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Introduction to the special issue on convergent plate margin dynamics
Convergent plate margins are arguably the most complicated and
dynamic plate boundaries on Earth and have been the subject of many
investigations and discussions since the advent of plate tectonic
theory. Due to the varied, heterogeneous and complex structure of
convergent plate margins, which arises from the multiple geological,
physical and chemical processes operating at these zones, and because
the largest portion of the system is hidden deep beneath the surface,
much remains enigmatic and unknown about these important plate
tectonic features. As such, numerous fundamental problems still need
to be addressed. The papers presented in this special issue provide
many new insights into a variety of geological, geophysical and
geodynamical problems.

Schellart and Rawlinson (2010-this issue) provide a historical
background and a review of the development of geological and
geodynamic theories on convergent plate margins. Furthermore, the
paper discusses some of the recent advances that have been made in
the fields of structural geology, geophysics and geodynamics, which
are fundamental to our understanding of convergent plate margins.
The paper shows that contributions from structural geologists,
geophysicists and geodynamic modellers have been crucial for the
development of geological theories of large-scale tectonic processes
and for the understanding of convergent plate boundaries.

A topic of active research is the initiation of a new subduction zone,
which has been suggested to occur at passivemargins due to sediment
loading (Cloetingh et al., 1982; Regenauer-Lieb et al., 2001), at
fracture zones due to far-field compressive stresses thereby forcing
convergence across the lithospheric heterogeneity (Hall et al., 2003;
Gurnis et al., 2004), or at passivemargins due to large buoyancy forces
across the passivemargin (Mart et al., 2005; Goren et al., 2008). In this
special issue, Farrington et al. (2010-this issue) present numerical
models that illustrate plate motion-induced edge-driven convection
below a lithospheric step at a passive margin. This vigorous
convection could facilitate thermal weakening of the passive margin
lithosphere and might induce deviatoric stresses across the margin.
Such edge-driven convection could thus facilitate and play a role in
subduction initiation at passive margins.

After a critical amount of subduction (100–150 km) a self-
sustaining subduction zone forms (Gurnis et al., 2004). The subse-
quent kinematic and dynamic evolution of the system will depend on
the different physical parameters that control the system. Various
controlling parameters have been proposed, including mantle strat-
ification (Kincaid and Olson, 1987; Christensen, 1996), slab strength
(Capitanio et al., 2007; Billen and Hirth, 2007; Di Giuseppe et al., 2008;
Schellart, 2008a; Funiciello et al., 2008), slab negative buoyancy
(Molnar and Atwater, 1978; Schellart, 2004; Morra et al., 2006;
Capitanio et al., 2007), subducting plate velocity (Funiciello et al.,
2004; Schellart, 2005), overriding plate velocity (Olbertz et al., 1997;
van Hunen et al., 2000; Heuret et al., 2007; Guillaume et al., 2009), and
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slab width (Dvorkin et al., 1993; Schellart, 2004; Stegman et al., 2006;
Morra et al., 2006; Schellart et al., 2007). Stegman et al. (2010-this
issue-a) illustrate that the role of the strength of the subducting
lithosphere in resisting bending at the trench is critical in determining
the subduction kinematics and the geometry of the slab. However,
considering that for present day subduction zones the slab/mantle
effective viscosity ratio likely falls within a relatively narrow range, it
appears that such minor variation of this ratio cannot explain the
variety of present-day subduction zone behaviour on Earth, although it
might give insight into subduction zone behaviour in the distant
geological past. As illustrated in Stegman et al. (2010-this issue-b), it
appears that thewidth (trench-parallel extent) of subduction zones, as
well as the trailing plate boundary condition provide a dominant
control on the dynamics and kinematics of active subduction zones on
Earth.

Subduction zones are limited in trench-parallel extent. At their
edges, subduction zones often turn into collision zones or transform
plate boundaries. At subduction zone-transform edges, continued
subduction requires the downgoing plate to tear at the edge, such that
one part of the plate sinks into the mantle, whilst the other part
remains at the surface. These faults have recently been referred to as
STEP-faults (subduction-transform-edge-propagator-faults) (Govers
and Wortel, 2005; Wortel et al., 2009). Hale et al. (2010-this issue)
present 3D numerical models of progressive subduction to test how
the resistance of the subducting plate to tear at a subduction zone
corner influences subduction zone curvature and the kinematics of
subduction. The authors find that an increase in tear resistance
enhances subduction zone curvature and decreases the trench retreat
velocity.

The role of trench-parallel density variations in subducting plates
has been argued to have an important impact on subduction
kinematics and trench geometry (e.g. Vogt, 1973; Hsui and Young-
quist, 1985; Martinod et al., 2005; Morra et al., 2006; Wallace et al.,
2009). These density variations have been ascribed to a change in plate
age or the presence of buoyant features on the subducting plate, such
as oceanic plateaus, aseismic ridges and continental fragments. Mason
et al. (2010-this issue) investigate how the presence of a buoyant
plateau on the subducting plate affects the trench kinematics and
trench geometry using 3D numerical models of progressive free
subduction. They find that with increasing plateau buoyancy the
trench velocity changes from slow retreat to trench advance, whilst
the trench becomes increasingly indented.

The interaction between subducting plate, overriding plate and
ambient mantle has been investigated with kinematically driven
laboratory models of progressive subduction (e.g. Shemenda, 1993,
1994; Faccenna et al., 1999; Boutelier and Cruden, 2008) and with
dynamic 3D numerical models (Clark et al., 2008; Yamato et al., 2009).
It has also been investigated with statistical methods, leading to
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contrasting conceptual models for trench migration and overriding
plate deformation (e.g. Jarrard, 1986; Heuret and Lallemand, 2005;
Schellart, 2008b). Capitanio et al. (2010-this issue) investigate the
interaction between subducting plate, overriding plate and ambient
mantle in fully dynamic 2D numerical models of progressive
subduction, demonstrating the control of overriding plate strength
on subduction kinematics. These authors find that trench retreat
generally corresponds with overriding plate extension while trench
advance generally corresponds with overriding plate shortening. This
is in agreement with the statistical findings from Schellart (2008b)
and would suggest that slab dynamics controls trench migration and
the style of overriding plate deformation (extension or shortening)
rather than overriding plate motion controlling trench migration and
overriding plate deformation.

After consumption of an entire ocean basin, the converging plates
may collide during arc–continent collision or continent–continent
collision. Keep and Haig (2010-this issue) and Ely and Sandiford
(2010-this issue) discuss the active arc–continent collision between
the Banda arc and the northwest Australian continental margin. Keep
and Haig (2010-this issue) investigate the geology in East Timor,
suggesting that collision started at 9.8–5.5 Ma, much earlier than
previously thought; that Timor emerged above sea-level at 3.1 Ma;
and that the collisional phase is characterized by three distinct
orogenic phases. Ely and Sandiford (2010-this issue) investigate the
state of stress in the eastern Sunda-Banda slab segment. The authors
show that in eastern Sunda subduction of normal oceanic lithosphere
results in down-dip tension at 70–300 km depth, whilst towards the
east subduction of the buoyant Scott plateau results in down-dip
compression. Even further to the east, below East Timor, a seismic gap
is present implying that the slab has detached in this region. Replumaz
et al. (2010-this issue) discuss the continent–continent collision
between India and Eurasia using plate reconstructions and mantle
tomography. The research points to considerable lateral and vertical
variation in mantle structure below and south of the Himalayas. The
authors identify a large pre-collisional detached slab in the lower
mantle, syn-collisional detached slab segments below the centre and
east and a narrow slab segment below the western Himalayas that
reaches 600 km depth and is continuous with the surface lithosphere.
The authors propose a different tectonic evolutionary scenario for the
western Himalayas compared to the eastern Himalayas.

After slabs detach from their surface plates, they continue to play a
role in shaping the geological history of our planet through dynamic
topography (Gurnis et al., 1997; Gurnis andMüller, 2003;Müller et al.,
2008). Heine et al. (2010-this issue) demonstrate that fossil slabs that
were subducting below the Gondwana margin of Australia in the
Mesozoic have produced dynamic topography at the surface, leading
to periods of inundation of various parts of the Australian continent at
times of a global sea-level low and surface exposure of the Gulf of
Carpentaria at times of a global sea-level high.

An intensive debate regards the start of plate tectonics on Earth,
and as such, the start of subduction zone processes. Some have argued
in favour of initiation as early as the Archean (e.g. Cawood et al., 2006;
Davies, 2006), whilst others have argued in favour of the Late
Proterozoic (e.g. Stern, 2005). Stewart and Betts (2010-this issue)
demonstrate that Middle Proterozoic structures observed in the
Gawler Craton in South Australia can be interpreted in a plate tectonic
framework. In particular, extensional and shortening structures are
interpreted to have formed in an upper plate backarc setting resulting
from subduction, slab rollback and flat-slab subduction processes.

Geodynamic modelling of large-scale tectonic processes has a long
history in which laboratory (analogue) and numerical modelling
techniques have been used. Laboratorymodels aremostlymechanical,
and sometimes thermo-mechanical, and a major advantage is that
they are ideally suited to model progressive large-strain deformation
as well as investigate complex three-dimensional geodynamic
problems (Koyi, 1997; Schellart, 2002). Most numerical modelling
has been done in 2D space, although the last few years have seen an
increase in 3D numerical modelling. An advantage of numerical
models is that they can readily incorporate both thermal and
mechanical processes. Poulet et al. (2010-this issue) present a
thermo-chemo-mechanical modelling technique that includes chem-
ical feedbacks, thereby allowing for the development of numerical
models that have the potential to more accurately represent
geodynamic processes.
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