a,b) extend the
cheme to improve accuracy in the source neighbourhood where

avefront curvature is high (and therefore poorly described by
regular grid), and compute phases comprising any number of

efracted and reflected branches in media containing interfaces (see
ig. 9). Eikonal solvers are now widely used in tomography, partic-
larly 3D wide-angle and teleseismic studies (Hole, 1992; Zelt et
lanetary Interiors 178 (2010) 101–135 113

al., 1996, 2001; Riahi et al., 1997; Zelt and Barton, 1998; Zelt, 1999;
Day et al., 2001; Rawlinson et al., 2006a,b; Rawlinson and Urvoy,
2006; Rawlinson and Kennett, 2008).

3.3.2. Shortest path ray tracing
Another class of grid-based scheme that has been used in seis-

mic tomography to compute traveltimes to all points of a gridded
velocity field is shortest path ray tracing or SPR (Nakanishi and
Yamaguchi, 1986; Moser, 1991; Fischer and Lees, 1993; Cheng and
House, 1996; Zhao et al., 2004; Zhou and Greenhalgh, 2005). Instead
of solving a differential equation, a network or graph is formed
by connecting neighbouring nodes with traveltime path segments.
Dijkstra-like algorithms can then be used to find the shortest time
path between a source and receiver, which, according to Fermat’s
principle of stationary time, will correspond to a valid ray path.
Shortest path networks are commonly defined in terms of either
a cell or grid centred framework. In the latter case, the connec-
tion stencil is often referred to as the “forward star” (Klimeš and
Kvasnička, 1994). In 2D a forward star with 8 connections will join
any node with all of its immediate neighbours, but will not allow
variations in ray path trajectory less than 45◦ (for a square grid).
By allowing direct connections between the central node and the
neighbours of the 8 nodes, a forward star with 16 connections can
be defined, which will permit greater flexibility of the ray geometry.

The difference between a scheme like FMM and SPR is actually
not all that great; they both use the shape of the first-arriving wave-
front as the computational front and use the same approach for
choosing a new node for a local update of the traveltime field. The
only obvious change is in the update stencil that is used to compute
new traveltimes. As such, many of the extensions that have been
applied to FMM, such as grid refinement and the location of later
arriving phases consisting of reflected and refracted branches, are
equally applicable to SPR (Moser, 1991). Although less frequently
used than eikonal solvers, SPR has been implemented in a number
of tomographic studies to solve the forward problem of traveltime
prediction (Nakanishi and Yamaguchi, 1986; Toomey et al., 1994;
Zhang and Toksöz, 1998; Bai, 2005).

3.4. Multi-arrival schemes

All of the schemes described above are really only suitable for
tracking a single (usually the first) or a limited number of arrivals
between two points. However, even relatively small variations in
seismic wavespeed can produce a phenomenon known as multi-
pathing, which is simply defined as when more than one ray path
connects two points in the medium. In order for this to occur, the
propagating seismic wavefront must distort to such an extent that
it self-intersects (or folds over on itself). In such situations, eikonal
and shortest path methods will yield the first arrival only, while
most shooting and bending methods will only produce a single
arrival (with no real guarantee as to whether it is a first or later
arrival). With sufficient probing of the medium, multiple arrivals
can be produced with ray tracing, but usually not in a robust or
efficient enough manner for applications such as tomography. The
heterogeneity of the Earth, particularly near the surface, means that
multi-pathing commonly contributes to the complexity of recorded
waveforms. Therefore, any method that can accurately predict all
arrivals of significant amplitude has important implications for
Earth imaging.

To date, a number of methods have been developed to solve the
multi-arrival problem. These include both grid-based (Benamou,

1999; Steinhoff et al., 2000; Engquist et al., 2002; Fomel and
Sethian, 2002; Osher et al., 2002; Symes and Qian, 2003), ray based
(Vinje et al., 1993; Lambaré et al., 1996; Vinje et al., 1996, 1999;
Hauser et al., 2008) and hybrid (Benamou, 1996) schemes. Due to
the relative infancy of grid-based schemes, which have been largely
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eveloped outside the field of seismology, most of the methods
ited above are not sufficiently developed for practical applica-
ion in tomography. However, recent work by Cheng (2007) which
evelops and refines the level-set approach of Osher et al. (2002)

ndicates that it is now on the point of being computationally fea-
ible for seismic tomography.

In contrast to grid-based schemes, ray-based schemes for track-
ng multi-arrivals are much more mature, and have been used in
eismology. One of the first ray-based schemes was proposed by
inje et al. (1993), and is commonly referred to as “wavefront con-
truction”. The basic principle underlying this technique is that a
avefront can be discretely described by a set of points, which are

hen progressively evolved through a medium using initial value
ay tracing for a given time increment. In order to avoid under-
ampling of the wavefront as it focuses and defocuses, new points
re inserted based on a distance criterion between adjacent rays.
he original 2D method of Vinje et al. (1993) was subsequently
xtended to 3D (Vinje et al., 1996), and then modified for media
nvolving complex interfaces (Vinje et al., 1999). Since the initial
alue ray tracing equations can be solved with high accuracy, the
ain source of error comes from the interpolation step. Simply

sing a distance metric in normal space can introduce instability
n this process, because wavefronts may contain significant kinks,
articularly when they triplicate. Lambaré et al. (1996) and Hauser
t al. (2008) use an interpolation criterion based on the phase space
istance between adjacent points to overcome this problem. Wave-
ront construction has been used in various applications including
oincident reflection migration (Xu and Lambaré, 2004; Xu et al.,
004). Hauser et al. (2008) investigate its use in the context of multi-
rrival seismic tomography, and conclude that it has the potential
o significantly improve the quality of recovered images, particu-
arly in regions of low wavespeed which are poorly constrained by
rst-arrival ray paths.

.5. Finite frequency considerations

Geometric ray theory has been an integral part of seismic tomog-
aphy for the past four decades, and can be used to predict various
uantities including traveltime, geometric spreading amplitude
nd t* (used in attenuation tomography). However, seismic tomog-
aphy that accounts for finite frequency effects is starting to become
ore common, due to the increasing recognition of its importance

or accurate imaging, and continuing improvements in computing
ower. This is on top of the gradual emergence of techniques that
ttempt to invert the full seismic waveform, and implicitly account
or finite frequency effects by numerically solving the wave equa-
ion.

In the last decade or so, the term “finite frequency tomog-
aphy” has come to mean tomography that employs first-order
erturbation theory (or Born scattering theory) to account for
cattering/diffraction effects including wavefront healing. Most
mplementations of this technique exploit the frequency depen-
ence of traveltime that arises largely from the wavefront healing
henomenon (Nolet, 2008) and build the forward calculation on top
f kinematic and dynamic ray tracing. Dahlen et al. (2000) compre-
ensively describes the theory for body waves in 3D media. The

ocus of this paper is the efficient calculation of Fréchet kernels (or
ensitivity kernels), traditionally one of the impediments to suc-
essful finite frequency body wave tomography. In order to fully
ccount for the first-order dependence of absolute or differential
raveltimes (measured using waveform cross-correlation) on struc-

ural perturbations, not only does the source–receiver geometric
ay need to be found, but so do all possible rays from the source
o every scatterer, and all possible rays from the receiver to every
catterer. Furthermore, traveltimes, Maslov indices, reflection-
ransmission products, geometrical spreading factors and other
lanetary Interiors 178 (2010) 101–135

quantities need to be computed along each of these rays. The com-
putational burden of this approach makes it impractical for routine
applications of seismic tomography.

Dahlen et al. (2000) develop an alternative scheme which only
requires a single geometric ray path to be computed for each
source–receiver pair. This approximation is generally valid because
perturbations in traveltime tend to be only sensitive to struc-
tural perturbations in the immediate neighbourhood of the central
geometric ray i.e. approximately the first Fresnel zone. Ignor-
ing scatterers outside this region (and along the geometric ray,
which according to first-order scattering theory has no influence on
cross-correlated traveltime measurements), vastly improves com-
putation time, and enables paraxial ray theory to be invoked to
increase efficiency even further. Using the paraxial approximation
only requires the geometric ray to be traced because information
in the neighbourhood of the central ray can be readily computed.
Thus, in addition to finding the single two-point ray, only a few
additional integrations along the ray path are necessary to build
the sensitivity kernel. Dahlen et al. (2000) extend their new the-
ory to cover overlapping phases such as direct P and pP that arrive
at similar times. In a companion paper, Hung et al. (2000) illus-
trate several examples of both absolute and differential traveltime
sensitivity kernels and Montelli et al. (2004) apply the new the-
ory to global body wave mantle tomography. Calvet and Chevrot
(2005) develop an alternative scheme for computing PKP kernels
that rely on look-up tables for traveltimes and geometric spread-
ing. Although more time consuming, this approach is preferable to
a paraxial approach when kernels become very wide (Tian et al.,
2007b). Finite frequency sensitivity kernels have also been derived
for surface waves (e.g. Marquering et al., 1998; Zhou et al., 2004).

One of the common assumptions made in finite frequency
tomography is that scattering from one wave type to another (e.g.
S to P) is not significant and can be ignored. However, in a recent
study, Zhang and Shen (2008) use finite difference solution of the
wave equation to demonstrate that S-wave perturbations can have
a significant effect on P waveforms, and conclude that ignoring this
cross-dependence can lead to systematic bias in the recovery of P
wavespeeds.

Exploiting the full waveform in seismic tomography requires an
efficient method for solving the elastic wave equation. The problem
can be formulated and solved in a variety of ways, all of which
are, at least compared to geometric ray methods, computationally
intensive. The far field elastic wave equation for isotropic media
can be written as:

�ü = ∇�(∇ · u) + ∇� · [∇u + (∇u)T]

+ (� + 2�)∇(∇ · u) − �∇ × ∇ × u (4)

where u is displacement, ü is the second derivative of displacement
with respect to time (i.e. acceleration), � is density, and � and � are
the Lamé parameters. Eq. (4) can be expressed in a variety of ways
depending on the nature of the source, the frequency content of
the seismic waves and the assumptions made about the medium.
As an initial value partial differential equation, Eq. (4) can be solved
using finite difference or finite element methods.

The potential for solving the wave equation in the context of
full waveform tomography has long been recognised, particularly
in active source studies such as cross-hole and reflection imag-
ing. Early efforts focused on the acoustic problem (Tarantola and
Nercessian, 1984; Pratt and Worthington, 1990), which is simpler
to deal with but has limited application due to source generated and

mode-converted shear waves. The advantages of solving the wave
equation in the frequency domain were also understood early on,
with the development of both finite element and finite difference
schemes (Marfurt, 1984; Pratt, 1990). Compared to time domain
schemes (e.g. Virieux, 1984, 1986), frequency domain methods
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an solve the wave equation for additional source positions with
inimal added cost, and are more efficient when only a limited

umber of frequency components are required, which in practice
s often the case in seismic tomography. Pratt (1990) reformulates
q. (4) in the frequency domain for 2D media, and incorporates
ttenuation by making the Lamé parameters complex valued and
requency dependent. The resultant system of elliptic partial dif-
erential equations constitutes a boundary value problem, which
s solved using absorbing boundary conditions to eliminate arti-
cial reflections. The use of 2D models result in a more tractable

orward problem, but the dissipation of elastic energy from the
ource in the out-of-plane direction is difficult to calculate. Solv-
ng the forward problem in “2.5D” media (i.e. models that are 3D,
ut only have structural variations in two dimensions) can mitigate
his shortcoming without the computational expense of a fully 3D
ave equation solver (e.g. Song et al., 1995). Since this early work,

ncreasing computer power and the development of more efficient
ave equation solvers (e.g. Štekl and Pratt, 1998) have given rise

o more ambitious applications of full waveform tomography. For
xample, Sirgue and Pratt (2004) incorporate frequency domain
olution of the elastic wave equation in their full waveform inver-
ion of seismic refraction data to recover the detailed structure of
he complex Marmousi model.

The development and application of full waveform tomography
n passive source studies has been a more recent phenomenon, a
act which can probably be attributed to the large data volumes that
re often involved, the 3D nature of many of these experiments, and
he more complex and less well understood nature of the source

echanism. Surface waveform tomography has been around for a
ong time (e.g. Nolet, 1990), but generally only use 1D waveform
nversion of long period waves, which are then combined to form
3D model. Full waveform simulation methods for local, regional

nd global models have been in existence for some time, but tend
o be computationally expensive, and have difficulties dealing with
ree-surface boundary conditions (e.g. Frankel and Vidale, 1992;
arcione, 1994; Graves, 1996; Faccioli et al., 1997; Furumura et
l., 1998). Finite difference techniques are conceptually straightfor-
ard to implement, but with at least 5–7 grid points per minimum
avelength required for sufficient accuracy, extremely large grids

re required to propagate anything other than very low frequency
aves. Finite difference techniques, which generally require a reg-
lar grid, are also not well suited to an irregular free surface. Finite
lement techniques can overcome this limitation, but are still com-
utationally expensive. An alternative strategy that uses spectral
pproximations of the displacement field is developed by Faccioli
t al. (1997); advantages over the more traditional techniques
nclude fewer grid points per wavelength, accommodation of com-
lex geometries through the use of irregular hexahedral volume
lements, and natural partitioning into subdomains that favour a
arallel implementation.

In the context of developing a practical 3D passive source
ull waveform tomography technique, the current wave equation
olver of choice appears to be the spectral element method or
EM (Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999;
omatitsch et al., 2002; Liu and Tromp, 2008), which was origi-
ally developed in the field of computational fluid dynamics. Like
he pseudo-spectral method of Faccioli et al. (1997), it attempts to
ombine the flexibility of finite element methods with the accu-
acy of spectral methods. In fact, the differences between the two
echniques do not appear to be very great; for instance, hexahedral
lements, which can adapt to an irregular free surface, are used by

oth methods, as is a similar Legendre Gauss–Lobatto quadrature
pproach to numerical integration within each volume element.
owever, SEM has been developed to the point that it can be applied
t a variety of scales from local to global, and can account for a
ange of physical phenomena including anelasticity, anisotropy,
lanetary Interiors 178 (2010) 101–135 115

rotation of the Earth, self-gravitation, presence of the oceans, etc.
(Komatitsch et al., 2005). Software for solving the full wave equa-
tion, and computing kernels for finite frequency tomography, can
be found at the CIG (Computation Infrastructure for Geo-dynamics)
website: http://geodynamics.org/cig/software/packages/seismo.

4. Solving the inverse problem

The inversion step in seismic tomography requires the adjust-
ment of model parameters m to satisfy data observations dobs,
subject to any independent constraints (commonly referred to as
regularization). One of the main difficulties to be addressed in this
procedure is that of solution non-uniqueness, which pervades all
practical applications of seismic tomography. Most published stud-
ies end up interpreting a single model, but how can this be justified
given that a range of models invariably satisfies the data to the same
extent? The appeal of regularization is that it considerably reduces
the size of the subspace that contains data-fitting solutions, making
subsequent selection of a preferred model more straightforward.
The drawback is that ad hoc constraints are often imposed. Various
techniques also exist for analyzing the robustness of solution mod-
els or model ensembles. Many, such as the ubiquitous checkerboard
test discussed later, lack rigour, but given the significant dimen-
sion of most problems, more comprehensive methods are often not
computationally feasible.

In addition to solution non-uniqueness, non-linearity of the
inverse problem also afflicts many seismic tomography appli-
cations. This is certainly true of the most common form of
tomography, which uses source–receiver traveltimes to build
images of velocity heterogeneity. Traveltime and slowness (inverse
of velocity) are linearly related for a given path, but the path itself
has a non-linear dependence on the velocity field, which changes
as a result of the inversion. Thus:

t =
∫

L(�)

1
�(x)

dl (5)

where L is the ray path and �(x) is the velocity field. Although not
strictly based on the above equation, both finite frequency and full
waveform tomography are also non-linear (clearly, the relationship
between displacement and the Lamé parameters in Eq. (4) is non-
linear). In some cases, the inverse problem can be treated as linear.
For example, attenuation tomography often uses the relationship
between the attenuation parameter t* and the quality factor Q as
(e.g. Pozgay et al., 2009):

t∗ =
∫

L(�)

1
�(x)Q (x)

dl (6)

which ignores any ray perturbation effects due to attenuation.
Generally, attenuation tomography is performed subsequent to
traveltime tomography, which means that for a given velocity solu-
tion model, the relationship between t* and Q−1 is linear.

One interesting question that is not often discussed is what con-
stitutes a data-satisfying solution model in seismic tomography? In
most published studies, it is likely that at least some subset of data
predictions do not match their observational counterparts within
error estimates. A common statistical test that is sometimes used
is the so-called �2 test, which is simply the sum of the square of
differences between each observation and prediction weighted by
the corresponding data uncertainty. When the normalized �2 value
drops below one, then one could regard the model as satisfying the

data (although some observations may still be poorly matched).
The potential usefulness of this test is tempered by the fact that
data uncertainty is often poorly known; the implicit regularization
imposed by the assumed parameterization, coupled with the need
to regularize the inversion, means that it may no longer be possi-

http://geodynamics.org/cig/software/packages/seismo
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ig. 10. Illustration of the effects of smoothing and damping on the solution mod
odel perturbation is controlled using the damping parameter ε.

le to achieve a �2 value of one; and the use of approximations in
he theory (e.g. geometric ray theory) will introduce error into the
redictions. Thus, the “solution model” that is often produced in
ublished papers is one that achieves some balance between data
t (according to some measure such as �2 or RMS misfit) and the

nfluence of regularization (e.g. smoothness, deviation from initial
odel), without strictly “satisfying” the data.

.1. Backprojection

Backprojection methods exploit the fact that most data obser-
ations (e.g. traveltime) can be viewed as integral quantities along
ray path. The basic aim is to project this measured quantity

ack along the ray path from the receiver to the source and use
he known relationship d = g(m) to convert incremental data val-
es to local model perturbations. In traveltime tomography, the
echnique is generally used in conjunction with constant slowness
locks. Thus, the relationship between traveltime perturbations d
nd slowness perturbations m can be linearized as d = Gm where G

s a matrix of ray lengths corresponding to the distance traversed
y each ray in each block. An initial model that is relatively close
o the solution model is required to justify the assumption of local
inearity. Many of the elements of G will be zero since each ray path

ill usually only traverse a small subset of blocks. The basic aim of
wn in Fig. 1. The model roughness is varied using the smoothing factor �, and the

backprojection is to solve the linear system of equations described
by d = Gm, but not directly.

Two well-known backprojection methods are the algebraic
reconstruction technique (ART), and the simultaneous iterative
reconstruction technique (SIRT), both of which originate from med-
ical imaging. ART is the more basic of the two techniques, because
it simply updates the model on a ray-by-ray basis. Each residual
is distributed along its associated path by adjusting the slowness
in each cell in proportion to the length of the ray path segment
in each cell. Before repeating this process for the next ray, the
traveltime residual is computed from the updated velocity field.
Once the procedure has been carried out for all rays, the inversion
is either complete (linear tomography), or new ray paths can be
found for the updated model, and the backprojection repeated. This
cycle can be repeated until the traveltime residuals satisfy some
convergence criterion (iterative non-linear tomography). The main
problem with ART is that it suffers from poor convergence proper-
ties (Blundell, 1993), but it has found application in cross-hole and
local earthquake tomography (e.g. McMechan, 1983; Nakanishi and

Yamaguchi, 1986).

Rather than sequentially update the model on a ray-by-ray
basis, SIRT averages the perturbations applied to each cell from
all traversing rays. This more sophisticated approach yields an
algorithm with superior convergence properties, which perhaps
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xplains its more frequent use in seismic tomography (e.g. Granet
nd Trampert, 1989; Dueker et al., 1993; McQueen and Lambeck,
996). Variants of these backprojection schemes that include some
orm of regularization have also been developed and applied in seis-

ic tomography (e.g. Humphreys and Clayton, 1990; Hole, 1992;
elt and Barton, 1998). Humphreys and Clayton (1990) apply filter-
ng and spatial averaging to reduce blurring and produce a smooth
olution, and Zelt and Barton (1998) implement several other mod-
fications aimed at improving the convergence and accuracy of
ackprojection. The attractiveness of backprojection is that it is
imple to implement and computationally rapid at each iteration.
owever, it can suffer from stability and convergence problems,
nd does not naturally lend itself to regularization. Probably for
hese reasons, backprojection is now infrequently encountered in
ublished seismic tomography studies.

.2. Gradient methods

Inversion methods that use the derivative of model predictions
∂g/∂m) in order to produce a solution are by far the most common
n seismic tomography. These schemes are often applied within a
ormal framework that involves the minimization of an objective
unction containing a data residual term and one or more regular-
zation terms. For example, a typical objective function might look
ike (Rawlinson et al., 2006b):

(m) = (g(m) − dobs)TC−1
d (g(m) − dobs)

+ ε(m − m0)TC−1
m (m − m0) + �mTDTDm (7)

here g(m) are the predicted residuals, dobs are the observed resid-
als, Cd is the a priori data covariance matrix, m0 is the reference
odel, Cm is the a priori model covariance matrix, and D is a second

erivative smoothing operator. ε and � are known as the damp-
ng parameter and smoothing parameter respectively, and govern
he trade-off between how well the solution satisfies the data, the
roximity of the solution model to the starting model, and the
moothness of the solution model. The last two terms on the right
and side of Eq. (7) are regularization terms, which have the effect
f limiting the number of acceptable data-fitting models.

Although commonly used, Eq, (7) effectively juxtaposes two
ifferent regularization frameworks: Bayesian and Occam’s. In a
ayesian style inversion, information is represented in probabilistic
erms; prior information on a model is combined with constraints
upplied by the data to produce a posterior distribution. For a strict
mplementation of this approach, � would be set to zero in Eq. (7),
nd Cd and Cm would accurately reflect the uncertainty associated
ith the data and initial model respectively. It is also necessary to

et ε = 1, since it is not meaningful to re-weight the prior uncer-
ainty. Minimization of the objective function has the effect of
ssimilating the prior information with the data constraints, pro-
ucing a model with posterior uncertainties that are smaller than
he prior uncertainties (how much depends on how good the data
re). The main impediment to the success of this approach is that
eaningful information on prior model and data uncertainties is

ifficult to obtain in practice. An example of the difficulties of
hoosing an appropriate prior model is illustrated in Fishwick et al.
2005). In surface wave studies of the upper mantle a global refer-
nce model (e.g. PREM or ak135) is often chosen as the prior model;
owever at depths of 100–200 km it is likely that these models are
ot very representative of either oceanic or cratonic regions, and
amping back towards the reference model is likely to underesti-

ate the true variations in wavespeed. Scales and Snieder (1997)

iscuss the merits and pitfalls of adopting a Bayesian framework
or inversion.

The other regularization framework is suggested by Occam’s
azor, which favours parsimony over complexity when arriving at
lanetary Interiors 178 (2010) 101–135 117

a hypothesis to fit the observations. In seismic tomography, this
will manifest as the solution with the least structure necessary
to fit the data (Constable et al., 1987). In this case, one would set
ε = 0, because damping back to the initial model may exclude the
minimum data-satisfying structural model. This type of scheme is
commonly used in seismic tomography (Sambridge, 1990; Zelt and
Barton, 1998; Day et al., 2001), although it should be noted that the
second spatial derivative, as in Eq. (7), is only one measure of model
complexity. For instance, in the frequency domain, one could seek
the solution with the least number of harmonic terms that satisfies
the data.

In most cases, a mixture of both frameworks is used, in which
the aim is to find a physically reasonable model that contains
no unnecessary structure, is in the neighbourhood of the initial
model, and satisfies the data. When this occurs, Cd and Cm are not
strictly required to be covariance matrices, since the presence of
the free parameters ε and � make their absolute values meaning-
less. Fig. 10 demonstrates the effect of damping and smoothing
on the solution model shown in Fig. 1. When minimal smoothing
and damping are used, the recovered structure contains numerous
short wavelength artifacts. Damping tends to decrease the ampli-
tude of perturbations without filtering the image, while smoothing
essentially acts as a low pass filter. In addition to the explicit
smoothing imposed by Eq. (7), implicit smoothing via the use of
a cubic B-spline parameterization is also present. There are var-
ious ways for choosing the “optimum” damping and smoothing
parameters, the most common of which is to plot trade-off curves
between data fit and model perturbation and roughness (Rawlinson
and Sambridge, 2003a). Ideally, these plots will have an “L” shape,
with the elbow of the curve indicating the optimum trade-off
region. More statistically rigorous methods such as generalized
cross-validation can also be used to determine ε and � (e.g. Lukas,
2008).

4.2.1. Solution strategies
Gradient based inversion methods make use of the derivatives

of the objective function at a specified point in model space under
the assumption that S(m) is sufficiently smooth to permit a local
quadratic approximation:

S(m + ım) ≈ S(m) + �ım + 1
2 ımTHım (8)

where ım is a perturbation to the current model and � = ∂S/∂m
and H = ∂2S/∂m2 are the gradient vector and Hessian matrix
respectively. The goal of gradient-based inversion methods is to
determine ım; in cases where the function g is non-linear, mini-
mization of Eq. (7) requires an iterative approach:

mn+1 = mn + ımn (9)

where m0 is the initial model. The forward data prediction problem
(e.g. recomputing of ray paths) is solved after each model update,
and the process concludes when the data are satisfied or some
convergence criterion is met.

There are many different methods available for computing the
model perturbation ım. The classic Gauss–Newton method com-
putes the model update by finding the minimum of the tangent
paraboloid to S(m) at mn, which produces:
× [GT
nC−1

d [g(mn)−dobs]+εC−1
m (mn − m0) + �DT Dmn] (10)

where G = ∂g/∂m is a matrix of partial derivatives, often referred
to as the Fréchet matrix, Fréchet kernel or Jacobian. In practice, it
is difficult to compute the derivative of G, so it canbe ignored to
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roduce the quasi-Newton solution:

mn = −[GT
nC−1

d Gn + εC−1
m + �DT D]

−1
[GT

nC−1
d [g(mn) − dobs]

+εC−1
m (mn − m0) + �DT Dmn] (11)

oth methods require a system of M linear equations to be solved,
here M is the number of unknowns.

If instead it is assumed that the relationship d = g(m) is lineariz-
ble, so that ıd = Gım, then the objective function can be written:

(m) = (Gım − ıd)T C−1
d (Gım − ıd) + εımT C−1

m ım

+ �ımT DT Dım (12)

here the last term on the right hand side of the equation smooths
he model perturbations. Setting the derivative of this function to
ero yields:

m = [GT C−1
d G + εC−1

m + �DT D]
−1

GT C−1
d ıd (13)

hen no smoothing is applied and Cd and Cm represent known
rror statistics on the data and prior model respectively, then:

m = [GT C−1
d G + C−1

m ]
−1

GT C−1
d ıd (14)

hich is the maximum likelihood solution to the inverse problem
r the stochastic inverse. Eqs. (11), (13) and (14) are often referred
o as damped least square (DLS) solutions, and are the most com-

on class of technique used to solve the inverse problem in seismic
omography (Aki et al., 1977; Thurber, 1983; Eberhart-Phillips,
986; Farra and Madariaga, 1988; White, 1989; Zhao et al., 1992;
ang and Braile, 1996; Zelt and Barton, 1998; Graeber et al., 2002;

awlinson et al., 2006b).
All DLS-type schemes ultimately require the solution of a system

f M equations, which can be done in various ways. For problems of
odest size LU decomposition, Cholesky decomposition or singular

alue decomposition (SVD) may suffice, but when M is very large,
terative techniques such as the conjugate gradient method (or
ariants such as LSQR) which take advantage of the sparse nature
f linear systems in seismic tomography, may be more effective
Hestenes and Stiefel, 1952; Nolet, 1985; Scales, 1987; VanDecar
nd Snieder, 1994). Rather than formulate the DLS solution as a set
f normal equations, it is also possible to express it directly as a
atrix equation:

C−1/2
d

G
√

εC−1/2
m√

�D

⎤
⎦ ım =

⎡
⎣ C−1/2

d
ıd

0
0

⎤
⎦ (15)

Application of LSQR or SVD will solve this system in the least-
quares sense, which will yield the same solution as Eq. (13).

Rather than minimize S(m) across all M-dimensions of model
pace, it can be advantageous to restrict the inverse problem to
smaller N-dimensional subspace, where N < M. The method of

teepest descent is the simplest of these approaches, because it
erforms a 1D line minimization in the direction specified by the
radient vector � = ∂S/∂m. Although straightforward to implement
nd rapid to solve at each iteration, it suffers from poor convergence
roperties (Rawlinson and Sambridge, 2003b). A more effective
pproach is conjugate gradients, which was first applied to uncon-
trained optimization by Fletcher and Reeves (1964). Like steepest
escent, each iteration of the technique involves a simple 1D min-

mization, but in the case of conjugate gradients, the nth iteration
ocates the minimum in an n-dimensional subspace spanned by the

urrent search direction and all those that precede it. More general
ubspace techniques, which are not restricted to 1D minimiza-
ions at each iteration, have been developed and applied in seismic
omography (Kennett et al., 1988; Sambridge, 1990; Williamson,
990; Rawlinson et al., 2006b).
lanetary Interiors 178 (2010) 101–135

4.2.2. Fréchet matrix
All gradient methods require the calculation of the Fréchet

matrix G = ∂g/∂m, which describes the rate of change of observ-
ables with respect to the model parameters. If the model prediction
is made using geometric ray theory, with the required quantity
calculated by line integration, then first-order accurate approxima-
tions can be readily made. For example, the linearized relationship
between traveltime residual and velocity perturbation can be
expressed as a simple integral, which can be differentiated to obtain
an expression for the rate of change of traveltime with respect to
each model parameter. Equivalent expressions can also be obtained
for interface and source location parameters (see Rawlinson and
Sambridge, 2003b, for more details). Derivatives of other quantities
such as attenuation can be obtained in a similar way.

In finite frequency tomography, the situation is more complex,
because each observable has a dependence on parameters that lie
within a finite volume surrounding the geometric ray. However, as
discussed earlier, Dahlen et al. (2000) describe a finite frequency
forward solver that only requires a single geometric ray between
source and receiver to be computed. The Fréchet kernel is then
approximated using a formulation based on paraxial ray theory,
which allows information in the neighbourhood of the central ray
to be computed. The efficiency of a ray based approach makes it
feasible for large tomographic problems (e.g. Montelli et al., 2004),
which would otherwise be computationally impractical (using nor-
mal mode theory, for example). In addition to computing finite
frequency traveltimes, the Born approximation can be used to esti-
mate other seismic observables, including amplitude (Tian et al.,
2007a) and time domain waveforms (Panning et al., 2009). This
means that it potentially has a role in direct seismic waveform
inversion.

The use of paraxial ray theory to approximate sensitivity ker-
nels has had a major impact in the field of seismic tomography. It
allows more data to be used to constrain structure, but without the
computational overheads of a full waveform inversion. However,
more theoretical development is required to address shortcomings
in the accuracy of kernels associated with waves that nearly graze a
boundary, core diffractions and upper mantle triplications (Nissen-
Meyer et al., 2007). These problems arise from the limitations of ray
theory in the presence of caustics.

Similar to finite-frequency tomography, one of the main chal-
lenges in full waveform tomography is the calculation of the Fréchet
kernel. The non-linearity of the inverse problem in full waveform
tomography is generally more extreme than in traveltime tomog-
raphy, so were it not for the prohibitive computational expense,
fully non-linear inversion methods would be preferable. One way
of circumventing this difficulty is to use a relatively accurate ini-
tial model derived from conventional traveltime tomography, and
then use a gradient-based technique to refine structural detail
by sequentially adding information from low to high frequencies
(Sirgue and Pratt, 2004). The complete absence of ray theory in
full waveform tomography raises the issue of how to efficiently
compute the Fréchet kernel. It turns out that this can be done
without explicit calculation of any partial derivative; rather it is
derived from a zero-lag correlation of the forward (from the source)
and backward (from the receiver) propagated wavefield (Tarantola,
1984; Pratt and Worthington, 1990; Pratt, 1999; Pratt and Shipp,
1999; Sirgue and Pratt, 2004), which amounts to a multiplication
of the two wavefields in the frequency domain. The backward
propagated or time-reversed wavefield is sometimes referred to
as the adjoint wavefield, and consists of the difference between
the observed and predicted waveform propagated backward in

time from the receiver. The remarkable feature of this approach
is that the forward and backward propagated wavefield need only
be computed once in order to obtain the sensitivity kernel. In pas-
sive source tomography, adjoint methods have only recently been
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eveloped for the computation of regional and global wave sen-
itivity kernels (e.g. Tromp et al., 2005; Fichtner et al., 2006a,b).
ichtner et al. (2008) provide theoretical background to regional
nd global full waveform inversion in the frequency domain using
djoint methods to compute sensitivity kernels.

Another approach to computing the full 3D Fréchet kernel was
uggested by Nissen-Meyer et al. (2007), who reduce the problem to
series of six independent 2D solutions which may be found using

pectral element or other mesh based solvers. This 3D to 2D reduc-
ion strategy greatly reduces the computational cost, but is only
pplicable to spherically symmetric Earth models, and therefore
annot be used in non-linear inversion strategies. Other schemes
or computing the full 3D kernel, such as the scattering integral

ethod (Chen et al., 2007), also exist.
Automatic differentiation (AD) is a recently developed and novel

pproach for computing sensitivity kernels. It generally takes the
orm of source code to source code translators which generate

program that can be compiled and executed to produce the
esired derivatives, hence obviating the need for deriving and hand
oding explicit mathematical formulae. The technique essentially
xploits the logic of computer codes, in which output (e.g. two
oint traveltime) can be linked to the input (e.g. velocity grids),
hus creating an avenue for directly determining the derivative of
ne with respect to the other via repeated application of the chain
ule. Sambridge et al. (2008) investigate the potential of AD in geo-
hysical inverse problems, including the calculation of traveltime
ensitivity to velocity structure. However, it is yet to be used in
eismic tomography.

.3. Fully non-linear inversion

The preceding inversion methods are local in that they only
xploit information in limited regions of model space in order to
rrive at a solution. The limitation of linear or iterative non-linear
echniques is that they are strongly dependent upon accurate initial

odels, and do not provide robust measures of model uncertainty.
he attraction of fully non-linear techniques, which generally rely
n exhaustive sampling of model space, is that they can produce
n ensemble of data-satisfying models which can be interrogated
sing statistical techniques to illuminate only those features that
re required by the data. The obvious drawback of such an approach
s that the computing resources required is many times greater
han that needed for a linear or iterative non-linear scheme. For
egional or global tomography, which typically constrain a large
umber of unknowns using massive datasets (e.g. Widiyantoro
nd van der Hilst, 1997; Bijwaard and Spakman, 2000; Burdick
t al., 2008), fully non-linear methods are completely out of the
uestion. However, with the possible exception of full waveform
omography, the inverse problem is not highly non-linear because
ub-lithospheric heterogeneity is less severe, and a priori informa-
ion on seismic structure tends to be quite accurate. Therefore the
otential advantages of global optimization – even if it was feasible
are less compelling in such circumstances. Crustal or lithospheric

cale studies, on the other hand, are more likely to face difficulties
ith non-linearity and solution non-uniqueness issues due to the
resence of strong vertical and lateral heterogeneity that deviates
ignificantly from standard Earth reference models.

Monte Carlo (MC) methods, including simulated annealing and
enetic algorithms, are the most common class of fully non-linear
earch algorithms used in geophysical inverse problems today
Sambridge and Mosegaard, 2001; Mosegaard and Sambridge,

002). Genetic algorithms use an analog to biological evolution in
rder to drive the search for new models from an initial pool of ran-
omly generated models, while simulated annealing is based on an
nalog with physical annealing in thermodynamic systems to guide
ariations in model parameters. Even with modern cluster comput-
lanetary Interiors 178 (2010) 101–135 119

ing, fully non-linear search techniques of this type are limited, at
least in the context of seismic tomography, to perhaps a few hun-
dred unknowns at most. A practical alternative that has been used
in several studies is to begin with a coarsely parameterized model,
apply a non-linear search technique, and then use the solution as a
starting model for a local gradient based minimization with a larger
number of parameters. The idea behind this hybrid approach is to
locate a point in model space sufficiently close to the global min-
imum solution that locally linearized methods can be successfully
used. Applications include Pullammanappallil and Louie (1993) and
Boschetti et al. (1996) for the inversion of 2D reflection and refrac-
tion traveltimes respectively, and Asad et al. (1999) in the context
of 3D local earthquake tomography.

4.4. Analysis of solution robustness

Due to the presence of solution non-uniqueness in all seismic
tomography problems, the production of a single data-satisfying
model is inadequate, for the central reason that it may contain fea-
tures that are not required by the data. The lack of a truly robust
approach for addressing this issue has spawned the development of
a variety of techniques over the years. One of the most common is
the synthetic resolution test, in which a heterogeneous input model
is used to generate data with the same source–receiver geome-
try as the observational experiment. The ability of the inversion
scheme to recover the input model can then be used as a mea-
sure of solution robustness. A commonly implemented example of
this approach is the checkerboard resolution test, which uses an
input model consisting of an alternating pattern of fast and slow
anomalies (Walck, 1988; Glahn and Granet, 1993; Ritsema et al.,
1998; Day et al., 2001; Graeber et al., 2002; Rawlinson and Kennett,
2008). Fig. 11a shows the result of a checkerboard resolution test
applied to the example in Fig. 1. The recovery of structure within the
bounds of the source–receiver array is good, but this is somewhat
misleading as it does not capture the strong variability that is actu-
ally present (Fig. 11b). The significant non-linearity of the inverse
problem is partially responsible for this result, because the path
coverage for the checkerboard model differs markedly to that of the
actual structure shown in Fig. 1. Synthetic resolution tests are sim-
ple to implement and interpret but suffer from several limitations,
including that the results can vary according to the input structure
used (e.g. Lévêque et al., 1993), as demonstrated in Fig. 11a.

A traditional alternative to synthetic tests comes in the form of
posterior covariance and resolution from linear theory (Tarantola,
1987; Menke, 1989), which provides quantitative measures of
model uncertainty (Aki et al., 1977; White, 1989; Benz et al., 1992;
Wang and Braile, 1996; Graeber and Asch, 1999). In practical tomo-
graphic applications, these formal estimates can be difficult to
compute and meaningfully interpret, for the following reasons:
(1) validity decreases as the non-linearity of the inverse prob-
lem increases; (2) inversion of a potentially large M × M matrix
is required; (3) implicit regularization imposed by an assumed
model parameterization is not accounted for; (4) a priori model
covariance is usually poorly known which, coupled with the use of
variable damping and smoothing, make the absolute values of pos-
terior uncertainty rather meaningless. The problem of attempting
to directly invert large sparse matrices has been overcome in recent
times by modifying iterative approaches such as LSQR (Zhang and
McMechan, 1995; Yao et al., 1999; Zhang and Thurber, 2007) to
approximate the generalized inverse. Fig. 11b shows the poste-
rior covariance matrix associated with the solution model in Fig. 1,

together with the actual error. A perfect correlation between the
two cannot be expected, because posterior covariance measures
how estimates of data uncertainty, together with constraints from
prior information, map as uncertainties in the solution model. In
this case, the posterior covariance bears some resemblance with the



120 N. Rawlinson et al. / Physics of the Earth and Planetary Interiors 178 (2010) 101–135

F data
l ig. 1a

a
T
t
(
c
i
a
s
s
p
w

i
(
t
a
a
i
s
1
2
j
d

t
s
s
f
t
i
a
s

ig. 11. Two common techniques for analysing solution robustness applied to the
inear theory—the plot on the right shows the absolute error (difference between F

ctual error, but the smaller wavelength features are not present.
he prior model covariance is set to a uniform value of 0.5 km/s,
he effect of which is clearly apparent in the posterior covariance
e.g. outside the bounds of the source–receiver array). Within the
onfines of linearity, one could also analyze solution robustness by
dentifying the model null space vectors (using SVD for example),
nd then varying a given solution model only in the null space,
uch that the data fit remains unchanged. The so-called “nullspace
huttle” proposed by Deal and Nolet (1996) essentially follows this
rinciple, because it allows movement from one model to another
ithout compromising data fit.

A variety of other methods have been suggested for analyz-
ng solution non-uniqueness; for example, Debayle and Sambridge
2004) estimate the minimum length scale of resolvable struc-
ure as a function of location using Voronoi diagrams which
re constrained using a quality criterion based on ray density
nd azimuthal coverage. Statistical methods based on multiple
nversion with different components of the dataset such as boot-
trapping and jackknifing, have also been used (Lees and Crosson,
989; Su and Dziewonski, 1997; Zelt, 1999; Gung and Romanowicz,
004). As pointed out by Nolet et al. (1999), both bootstrapping and

ackknifing rely on an overdetermined inverse problem, which is
efinitely not the case in most tomographic studies e.g. Fig. 1.

The idea of using gradient-based techniques to generate mul-
iple solution models, which can then be assessed for consistent
tructure, has been around for some time. One possibility is to use a
pectrum of initial models, which amounts to starting a local search

rom multiple points in model space. Vasco et al. (1996) apply clus-
er analysis to an ensemble of 1075 tomography models generated
n this way from cross-hole data. Rawlinson et al. (2008) develop
new technique which exploits information gained from previous

olutions to help drive the search for new models. This is done by
set shown in Fig. 1. (a) Synthetic checkerboard test; (b) covariance estimate from
and d).

adding a feedback or evolution term to the objective function that
creates a local maximum at each point in model space occupied
by all previous solutions. New models therefore avoid the neigh-
bourhoods of previously generated models, and an ensemble of
distinct data-satisfying solutions is produced. Another ensemble
approach, discussed earlier in the context of adaptive parameteri-
zations (see end of Section 2.2), is the partition modelling method,
first applied to seismic tomography by Bodin and Sambridge (2009).
It also produces a set of solution models which can be interrogated
for consistent structure, with synthetic tests showing it to be an
extremely robust technique.

In many practical tomography problems, ensemble inference
techniques are simply not feasible due to computational con-
straints. When this occurs, no single technique mentioned above
can really be considered the “gold standard” for assessing solu-
tion robustness, because they all have limitations. Perhaps the
best approach in such situations is to apply a variety of meth-
ods if available (e.g. covariance/resolution matrices plus synthetic
reconstruction) and check their output for consistency, taking into
account their strengths and weaknesses. Even if synthetic recon-
structions are the only viable option, it is worth doing tests with
several different structures to see if resolution is consistent. This
would be particularly worthwhile for non-linear problems such as
traveltime tomography, where the geometry of ray paths have a
structural dependence.

5. Examples
A set of three contrasting tomographic studies is briefly
described below in order to put much of the preceding material
into a practical context. The first example combines teleseismic
and wide-angle traveltimes in a joint inversion for wavespeed and
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Fig. 12. (a) Location of TIGGER teleseismic array (blue dots), TASGO shot lines (contiguous red diamonds) and TASGO recording stations (magenta triangles). (b) Example
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f P-wave teleseismic data recorded by a subset of TIGGER array stations, after opt
inear stack; red trace is the quadratic stack. (c) Refraction section recorded in NW
his figure legend, the reader is referred to the web version of the article.)

oho structure beneath Tasmania, southeast Australia. The sec-
nd example images the anelastic structure beneath the western
acific Mariana subduction system using both land based and ocean
ottom seismometers. The final example uses surface wave tomog-
aphy to image the 3D shear wavespeed structure of the Australian
ontinent using data from temporary and permanent broadband
tations.

.1. Joint inversion of teleseismic and wide-angle traveltimes

Teleseismic body wave tomography exploits the relative arrival
imes of global phases recorded by an array of seismometers which
verlies the target region. One of the principal assumptions of the
ethod is that lateral heterogeneity outside the local 3D model

olume does not significantly contribute to the measured arrival
ime residuals (difference between observed arrival times and pre-
ictions from some reference model). Removing the mean from
he residuals on a source-by-source basis eliminates origin time
rrors, but at the expense of absolute velocity perturbation infor-

ation. Another problem is that near surface structure is poorly

onstrained, because rays from distant earthquakes are typically
ub-vertical when they arrive at the array. However, near sur-
ace structure tends to be strongly heterogeneous, and contributes
ignificantly to the measured arrival time residual. The standard
lignment using adaptive stacking (Rawlinson and Kennett, 2004). Blue trace is the
nia during the TASGO experiment. (For interpretation of the references to color in

approach for dealing with this issue is to include station terms
as unknowns in the inversion (Frederiksen et al., 1998; Graeber
et al., 2002). However, the trade-off between station terms and
velocity structure is difficult to resolve, which has led to the more
recent trend of incorporating crustal models as prior information
(Waldhauser et al., 2002; Lippitsch et al., 2003; Martin and Ritter,
2005; Lei and Zhao, 2007; Rawlinson and Kennett, 2008). A more
effective approach is to simultaneously invert all available datasets
for a unified model; this is particularly desirable when the datasets
contain overlapping constraints.

In this example, both teleseismic and wide-angle traveltime
data are incorporated in a joint inversion for the lithospheric struc-
ture beneath northern Tasmania (see Rawlinson and Urvoy, 2006,
for more details). Fig. 12a shows the geometry of the 72 station
TIGGER array which recorded the teleseisms, and the shot lines
and land-based stations that recorded the wide-angle data as part
of the TASGO experiment. The station spacing of the TIGGER array
is approximately 15 km, which means that there is considerable
overlap of crossing paths from the two datasets in the lower crust

and uppermost mantle. Fig. 12b shows an example of a teleseis-
mic arrival recorded at the TIGGER array, and Fig. 12c shows an
example of wide-angle data recorded at a single land-based TASGO
station. Refraction and wide-angle reflection phases are picked by
hand, and teleseismic arrival time residuals are extracted using
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ig. 13. Checkerboard resolution test for the combined TASGO and TIGGER dataset
outh (as denoted by magenta line in (a)). (For interpretation of the references to co

he adaptive stacking approach of Rawlinson and Kennett (2004),
hich exploits the coherency of teleseismic waveforms across a
ense array.

An iterative non-linear technique is used to invert the travel-
ime data for both velocity and Moho structure. Seismic structure
s represented using regularly spaced velocity and interface grids
oupled with cubic B-spline volume elements and surface patches
espectively. In this case, the crust and upper mantle are defined
s independent layers with the Moho surface representing the
nterface between the two. The traveltime prediction problem is
olved using the Fast Marching Method, a grid based eikonal solver
escribed earlier (see Section 3.3.1). To solve the inverse prob-

em, a subspace inversion method is used (see Section 4.2). The
orward and inverse solvers are applied iteratively until both the
hanges in data fit and model perturbation become insignificant.
ig. 13 shows the result of a synthetic checkerboard test for both
elocity and interface structure; the main point here is that the
rade-off between velocity and interface geometry appears to be
atisfactorily resolved.

A series of slices through the solution model are shown in
ig. 14. Although some smearing is apparent, a number of robust
eatures are clearly present, including a marked thinning of the
rust towards the northeast of Tasmania accompanied by elevated
elocities. This result is significant, because the traditional view
f the Tasmanian lithosphere is that it comprises two separate
ragments (East and West Tasmania terranes) that were juxta-
osed during the mid-Devonian along the so-called Tamar Fracture
ystem (Williams, 1989). However, combined with evidence from
ravity and magnetic data, the results of this study do not support
he presence of a crustal scale suture zone. Instead, there appears
o be considerably more evidence to support an idea first proposed
y Reed (2001) that East and West Tasmania were passively joined
s far back as the Ordovician, with subsequent episodes of oroge-

esis and sediment deposition thickening oceanic East Tasmania
nd adding it to the pre-existing continental West Tasmania. The
hinner crust and elevated wavespeeds observed beneath northeast
asmania (Fig. 14) are consistent with this model. Other features of
he model include elevated wavespeeds beneath the economically
oho depth; (b) east-west cross-section showing velocity and Moho depth at 41.2◦

this figure legend, the reader is referred to the web version of the article.)

important Mt. Read Volcanics, a Cambrian volcanic belt which hosts
sizable deposits of base metals; and some evidence in the upper
mantle and crust of fossil subduction (Fig. 14d) associated with
the Delamerian-Tyennan subduction system that existed along the
proto-Pacific margin of east Gondwana in the Cambrian.

5.2. Attenuation tomography in a subduction zone setting

The depth extent and distribution of temperature anomalies
and fluids, including melt and slab-derived volatiles, within a
subduction zone mantle wedge are of great importance for under-
standing dynamics of subduction systems. Geochemical studies at
the Mariana subduction system show that melt formation must
be influenced by some volatile components that come from the
slab (e.g. Pearce et al., 2005), which suggests a need to understand
the spatial relationships of melt production and volatile trans-
port regions between different parts of the subduction system.
One subsurface imaging tool that can help to identify these spa-
tial variations is seismic attenuation tomography. Experimental
studies have shown that temperature (e.g. Jackson et al., 1992),
volatiles dissolved in normally anhydrous mantle minerals (Aizawa
et al., 2008), and possibly small amounts of melt (Faul et al., 2004)
can all have significant effects on seismic attenuation. As such,
using seismic attenuation tomography as an imaging tool can pro-
vide constraints on thermal anomalies and variations in melt and
volatile content.

In this example, local earthquake data is used to obtain t* atten-
uation estimates for both P and S waves, which are inverted for
P wave attenuation (Q−1

P ) and QP/QS structure (see Pozgay et al.,
2009, for more details). Fig. 15a shows the earthquakes and the
20 broadband land and 58 ocean-bottom seismometers of the
2003–2004 Mariana seismic experiment that were used for analy-
sis. The deployment was designed to image the forearc, arc, backarc

spreading centre, and far backarc to obtain robust tomographic
images of the entire arc–backarc system. For each arrival from
a given earthquake, frequency-independent effects are corrected
for (e.g. free surface and geometric spreading). Non-negative least
squares or NNLS (Lawson and Hanson, 1974) is used to invert the
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Fig. 14. Results of joint inversion of TASGO and TIGGER traveltime datasets for seismic structure beneath northern Tasmania (from Rawlinson and Urvoy, 2006). (a) Horizontal
crustal slice; (b) Moho structure; (c) horizontal mantle slice; (d) three east-west cross-sections with several features highlighted (magenta line in map above each section
denotes location). TFS = Tamar Fracture System; MRV = Mt. Read Volcanics. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of the article.) [Figure reproduced from Rawlinson and Urvoy (2006)].

Fig. 15. (a) Location (right) and bathymetric map (left) of the Mariana subduction system showing the 2003–2004 deployment of land stations (blue triangles) and ocean-
bottom seismometers (red triangles). The thick black line shows the cross-section used in the tomographic image. Earthquakes used in this study are plotted as small circles
and are colour-coded as a function of depth: red <100 km, orange 101–200 km, yellow 201–300 km, green 301–400 km, blue 401–500 km, violet >501 km. The thick red line
denotes the backarc spreading center. (b) Example P wave spectra for a forearc OBS (left) and spreading center OBS (right) from an earthquake located at 18.8◦ 145.7◦ and
213 km depth on 8 August 2003 at 11:17:48 GMT. Amplitude spectra showing signal spectra (blue) and noise spectra taken from time period immediately prior to the arrival
(red). Grey dashed lines show the best-fitting spectral solution. Vertical green bars show spectral limits used in the source parameter and t* inversion. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of the article.) [Figure reproduced from Pozgay et al. (2009)].
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Fig. 16. Input models (left) and resulting Q−1
P

(right) output structure from tests with synthetic data. (a) Checkerboard model with alternating blocks of Q = 200 and Q = 100. (b)
Input model resembling realistic asymmetric arc (Q = 100) and backarc anomalies (Q = 70). See Pozgay et al. (2009) for more models and detailed descriptions. Triangles across
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roup of observed displacement amplitude spectra from one event
or (1) the path-averaged spectral decay attenuation parameters
t∗
P,S) for each station (Fig. 15b) and (2) a single corner frequency and

eismic moment for the event to correct for the source mechanism
ffects.

A total of 2900 t* estimates are inverted for Q−1
P and QP/QS struc-

ure with a model designed with nodes spaced 25 km apart. P and S
elocity models determined from the same dataset (Barklage et al.,
006) are used to trace the raypaths using a three-point pseudo-
ending method (see Section 3.2). As the tomographic inversion
quation is linear for attenuation (see beginning of Section 4), a
tarting model is not used. A piece-wise joint inversion based on
ingular value decomposition (see Section 4.2.1) is used in which
−1
P is first obtained from t∗

P data. Then, as a separate inversion,

P/QS is computed from t∗
s by incorporating the Q−1

P model param-
ters into the matrix of partial derivatives. Results of synthetic
heckerboard and resolution modelling tests (Fig. 16) (see Section
.4) show accurate spatial and amplitude retrieval of attenuation
arameters down to 450 km depth and beyond the backarc spread-

ng centre.
Q−1

P and QP/QS structures (Fig. 17) show several significant fea-
ures including low QP/QS values and a high attenuation region
eneath the volcanic arc and a narrow column of very high atten-
ation directly beneath the backarc spreading centre. The distinct
eparation at shallow depth of these two high attenuation regions
s suggestive of separate melting regimes between the arc and the
ackarc, an observation also supported by geochemical evidence
Kelley and Plank, submitted for publication); however, the deep
onnection between the two may be the locus for material transfer

t depth, corroborating different geochemical signatures observed
etween shallow and deep subduction components (Pearce et
l., 2005). The narrow column of very high attenuation mate-
ial beneath the backarc spreading centre is in marked contrast
o the only other study to date of attenuation at mantle depths
g centre (SC), volcanic front (VF), and the serpentinite seamount (SS). Earthquakes
w.

beneath a spreading centre (Roth et al., 1999), which showed a
(relatively) much larger and broader swath of high attenuation
beneath the Central Lau Spreading Centre. This striking differ-
ence may be indicative of the suggested dominance of a passive
upwelling regime at a fast spreading ridge (e.g. Lau) versus active
dynamic upwelling at a slow-spreading ridge (e.g. Mariana) (Madge
and Sparks, 1997; Parmentier and Phipps Morgan, 1990). As abso-
lute Q−1 values (and inferred temperatures) are very high and
QP/QS values are low, the arc and wedge core anomalies are inter-
preted as regions of high temperature with enhanced attenuation
due to hydration and/or melt; the moderate Q−1 slab and forearc
anomalies as indicative of slab derived fluids and/or large-scale ser-
pentinization; and the columnar-shaped high Q−1

P anomaly directly
beneath the backarc spreading center as indicative of a narrow
region of dynamic upwelling and melt production beneath the
slow-spreading ridge.

5.3. Regional surface wave tomography

The Australian region offers an interesting setting for the
comparison of different tomographic inversions. Geologically, the
continent is composed of both an old Precambrian shield in the
centre and west, and younger Phanerozoic terranes to the east. The
eastern margin of the continent has also been affected by Cenozoic
volcanism, as recently as 4600 years ago in the Newer Volcanic
province in southeast Australia. This range of tectonic settings pro-
vides an ideal natural laboratory for studying the variations in
seismic velocity associated with the different upper mantle struc-
tures.
Using combined body and surface wave datasets, recent global
models (e.g. Kustowski et al., 2008; Ritsema et al., 1999; Panning
and Romanowicz, 2006) clearly show the strong contrast in shear
velocity beneath the Australian region. At 150 km depth, the high-
est velocities are observed beneath central and western Australia,
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ig. 17. P wave (top) and QP/QS attenuation structures from the SVD inversion pro
hown (see Pozgay et al., 2009). Circles are earthquakes used in the study and triangl
preading centre (SC), volcanic front (VF), and the serpentinite seamount (SS) (ref. F
Figure reproduced from Pozgay et al. (2009)].

ith lower velocities on the margin of the continent and to the east
see Fig. 18). One of the limitations common to most global models
s that the parameterizations used to represent structure are not
esigned to investigate small-scale velocity variations. Addition-
lly, the small number of seismic stations within Australia that are

art of the global seismic networks limits the potential resolution
f the models.

Regional surface wave studies are an ideal alternative for inves-
igating the structure of the uppermost mantle. The subduction
ones to the north and east generate frequent earthquakes across

ig. 18. Comparison of three global shear velocity models at 150 km depth: S362ANI (Ku
omanowicz, 2006). All three models show the strong contrast between the high veloci
astern margin of the continent.
Modified from Kustowski et al. (2008). Copyright 2008 American Geophysical Union. Rep
along the east-west line shown in Fig. 15a. Only nodes that have crossing rays are
oss the top from left to right correspond to the West Mariana Ridge (WMR), backarc
a).

a broad region, while the mid ocean ridges to the south and east
enable data to be incorporated from most azimuthal directions.
Although the Australian continent contains only a limited num-
ber of permanent seismic stations, the large interior and scarcity
of urban areas makes for an ideal location for the deployment of

broadband seismometers. The Skippy project (van der Hilst et al.,
1994) began in 1993, and used a rolling array of broadband instru-
ments to achieve continent-wide coverage with a station spacing
of approximately 400 km. Since Skippy there have been a number of
other temporary networks focused on different parts of Australia.

stowski et al., 2008), S20RTS (Ritsema et al., 1999) and SAW642AN (Panning and
ties observed beneath central and western Australia and the low velocities on the

roduced by permission of American Geophysical Union].
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Fig. 19. Comparison of three shear velocity models from regional surface wave
tomography: (a) Debayle and Kennett (2000), (b) Simons et al. (2002), (c) Fishwick
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150 broadband stations and provides free real-time open access
nd Reading (2008). Each model has been constructed using slightly different
atasets, inversion techniques and parameterisations. All models exhibit smaller
cale variations in velocity structure compared to the global studies of Fig. 18.

he data from these temporary deployments have been included
n a number of surface wave studies (e.g. Zielhuis and van der Hilst,
996; van der Hilst et al., 1998; Simons et al., 2002; Debayle and
ennett, 2000; Yoshizawa and Kennett, 2004; Fishwick et al., 2005).

Fig. 19 illustrates the shear velocity models at approximately
50 km depth from the studies of Debayle and Kennett (2000),
imons et al. (2002) and Fishwick and Reading (2008). All three
nversions use different parameterization schemes: Debayle and
ennett (2000) use the continuous regionalization scheme of
ontagner and Nataf (1986), Simons et al. (2002) a discrete regular-

zed inversion with 2◦ cell sizes, and Fishwick and Reading (2008)
pherical B-splines with 2◦ spacing of knot points (see Section 2
or further discussion on parameterizations). It is, however, diffi-

ult to assess the impact of the different parameterization schemes.
he path coverage, waveform inversion, and treatment of the third
imension within the tomography will all affect the results (see
imons et al., 2002, for discussion). It does seem likely that the
lanetary Interiors 178 (2010) 101–135

choice of regularization, or in the case of the continuous regional-
ization scheme the correlation length, is at least as important as the
parameterization.

In contrast to the global studies, the regional surface wave mod-
els provide more detailed images of the uppermost mantle. In the
recent work of Fishwick et al. (2008) and Fishwick and Reading
(2008) over 2600 path-average models have been incorporated into
the tomography, with temporary stations in Western Australia giv-
ing a significant improvement in path coverage compared to earlier
work. Fig. 20 shows three depth slices (75, 150 and 250 km) from
the final isotropic model alongside a map showing the main tec-
tonic units. All slices are plotted as velocity perturbations with
respect to the global reference model ak135. On the eastern mar-
gin of the continent, but inland of the continent–ocean transition,
low velocities are observed, and a very strong horizontal gradi-
ent in velocity continues to depths of around 150 km (Fishwick et
al., 2008). There is a strong correlation between the region of low
velocity and the location of both high topography and the recent
volcanic activity. The transition to the thick lithosphere typical of
the Precambrian shield appears to occur as a series of steps, not
dissimilar to the structures observed crossing the Trans European
Suture Zone (e.g. Shomali and Roberts, 2002; Cotte and Pedersen,
2002; Plomerová et al., 2002). Within the shield region a significant
feature of the model is the change from relatively low to relatively
high velocities beneath central Australia in the uppermost mantle.
This feature is difficult to explain for typical continental geotherms
and a constant composition (Fishwick and Reading, 2008). Intrigu-
ingly, a similar increase in velocity has recently been suggested to
occur beneath a number of cratonic regions (Lebedev et al., 2009;
Pedersen et al., 2009). The cause of this anomaly remains uncertain,
but seems most likely to represent some compositional variation.

All the surface wave models presented here use great-circle
geometric ray paths. Yoshizawa and Kennett (2004) incorporate
off-great-circle propagation and a theoretical estimate of the fre-
quency dependent influence zone. In the comparison of models
that are constructed with or without these effects, although they
observe some changes to the final images, the pattern of velocity
anomalies yields analogous features. Most recently, Fichtner et al.
(2009) has produced a tomographic model of Australia using full
waveform tomography. The similarities between the new work and
older models suggests that while the theoretical developments will
lead to more complete treatment of seismic data, models carefully
constructed using more approximate theory remain useful.

6. Future developments

Over the last three decades or so, seismic tomography has
experienced rapid advances on many fronts, including improved
techniques for solving the forward and inverse problems; availabil-
ity of increasingly large volumes of high quality digital data; access
to much more powerful computers; and development of new meth-
ods for extracting information from data. Given the unpredictable
nature of the research horizon – for example, ambient noise tomog-
raphy emerged with little precursory activity – attempting to
forecast the future of seismic tomography is a challenge. Never-
theless, through careful examination of emerging trends, it should
be possible to shed some light on where the field might be heading
in the next decade or so.

At regional and global scales, one of the main impediments to
improving the detail of tomographic models is a lack of good data
coverage. The Global Seismographic Network (GSN) comprises over
to all recorded data. However, the geographic distribution of sites
is heavily (and understandably) biased towards land-based sta-
tions, with only sparse coverage of ocean basins. This is also true
of the combined stations of the International Federation of Digi-
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ig. 20. Images of the isotropic shear velocity models of Fishwick and Reading (200
lobal reference model ak135 (Kennett et al., 1995) and the same colour scale is use

al Seismograph Networks (see Fig. 21) or FDSN, which is a global
rganization of which the GSN is a part. Although new installations
re planned for the future, a uniform global coverage of stations is
till a long way off. A novel approach to subverting the high cost
f in situ ocean bottom seismometers was suggested by Simons et

l. (2009); they propose the deployment of autonomous floating
evices that freely drift in the ocean and record teleseismic events
sing a hydrophone. These can be cheaply constructed by customiz-

ng SOLO floats, which are a popular platform used in oceanography.
group of such instruments, set adrift at judicious locations, could

ig. 21. Distribution of FDSN stations at the end of 2007. Dark grey triangles denote exis
eferences to color in this figure legend, the reader is referred to the web version of the a
5 km, 150 km and 250 km depth. The models are plotted as perturbations from the
ll depths. A map of the main geological units is also shown for reference.

drastically improve the sampling of the global wavefield in ocean
settings.

Temporary array deployments have traditionally played an
important role in local and regional scale tomography. The idea
of using a rolling array of seismometers to cover a large geographic

region has been around for over a decade, with one of the first
implementations taking place in Australia with the continent wide
SKIPPY experiment (van der Hilst et al., 1994; Zielhuis and van
der Hilst, 1996). Today, the largest and most ambitious of these
programs is the USArray, which primarily aims to cover continen-

ting stations, and red triangles denote planned stations. (For interpretation of the
rticle.)
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ig. 22. Cumulative coverage of the WOMBAT rolling seismic array, comprising twe
etween 1998 and 2009 in southeast Australia. In each case, deployment periods ra

al USA with a dense network of portable seismographs over a
5-year period. The transportable array comprises 400 broadband

nstruments which are installed at approximately 70 km intervals.
he bulk of the deployment will be complete by the end of 2013,
ith coverage of Alaska beginning in 2014. The huge volumes of

ecorded data are and will continue to be freely available from the
RIS (Incorporated Research Institutions for Seismology) DMC (Data

anagement Center), and will result in, amongst other things,
astly improved images of the crust and upper mantle beneath the
orth American continent (e.g. Burdick et al., 2008). In southeast
ustralia, a rolling seismic array program known as WOMBAT has
een in place since 1998, albeit at a much more modest scale. To
ate, twelve separate array deployments have taken place with a
umulative coverage of over 500 stations at a spacing of between
5 and 50 km (see Fig. 22). The encouraging tomography results
btained so far (Graeber et al., 2002; Rawlinson et al., 2006a,b;
awlinson and Urvoy, 2006; Clifford et al., 2008; Rawlinson and
ennett, 2008) mean that this program is set to continue, with the
ltimate goal being the high density coverage of eastern Australia.

Although the main focus areas for future development in seismic
omography are finite frequency, full waveform and ambient noise
omography, advances in other areas will also continue. For exam-
le, one potentially productive area of development is in the joint

nversion of overlapping or complementary datasets. This might
ake the form of active and passive datasets from a similar geo-
raphic region; early work in this area was done by Thurber (1983)
nd Ankeny et al. (1986), who included refraction traveltimes
rom explosive sources in a LET study. Other combinations include
ocal earthquake, explosive source/airgun traveltimes (Parsons and

oback, 1997; Wagner et al., 2007); local earthquake and tele-
eismic traveltimes (Sato et al., 1996); coincident reflection and
ide-angle (Wang and Braile, 1996; McCaughey and Singh, 1997);

nd teleseismic and wide-angle (Rawlinson and Urvoy, 2006). In
act any combination is possible, and will yield better results than
parate deployments (stations from each are denoted by a unique colour and shape)
etween 4 and 14 months.

separate inversions of the individual datasets provided that they
constrain at least a common subset of parameters. Another case in
point is joint inversion of surface waves and teleseismic receiver
functions (Özalaybey et al., 1997; Du and Foulger, 1999; Julia et
al., 2003; Tkalčić et al., 2006); long period surface waves poorly
constrain the crust, while receiver functions provide detailed infor-
mation on crust and uppermost mantle structure, but do not resolve
absolute shear wavespeed very accurately. Conceivably, one could
invert any number of overlapping datasets, including body wave
traveltimes for any source–receiver geometry, surface waveforms
and ambient noise cross-correlations.

The idea of jointly inverting multiple datasets need not be lim-
ited to seismic data alone; indeed, it is possible to integrate other
classes of geophysical datasets including gravity and magnetic
anomalies. For example, simultaneous inversion of traveltimes and
gravity data has been carried out by a number of authors (e.g.
Lees and VanDecar, 1991; Roy et al., 2005), although some empir-
ical relationship between velocity and density is usually invoked
to allow common parameters to be constrained by both datasets.
Combining multiple datasets of different types is more widespread
in exploration seismology than other areas of seismology, with
various techniques proposed for the joint inversion of seismic,
gravity and electromagnetic data in existence (e.g. Colombo and
De Stefano, 2007). The main challenge is to identify reasonable
cross-parameter constraints, which can take many forms, includ-
ing empirical, physical and statistical. Another approach to joint
imaging that is worth mentioning are recent attempts to directly
invert seismic and other data for mantle composition and ther-
mal state (Cammarano et al., 2005; Khan et al., 2008). For seismic

data, this can be done by using results from mineral physics exper-
iments that analyze the seismic properties of different rock types.
Although only applied to 1D models so far, the technique has the
major attraction of bypassing the difficult problem of attempting
(usually qualitatively) to associate seismic properties (such as com-
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ressional wavespeed) with physical and chemical properties of the
arth (e.g. temperature and composition). That said, it is also pos-
ible to use a two stage procedure to go from seismic observables
o seismic properties and then to physical and chemical properties.
hito et al. (2006) develop a scheme for inverting velocity and atten-
ation tomographic models for the 3D distribution of temperature,
ater content and other parameters (e.g. major element geochem-

stry, partial melting), again invoking results from mineral physics
bservations. They apply the technique to data from the Izu-Bonin
ubduction zone and show that lateral variations in seismic prop-
rties can be largely explained by variations in temperature and
ater content.

Geometric ray tracing, for many decades the stalwart of the data
rediction step in seismic tomography, may be at the cross-roads

n terms of new developments. Over the last few decades, exhaus-
ive research has been carried out in an attempt to find efficient

ethods to solve the two point (source–receiver path) problem.
n recent times, grid-based methods including eikonal solvers and
PR have started to supercede ray tracing in some areas. Now, with
nite frequency and full waveform tomography emerging on the
cene, new advances in ray tracing appear to be on the wane. This
s not due to redundancy, because two point rays are usually still
equired in both fields; in the case of finite frequency tomography,
he central ray is needed for the paraxial approximation, and in
ull waveform tomography, an initial model generated using tra-
itional traveltime tomography (for example) is often used. One
xplanation may be that with the power of modern computers,
any of the techniques that have been developed in the past are

ow efficient enough to tackle large problems. There is one area
hat is still experiencing rapid development—that of multi-arrival
echniques, as discussed in Section 3.4. Ray based wavefront con-
truction techniques have just started to be used in practical seismic
maging problems, and grid-based techniques are beginning to
ecome viable alternatives. The question of how to best exploit
hem in practical seismic tomography applications still remains,
owever.

Ambient noise tomography, which has only been around for
alf a decade or so (Shapiro et al., 2005), has dramatically changed
he seismic imaging landscape. The ability to largely control data
overage through the geographical distribution of a seismic array,
nd the fact that ambient noise information is independent of
nd often complimentary to information obtained from determin-
stic sources, are two of its major attractions. Rapid adoption of
his technique throughout the seismic imaging community is set
o continue, and new developments will improve its usefulness.
or example, most studies produce maps of Rayleigh wave group
avespeed at different periods (e.g. Shapiro et al., 2005; Saygin

nd Kennett, 2009), but 3D shear wavespeed is more conducive to
nterpretation, and can be produced using methods akin to those
ncountered in traditional surface wave tomography. Finite fre-
uency tomography has now become an established technique, and

ts application is likely to escalate over the next decade, as more and
ore high quality data become available. Full waveform tomogra-

hy, on the other hand is still in its infancy, but there is little doubt
hat it holds the potential to vastly improve on the present genera-
ion of seismic tomography images. Although current computing
ower is barely adequate to solve realistic problems, expected

ncreases based on recent history suggest that over the next
ecade or so, full waveform tomography will begin to emerge as
powerful tool for imaging the earth at local, regional and global
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ˇervený, V., Pšenčik, I., 1983. Gaussian beams and paraxial ray approximation in
three-dimensional elastic inhomogeneous media. J. Geophys. 53, 1–15.

hapman, C., 2004. Fundamentals of Seismic Wave Propagation. Cambridge Univer-
sity Press, Cambridge.

hapman, C.H., Drummond, R., 1982. Body-wave seismograms in inhomogeneous
media using Maslov asymptotic theory. Bull. Seismol. Soc. Am. 72, S277–S317.

hen, P., Jordan, T.H., Zhao, L., 2007. Full three-dimensional tomography: a compar-
ison between the scattering-integral and adjoint-wavefield methods. Geophys.
J. Int. 170, 175–181.

heng, L.-T., 2007. Efficient level set methods for constructing wavefronts in three
spatial dimensions. J. Comp. Phys. 226, 2250–2270.

heng, N., House, L., 1996. Minimum traveltime calculations in 3-D graph theory.
Geophysics 61, 1895–1898.

hevrot, S., 2006. Finite-frequency vectorial tomography: a new method for high-
resolution imaging of upper mantle anisotropy. Geophys. J. Int. 165, 641–657.

hevrot, S., Zhao, L., 2007. Multiscale finite-frequency Rayleigh wave tomography
of the Kaapvaal craton. Geophys. J. Int. 169, 201–215.

hiao, L.-Y., Kuo, B.-Y., 2001. Multiscale seismic tomography. Geophys. J. Int. 145,
517–527.

hiu, S.K.L., Kanasewich, E.R., Phadke, S., 1986. Three-dimensional determination of
structure and velocity by seismic tomography. Geophysics 51, 1559–1571.

hou, C.W., Booker, J.R., 1979. A Backus–Gilbert approach to inversion of travel time
data for three-dimensional velocity structure. Geophys. J. Royal Astr. Soc. 59,
325–344.

lifford, P., Greenhalgh, S., Houseman, G., Graeber, F., 2008. 3-D seismic tomography
of the Adelaide fold belt. Geophys. J. Int. 172, 167–186.

lowes, R.M., Zelt, C.A., Amor, J.R., Ellis, R.M., 1995. Lithospheric structure in the
southern Canadian Cordillera from a network of seismic refraction lines. Can. J.
Earth Sci. 32, 1485–1513.

olombo, D., De Stefano, M., 2007. Geophysical modeling via simultaneous joint
inversion of seismic, gravity, and electromagnetic data: application to prestack
depth imaging. Leading Edge 28, 326–331.
onstable, S.C., Parker, R.L., Constable, C.G., 1987. Occam’s inversion: a practical
algorithm for generating smooth models from electromagnetic sounding data.
Geophysics 52, 289–300.

otte, N., Pedersen, H.A., TOR Working Group, 2002. Sharp contrast in lithospheric
structure across the Sorgenfrei–Tornquist zone as inferred by Rayleigh wave
analysis of TOR1 project data. Tectonophysics 360, 75–88.
lanetary Interiors 178 (2010) 101–135

Curtis, A., Snieder, R., 1997. Reconditioning inverse problems using the genetic algo-
rithm and revised parameterization. Geophysics 62, 1524–1532.

Dahlen, F.A., Hang, S.H., Nolet, G., 2000. Fréchet kernels for finite frequency travel
times. I. Theory. Geophys. J. Int. 141, 157–174.

Dahlen, F.A., Nolet, G., 2005. Comment on ‘On sensitivity kernels for ‘wave equation’
transmission tomography’ by de Hoop and van der Hilst. Geophys. J. Int. 163,
949–951.

Dalton, C.A., Ekström, G., 2006. Global models of surface-wave attenuation. J. Geo-
phys. Res. 111, doi:10.1029/2005JB003997.

Dalton, C.A., Ekström, G., Dziewonski, A.M., 2008. The global attenuation structure
of the upper mantle. J. Geophys. Res. 113, doi:10.1029/2007JB005429.

Danesi, S., Morelli, A., 2000. Group velocity of Rayleigh waves in the Antarctic region.
Phys. Earth Planet. Inter. 122, 55–66.

Darbyshire, F.A., Bjarnason, I.J., White, R.S., Florenz, O.G., 1998. Crustal structure
above the Iceland mantle plume, imaged by the ICEMELT refraction profile.
Geophys. J. Int. 135, 1131–1149.

Darbyshire, F.A., Lebedev, S., 2009. Rayleigh wave phase-velocity heterogeneity and
multilayered azimuthal anisotropy of the Superior Craton, Ontario. Geophys. J.
Int. 176, 215–234.

Day, A.J., Peirce, C., Sinha, M.C., 2001. Three-dimensional crustal structure and
magma chamber geometry at the intermediate-spreading, back-arc Valu Fa
Ridge, Lau Basin—results of a wide-angle seismic tomographic inversion. Geo-
phys. J. Int. 146, 31–52.

de Hoop, M.V., van der Hilst, R.D., 2005a. On sensitivity kernels for “wave equation”
tomography. Geophys. J. Int. 160, 621–633.

de Hoop, M.V., van der Hilst, R.D., 2005b. Reply to comment by F.A. Dahlen and G.
Nolet on: “On sensitivity kernels for wave-equation transmission tomography”.
Geophys. J. Int. 163, 952–955.

de Hoop, M.V., van der Hilst, R.D., Shen, P., 2006. Wave-equation reflection tomoga-
phy: annihilators and sensitivity kernels. Geophys. J. Int. 167, 1332–1352.

Deal, M.M., Nolet, G., 1996. Nullspace shuttles. Geophys. J. Int. 124, 372–380.
Debayle, E., 1999. SV-wave azimuthal anisotropy in the Australian upper mantle:

preliminary results from automated Rayleigh waveform inversion. Geophys. J.
Int. 137, 747–754.

Debayle, E., Kennett, B., Priestley, K., 2005. Global azimuthal seismic anisotropy and
the unique plate-motion deformation of Australia. Nature 433, 509–512.

Debayle, E., Kennett, B.L.N., 2000. The Australian continental upper mantle: struc-
ture and deformation inferred from surface waves. J. Geophys. Res. 105,
25423–25450.

Debayle, E., Kennett, B.L.N., 2003. Surface wave studies of the Australian region.
In: Hillis, R.R., Miiller, R.D. (Eds.), The Evolution and Dynamics of the Australian
Plate. Special Publication. Geological Society of Australia and America, pp. 25–40.

Debayle, E., Sambridge, M., 2004. Inversion of massive surface wave data
sets: model construction and resolution assessment. J. Geophys. Res. 109,
doi:10.1029/2003JB002652.

Du, Z.J., Foulger, G.R., 1999. The crustal structure beneath the northwest fjords,
Iceland, from receiver functions and surface waves. Geophys. J. Int. 139, 419–432.

Dueker, K., Humphreys, E., Biasi, G., 1993. Teleseismic imaging of the western United
States upper mantle structure using the simultaneous iterative reconstruction
technique. In: Iyer, H.M., Hirahara, K. (Eds.), Seismic Tomography: Theory and
Practice. Chapman & Hall, London, pp. 265–298.

Dziewonski, A.M., Hager, B.H., O’Connell, R.J., 1977. Large-scale heterogeneities in
the lower mantle. J. Geophys. Res. 82, 239–255.

Dziewonski, A.M., Woodhouse, J.H., 1987. Global images of the earth’s interior. Sci-
ence 236, 37–48.

Eberhart-Phillips, D., 1986. Three-dimensional velocity structure in northern Cal-
ifornia coast ranges from inversion of local earthquake arrival times. Bull.
Seismol. Soc. Am. 76, 1025–1052.

Eberhart-Phillips, D., 1990. Three-dimensional P and S velocity structure in the
Coalinga Region, California. J. Geophys. Res. 95, 15,343–15,363.

Eberhart-Phillips, D., Henderson, C.M., 2004. Inclusing anisotropy in 3-D velocity
inversion and application to Marlborough, New Zealand. Geophys. J. Int. 156,
237–254.

Eberhart-Phillips, D., Michael, A.J., 1993. Three-dimensional velocity structure, seis-
micity, and fault structure in the Parkfield Region, central California. J. Geophys.
Res. 98, 15737–15758.

Eberhart-Phillips, D., Reyners, M., 1997. Continental subduction and three-
dimensional crustal structure: the northern South Island, New Zealand. J.
Geophys. Res. 102, 11848–11861.

Ekström, G., Tromp, J., Larson, E.W.F., 1997. Measurements and global models of
surface wave propagation. J. Geophys. Res. 102, 8137–8157.

Engquist, B., Runborg, O., Tornberg, A.-K., 2002. High-frequency wave propagation
by the segment projection method. J. Comp. Phys. 178, 373–390.

Faccioli, E., Maggio, F., Paolucci, R., Quarteroni, A., 1997. 2D and 3D elastic wave
propagation by a pseudo-spectral domain decomposition method. J. Seismol. 1,
237–251.

Farra, V., Madariaga, R., 1987. Seismic waveform modelling in heterogeneous media
by ray perturbation theory. J. Geophys. Res. 92, 2697–2712.

Farra, V., Madariaga, R., 1988. Non-linear reflection tomography. Geophys. J. 95,
135–147.
Faul, U.H., Fitz Gerald, J.D., Jackson, I., 2004. Shear wave attenuation and
dispersion in melt-bearing olivine polycrystals. 2. Microstructural interpre-
tation and seismological implications. J. Geophys. Res. 109, doi:10.1029/
2003JB002407.

Favier, N., Chevrot, S., 2003. Sensitivity kernels for shear wave splitting in transverse
isotropic media. Geophys. J. Int. 153, 213–228.



and P

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

G

G

G

G

G

G

G

G

H

H

H

H

H

H

N. Rawlinson et al. / Physics of the Earth

ichtner, A., Bunge, H.P., Igel, H., 2006a. The adjoint method in seismology. I. Theory.
Phys. Earth Planet. Inter. 157, 86–104.

ichtner, A., Bunge, H.P., Igel, H., 2006b. The adjoint method in seismology. II. Appli-
cations: traveltimes and sensitivity functionals. Phys. Earth Planet. Inter. 157,
105–123.

ichtner, A., Kennett, B.L.N., Igel, H., Bunge, H.P., 2008. Theoretical background for
continental and global scale full-waveform inversion in the time-frequency
domain. Geophys. J. Int. 175, 665–685.

ichtner, A., Kennett, B. L. N., Igel, H. and Bunge, H.-P., 2009. Full seismic
waveform tomography for upper-mantle structure in the Australasian region
using adjoint methods. Geophysical Journal International, doi:10.1111/j.1365-
246X.2009.04368.x, in press.

ischer, R., Lees, J.M., 1993. Shortest path ray tracing with sparse graphs. Geophysics
58, 987–996.

ishwick, S., Heintz, M., Kennett, B.L.N., Reading, A.M., Yoshizawa, K., 2008. Steps
in lithospheric thickness within eastern Australia, evidence from surface wave
tomography. Tectonics 27, doi:10.1029/2007TC002116.

ishwick, S., Kennett, B.L.N., Reading, A.M., 2005. Contrasts in lithospheric structure
within the Australian craton—insights from surface wave tomography. Earth
Planet. Sci. Lett. 231, 163–176.

ishwick, S., Reading, A.M., 2008. Anomalous lithosphere beneath the Proterozoic
of western and central Australia: a record of continental collision and intraplate
deformation? Precam. Res. 166, 111–121.

letcher, R., Reeves, C.M., 1964. Function minimization by conjugate gradients. Com-
put. J. 7, 149–154.

omel, S., Sethian, J.A., 2002. Fast-phase space computation of multiple arrivals. Proc.
Natl. Acad. Sci. 99, 7329–7334.

orsyth, D.W., Li, A., 2005. Array analysis of two-dimensional variations in surface
wave phase velocity and azimuthal anisotropy in the presence of multipathing
interference. In: Levander, A., Nolet, G. (Eds.), Seismic Earth: Array Analysis of
Broadband Seismograms. AGU Geophysical Monograph Series, Washington, DC,
pp. 81–97.

rankel, A., Vidale, J., 1992. A three dimensional simulation of seismic waves in the
Santa Clara Valley, California, from a Loma Prieta aftershock. Bull. Seismol. Soc.
Am. 82, 2045–2074.

rederiksen, A.W., Bostock, M.G., VanDecar, J.C., Cassidy, J.F., 1998. Seismic structure
of the upper mantle beneath the northern Canadian Cordillera from teleseismic
travel-time inversion. Tectonophysics 294, 43–55.

riederich, W., 1999. Propagation of seismic shear and surface waves in a later-
ally heterogeneous mantle by multiple forward scattering. Geophys. J. Int. 136,
180–204.

riederich, W., 2003. The S-velocity structure of the East Asian mantle from inversion
of shear and surface waveforms. Geophys. J. Int. 153, 88–102.

riederich, W., Wielandt, E., 1995. Interpretation of seismic surface waves in regional
networks: joint estimation of wavefield geometry and local phase velocity.
Method and numerical test. Geophys. J. Int. 120, 731–744.

ukao, Y., Obayashi, M., Inoue, H., Nebai, M., 1992. Subducting slabs stagnant in the
mantle. J. Geophys. Res. 97, 4809–4822.

urumura, T., Kennett, B.L.N., Furumura, M., 1998. Seismic wavefield calculation for
laterally heterogeneous whole earth models using the pseu-dospectral method.
Geophys. J. Int. 135, 845–860.

lahn, A., Granet, M., 1993. Southern Rhine Graben: small-wavelength to-mographic
study and implications for the dynamic evolution of the graben. Geophys. J. Int.
113, 399–418.

raeber, F.M., Asch, G., 1999. Three-dimensional models of P wave velocity and P-
to-S velocity ratio in the southern central Andes by simultaneous inversion of
local earthquake data. J. Geophys. Res. 104, 20237–20256.

raeber, F.M., Houseman, G.A., Greenhalgh, S.A., 2002. Regional teleseis-mic tomog-
raphy of the western Lachlan Orogen and the Newer Volcanic Province,
southeast Australia. Geophys. J. Int. 149, 249–266.

rand, S.P., van der Hilst, R.D., Widiyantoro, S., 1997. Global seismic tomography: a
snapshot of convection in the Earth. GSA Today 7, 1–7.

ranet, M., Trampert, J., 1989. Large-scale P-velocity structures in the Euro-
Mediterranean area. Geophys. J. Int. 99, 583–594.

raves, R.W., 1996. Simulating seismic wave propagation in 3D elastic media using
staggered-grid finite differences. Bull. Seismol. Soc. Am. 86, 1091–1106.

uiziou, J.L., Mallet, J.L., Madariaga, R., 1996. 3-D seismic reflection tomography on
top of the GOCAD depth modeler. Geophysics 61, 1499–1510.

ung, Y., Romanowicz, B., 2004. Q tomography of the upper mantle using three-
component long-period waveforms. Geophys. J. Int. 157, 813–830.

ammer, P.T.C., Dorman, L.M., Hildebrand, J.A., Cornuelle, B.D., 1994. Jasper
Seamount structure: seafloor seismic refraction tomography. J. Geophys. Res.
99, 6731–6752.

auser, J., Sambridge, M., Rawlinson, N., 2008. Multiarrival wave-front tracking and
its applications. Geochem. Geophys. Geosyst. 9, doi:10.1029/2008GC002069.

eintz, M., Debayle, E., Vauchez, A., 2005. Upper mantle structure of the South
American continent and neighboring oceans from surface wave tomography.
Tectonophysics 406, 115–139.

estenes, M., Stiefel, E., 1952. Methods of conjugate gradients for solving linear
systems. Nat. Bur. Stand. J. Res. 49, 409–436.
icks, G., Pratt, R.G., 2001. Reflection waveform inversion using local descent meth-
ods: estimating attenuation and velocity over a gas-sand deposit. Geophysics
66, 598–612.

ildebrand, J.A., Dorman, L.M., Hammer, P.T.C., Schreiner, A.E., Cornuelle, B.D.,
1989. Seismic tomography of Jasper Seamount. Geophys. Res. Lett. 16,
1355–1358.
lanetary Interiors 178 (2010) 101–135 131

Hirahara, K., 1988. Detection of three-dimensional velocity anisotropy. Phys. Earth
Planet. Inter. 51, 71–85.

Hole, J.A., 1992. Nonlinear high-resolution three-dimensional travel-time tomogra-
phy. J. Geophys. Res. 97, 6553–6562.

Hole, J.A., Zelt, B.C., 1995. 3-D finite-difference reflection travel times. Geophys. J.
Int. 121, 427–434.

Humphreys, E., Clayton, R.W., 1988. Adaption of back projection tomography to
seismic travel time problems. J. Geophys. Res. 93, 1073–1085.

Humphreys, E.D., Clayton, R.W., 1990. Tomographic image of the Southern California
Mantle. J. Geophys. Res. 95, 19725–19746.

Hung, S.H., Dahlen, F.A., Nolet, G., 2000. Fréchet kernels for finite-frequency travel-
times. II. Examples. Geophys. J. Int. 141, 175–203.

Hung, S.H., Shen, Y., Chiao, L.Y., 2004. Imaging seismic velocity structure beneath
the Iceland hotspot: a finite frequency approach. J. Geophys. Res. 109, B08305.

Ishii, M., Tromp, J., 2004. Constraining large-scale mantle heterogeneity using mantle
and inner-core sensitive normal modes. Phys. Earth Planet. Inter. 146, 113–124.

Iyer, H., Hirahara, K., 1993. Seismic Tomography: Theory and Practice. Chapman &
Hall, London.

Jackson, I., Paterson, M., Fitz Gerald, J., 1992. Seismic wave dispersion and attenua-
tion in Aheim dunite: an experimental study. Geophys. J. Int. 108, 517–534.

Jaiswal, P., Zelt, C.A., Bally, A.W., Dasgupta, R., 2008. 2-D traveltime and waveform
inversion for improved seismic imaging: Naga Thrust and Fold Belt, India. Geo-
phys. J. Int. 173, 642–658.

Jiang, G.S., Peng, D.P., 2000. Weighted ENO schemes for Hamilton–Jacobi equations.
SIAM J. Sci. Comput. 21, 2126–2143.

Jiang, G.S., Shu, C., 1996. Efficient implementation of weighted ENO schemes. J. Comp.
Phys. 126, 202–228.

Julia, J., Ammon, C.J., Hermann, R.B., 2003. Lithospheric structure of the Arabian
Shield from the joint inversion of receiver functions and surface-wave group
velocities. Tectonophysics 371, 1–21.

Julian, B.R., Gubbins, D., 1977. Three-dimensional seismic ray tracing. J. Geophys. 43,
95–113.

Kanasewich, E., Burianyk, M.J.A., Ellis, R.M., Clowes, R.M., White, D.J., Lôté, T., Forsyth,
D.A., Luetgert, J.A., Spence, G.D., 1994. Crustal velocity structure of the Omineca
Belt, southwestern Canadian Cordillera. J. Geophys. Res. 99, 2653–2670.

Kanasewich, E.R., Chiu, S.K.L., 1985. Least-squares inversion of spatial seismic refrac-
tion data. Bull. Seismol. Soc. Am. 75, 865–880.

Kang, T.-S., Shin, J.S., 2006. Surface-wave tomography from ambient seismic
noise of accelerograph networks in southern Korea. Geophys. Res. Lett. 33,
doi:10.1029/2006GL027044.

Karason, H., van der Hilst, R.D., 2001. Improving global tomography models of
P-wavespeed. I. Incorporation of differential travel times for refracted and
diffracted core phases (PKP, Pdiff). J. Geophys. Res. 106, 6569–6587.

Kelley, K., Plank, T., submitted for publication. Geochemistry of the Mariana Arc
System. Geochem. Geophys. Geosyst.

Kennett, B.L.N., Engdahl, E.R., Buland, R., 1995. Constraints on seismic velocities in
the earth from travel times. Geophys. J. Int. 122, 108–124.

Kennett, B.L.N., 1998. Seismic Wave Propagation and Seismic Tomography. Research
School of Earth Sciences. Institute of Advanced Studies, The Australian National
University, Canberra.

Kennett, B.L.N., Sambridge, M.S., Williamson, P.R., 1988. Subspace methods for large
scale inverse problems involving multiple parameter classes. Geophys. J. 94,
237–247.

Khan, A., Connolly, J.A.D., Taylor, S.R., 2008. Inversion of seismic and geodetic data for
the major element chemistry and temperature of the Earth’s mantle. J. Geophys.
Res. 113, doi:10.1029/2007JB005239.

Kim, S., Cook, R., 1999. 3D traveltime computation using second-order ENO scheme.
Geophysics 64, 1867–1876.
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