
FMTT: Fast Marching Teleseismic

Tomography Package - Instructions

by Nick Rawlinson

Research School of Earth Sciences, Australian National University, Canberra ACT 0200

Contents

1 Introduction 2

2 Unpacking and Compiling the Code 3

3 Program Synopsis 5

4 Model Generation 6

5 Computing Traveltimes to Base of 3-D Model 8

5.1 aktsurf . 9

5.2 itimes . 9

6 Traveltimes Through the 3-D Model with FMM 10

7 Inversion Routine 12

8 Performing a Tomographic Inversion 13

8.1 Required input files . 14

8.2 Useful output files . 18

9 Plotting the Results 19

10 Examples 20

10.1 Example 1 . 20

10.2 Example2 . 22

11 FAQs 24

1 Introduction

This document describes how to use the Fortran 90 software package FMTT for per-

forming teleseismic arrival time tomography using the fast marching method (FMM) for

the forward prediction step and a subspace inversion scheme for the inversion step. The

method is iterative non-linear in that the inversion step assumes local linearity, but re-

peated application of FMM and subspace inversion allows the non-linear relationship

between velocity and traveltime perturbations to be reconciled.

Traveltimes from distant events are computed to the base of a local 3-D model be-

neath a receiver array using ak135 predictions (i.e. the earth is assumed to be spherically

symmetric outside the local model). FMM is then initiated from the base of the model to

compute traveltimes to receivers located anywhere within the model. Additional software

is provided to generate 3-D models in spherical coordinates. A variety of structures can be

imposed including checkerboards, spikes and random (Gaussian) variations. These mod-

els are defined by a grid of nodes with tri-cubic B-spline interpolation, which produces

a continuous, smooth and locally controlled velocity medium. This continuous velocity

field is “diced up” to produce a computational grid for FMM - the level of dicing (and

hence traveltime accuracy) is controlled by the user.

The inversion step allows both smoothing and damping regularization to be imposed in

order to address the problem of solution non-uniqueness. A shell script has been written

to couple the FMM and subspace codes into the complete iterative non-linear tomography

routine.

A recently added feature of this software package is the ability to combine data sets

from more than one teleseismic array in a single inversion. This feature can be useful,

particularly if a sequential roll-out of seismic arrays is performed to cumulatively cover a

region of the Earth. However, it should be noted that if relative arrival time residuals are

used in such circumstances, long wavelength features of the underlying structure will not

be recovered. In other words, the solution model will represent a high-pass filtered version

of the true structure, with the degree of filtering dependent on the size of the instrument

arrays used. To overcome this limitation, one could use a background starting model

derived by other means (e.g. regional/global tomography) that contains this information.

I have had a number of requests for this code, and have therefore put it on the web

together with this document, which hopefully will help you negotiate some of its more

2

idiosyncratic elements.

2 Unpacking and Compiling the Code

Download the UNIX tarred and gzipped file fmtt v1.0.tar.gz from the web page located

at http://rses.anu.edu.au/∼nick/teletomo.html into an empty directory. To unpack the

contents of the file, use either:

• tar -xvzf fmtt v1.0.tar.gz

• gunzip -c fmtt v1.0.tar.gz | tar xvof -

The contents of the tar archive will be placed in the current working directory, and

the UNIX ls command should produce something like:

bin/ compileall* docs/ example1/ example2/ source/

The next step is to begin the compilation procedure.

All of the F90 source files are contained in the subdirectory source/, and must be

compiled with a Fortran 90 compiler. It is strongly recommended that you use the same

compiler to create each separate executable, as data is exchanged between several pro-

grams using binary files. Rather than compile all the programs separately, the simple

shell script compileall, located in the root directory of the distribution, can be used to

automatically compile the entire package and place the executables in the directory bin/.

If you wish to use this script, it is essential that you do not move it from its current

relative location. Before executing compileall, make sure that you do the following:

• edit line 22 of compileall so that the code is compiled using your favourite Fortran

90 compiler.

• Move to the subdirectory source/aktimes/ and edit line 5 of Makefile so that it points

to an appropriate Fortran 77 compiler. The code which makes the ak135 traveltime

predictions is written in Fortran 77. The default setting for the Fortran 77 compiler

is ifort, the Intel fortran compiler. However, most Fortran compilers (e.g. g77)

should work. Note that it is generally advisable to use the same fortran compiler

to build the ak135 traveltime tables and FMST, since binary files are exchanged

between programs.

3

While every effort has been made to use standard Fortran 77 and 90, it is always

difficult to know how different compilers will behave. The software package has been

tested on the following platforms:

• Linux PC with AMD Opteron processor running a 64 bit operating system. Fortran

90 compilers tested include g95, ifort (Intel fortran compiler), Pathscale, NAG and

Portland. The only Fortran 77 compiler tested was g77.

• Linux PC with Intel P4 processor running a 32 bit operating system. Fortran 90

compilers tested include g95 and ifort (Intel fortran compiler). The only fortran 77

compiler tested was g77.

• Sun Blade 100 running Solaris. Fortran 90 compilers tested include frt (Fujitsu

Fortran 90 Compiler) and f90 (Sun Fortran 90 compiler). Fortran 77 compilers

tested include g77 and f77 (Fortran 77 SC4.2).

My tests indicate that the code runs much faster (4-5 times) on AMD or Intel based

platforms compared to the Sun Blade. If you use an Intel platform, I strongly recommend

using the Intel compiler as it is much faster than others I’ve tested. On a 64 bit AMD

Opteron platform, Pathscale is about 30% faster than the best of the rest (which is actually

the Intel compiler). [While I have not tested the 64 bit version of the Intel compiler, I

believe that its performance is on par with the Pathscale compiler]. The g95 compiler is

still in its beta stage, but my tests indicate that the latest version is quite competitive.

When you run compileall, it will produce screen output related to the Fortran 77 Make-

file and creation of the ak135 traveltime tables. Successful compilation will be marked by

the words Compilation complete. The compilation time on a 64 bit AMD platform with a

1.6 GHz Opteron processor using ifort is about 6 seconds. All of the executables will be

placed in the subdirectory bin/. Note that the distribution already has an executable in

this subdirectory prior to the compilation process. It is called tomo3dt, and is actually a

shell script, so does not require compilation.

All of the executables require an input parameter file, which by default has the same

name as the executable, but ends with .in. For example fm3dt has an input parameter

file called fm3dt.in. Example input parameter files can be found in the subdirectory

source/inputfiles.

4

In order to run the executables from any directory, you will need to make sure that

the path to the bin/ directory is correctly set in your startup shell script. Alternatively,

you could copy the executables to a directory that you know is already specified in the

path list. In the former case, if you use a .cshrc file, then you could add a line like:

• set path = ($path /directories/bin)

after the path is initially set. In the above example, directories refers to the directory

structure above the bin/ directory (e.g. ∼/tomography/fmst).

If you encounter any bugs, or have trouble getting the code to compile, then please

send me an email at nick@rses.anu.edu.au.

3 Program Synopsis

A very brief description of the function of each program contained in bin is given below.

For more detail, refer to the sections that follow.

• aktsurf: This program computes ak135 traveltimes from each teleseismic source to

all grid nodes (within a specified region) that reside on the surface of the local 3-D

propagation mesh. These times are back-tracked to the base of the model using the

program itimes.

• fm3dt: Solves the forward problem of traveltime prediction by applying the so-called

Fast Marching Method (FMM), a grid based eikonal solver. fm3dt can also generate

ray paths and Fréchet derivatives, the latter of which are required by the inversion

routine. Note that this code requires traveltimes to grid points at the base of the

model to be specified, as it is designed to track an impinging teleseismic wavefront

through a local 3-D velocity structure.

• gmtslicet: A translation code that converts output from the tomography code into

a format suitable for input into GMT (Generic Mapping Tools) scripts. This allows

the velocity field to be visualized as colour-contoured cross-sections, with ray paths,

wavefronts, sources and receivers projected if required. GMT scripts are provided

(see the examples that come with the distribution) to generate these plots.

5

• grid3dtg: A program for constructing 3-D models in the format required by fm3dt. It

can be used to generate checkerboard and other synthetic test models (e.g. random

structure), and initial models for tomographic inversion.

• itimes: Takes the output from aktsurf and backtracks the traveltimes to the base of

the 3-D model. The output from this program is read in by fm3dt.

• misfitt: A simple program for computing model roughness and variance. Can be

useful when trying to justify the most appropriate damping and smoothing regular-

isation parameters.

• residualst: Computes summary traveltime residuals (RMS and variance) associated

with a given model.

• resplott: This program takes traveltime information generated by the tomographic

inversion process and converts it into a format suitable for input into a GMT

(Generic Mapping Tools) script that plots a frequency histogram of the initial or

final data fit.

• subinv: Uses a subspace inversion method to perform a linearised inversion of the

data. In order to address the non-linearity of the problem, this program is applied

iteratively in sequence with fm3dt.

• syntht: A simple program for adding Gaussian noise to a synthetic dataset in order

to simulate the effects of picking error that is present in observational data.

• tomo3dt: A simple k-shell script that calls the necessary executables listed above in

order to perform iterative non-linear tomography.

4 Model Generation

The program supplied for generating models is called grid3dtg, and can be used to produce

a 3-D grid of velocity nodes in spherical coordinates (essentially a curved 3-D box). The

values of the velocity nodes can be set to:

• Arbitrary depth dependent background values (i.e. a model in which velocity varies

with depth only - often appropriate for a tomographic starting model).

6

• Background model with Gaussian noise of a specified standard deviation superim-

posed.

• Background model with a checkerboard pattern superimposed.

• Background model with random spikes superimposed.

All input parameters are set using grid3dtg.in, which is more-or-less self-explanatory

(see examples). The minimum scale-length of structure permitted in a model is dictated

by the number of grid points in r, θ and φ. At this stage, only depth varying background

models can be produced - if you require something more complicated, then you will need

to generate the grid file by some other means. Note that the reference to model covariance

is only relevant for subsequent use of the model in the associated inversion routine.

It is probably worth giving a brief explanation of several of the input parameter settings

in grid3dtg.in. On line 16, there is a switch that states Use model (0) or constant gradient

(1). Setting this to 0 means that a user-supplied list of velocity versus depth values will

be read in to build the background model. A setting of 1 indicates that velocity will vary

linearly with depth only. The following line (17) is only relevant if option 0 is chosen on

line 16. The filename supplied on line 18 is the user input file (used if option 0 is chosen on

line 16) which provides a list of depths and velocities. For example, if the ak135 velocity

model is used, then the first 10 lines of the file would look like:

0.00000 5.8000 3.4600

20.0000 5.8000 3.4600

20.0000 6.5000 3.8500

35.0000 6.5000 3.8500

35.0000 8.0400 4.4800

77.5000 8.0450 4.4900

120.000 8.0500 4.5000

165.000 8.1750 4.5090

210.000 8.3000 4.5180

210.000 8.3000 4.5230

......

The first entry on each line is the depth, the second entry is the P-wavespeed, and the third

entry is the S-wavespeed. Provided this basic format is retained, any depth dependent

7

velocity model can be specified. Note that the actual variation of velocity with depth in

the 3-D model will be a smoothed version of what is specified in the file, due to the use

of a cubic B-spline parameterization to specify the continuous velocity field. In addition,

the full detail of the input 1-D model may not be properly captured by the velocity grid,

depending on the node spacing that is chosen in depth. Finally, it it worth noting that

grid3dtg automatically creates a cushion layer of boundary nodes around the specified

velocity model to facilitate the use of cubic B-splines; therefore, it is necessary to make

sure that the input 1-D velocity model extends above and below the actual model region

specified near the top of grid3dtg.in

Lines 19 and 20 of grid3dtg.in are only relevant if option 1 is chosen on line 16. In this

case, velocity varies linearly with depth, and the value at the top of the model is given

by the entry on line 19, and the value at the base of the model is given by the entry on

line 20.

The output file is named grid3d.vtx in the distribution. If you create a starting model

for the inversion using this code, this file should be copied to the working directory (i.e.

the directory from which you execute tomo3dt) and renamed gridi.vtx.

5 Computing Traveltimes to Base of 3-D Model

Two programs are used to calculate traveltimes from a distant (teleseismic) source to

all points at the base of the 3-D computational grid. The first program, aktsurf, uses

the ttimes software to compute the traveltimes of any global phase through a spherically

symmetric Earth (defined using ak135 velocities) to all grid points on the surface of the

3-D model. The second program, itimes, uses ray tracing to compute the traveltime

from the surface of the model back to the base of the model and subtracts this value

from the global times provided by aktsurf. Because these backprojected traveltimes can

be irregularly distributed at the base of the 3-D model, itimes performs interpolation to

obtain the traveltimes at the regularly distributed grid points. Note: Depending on

the geometry of the impinging teleseismic wavefront, not all grid points at the base of

the model will be assigned traveltimes. Therefore, it is important that the horizontal

bounds of the computational grid are significantly larger than the horizontal bounds of

the receiver array.

8

5.1 aktsurf

The program aktsurf has a default input parameter file called aktsurf.in, which simply

points to a number of input and output files. In order for this program to operate, the

binary files ak135.hed and ak135.tbl must be in the working directory from which you

run aktsurf. These two files were created when you ran the script compileall to build the

executables, and can be found in the subdirectory source/aktimes/. Note that these binary

files are machine dependent (e.g. if they were built on a Sun workstation, they are unlikely

to work on a Linux PC) and can be compiler dependent; therefore, it is recommended

that they be constructed each time the distribution is installed.

aktsurf only needs to be rerun when either of the following three situations arise:

• The sources.dat file is edited.

• The grid spacing and/or dimensions of the computational grid are changed in any

way.

• You switch from a P -wave local 3-D model (default) to an S-wave local 3-D model.

5.2 itimes

itimes has a default input file called itimes.in, which lists a number of input and output files

as well as variables used by the program. Most of these entries are self-explanatory (see

examples), but it is still worth examining several of them. On line 1, the 1-D reference

velocity model should be the original ak135 velocity model, as this is what is used by

aktsurf by default (if the binary traveltime tables are built using a variant of ak135, then

the same model should be used by itimes). On line 8, the entry reads Depth discretization

of 1-D model (km). Snell’s law is used to back project traveltimes from the surface

to the base of the model. This parameter sets the depth interval of the stratification

used to approximate the depth-varying model. The default value should be fine in most

circumstances.

itimes only needs to be rerun when either of the following situations arise:

• The sources.dat file is edited.

• The grid spacing and/or dimensions of the computational grid are changed in any

way.

9

• You switch from a P -wave local 3-D model (default) to an S-wave local 3-D model.

6 Traveltimes Through the 3-D Model with FMM

Traveltimes through the local 3-D model are computed using FMM with the starting

narrow band encapsulating all points at the base of the grid. The program which applies

FMM is fm3dt and has an input parameter file called fm3dt.in, which can be used to

adjust various options. The list below describes several of those whose meaning may not

appear obvious on a perusal of the file. See the subdirectories example1 and example2 for

examples of fm3dt.in.

• On line 8 of the file, the comment reads Bspline dicing in r, theta, phi. This entry sets

the grid spacing of the propagation grid through which FMM computes traveltimes.

The three integers specify the radial, latitudinal and longitudinal sub-sampling of

the continuous velocity field as defined by the cubic B-spline velocity patches, which

interpolate the velocity grid. In example1, the velocity field is defined by 13× 35 ×

37 = 16, 835 velocity nodes (see gridi.vtx), excluding the boundary of cushion nodes.

Cubic B-spline patches are used to define a smoothly varying velocity continuum

between these control nodes, which constitute the inversion grid, i.e. the velocity

values of these nodes are adjusted by the inversion scheme in order to satisfy the

data. The propagation grid, which is required by FMM in order to solve the

eikonal equation, can be any arbitrary (but regular) resampling of the continuous

velocity field, and therefore need not be related to the inversion grid. However, in

fm3dt, we specify the propagation grid point separation as a function of the inversion

grid point separation via a dicing factor. This dicing factor simply specifies the

number of propagation grid cells that spans the same distance as one inversion

grid cell. One argument for using this approach is that the node separation of

the propagation grid will always be less than the minimum wavelength of structure

defined by the inversion grid. In example1, the dicing specified is 2 × 2 × 2, which

means that there will be a total of [(13−1)×2+1]×[(35−1)×2+1]×[(37−1)×2+1] =

125, 925 nodes defining the propagation grid.

• On line 10 of the input file, you can set the finite difference scheme to be first order

or mixed order. This refers to the accuracy of the upwind finite difference scheme

10

used to solve the eikonal equation. The first-order scheme has been proven to be

unconditionally stable. The mixed order scheme is nominally second-order accurate,

but switches back to first-order approximations when the required traveltimes for

a second-order approximation are unavailable. It has not been proven that this

scheme is unconditionally stable, but all of my testing has shown it to be robust.

Therefore, I would recommend using the mixed-order scheme.

• On line 11 there is a parameter that sets the narrow band size. This parameter is

included as a memory conservation measure - we do not know the size of the narrow

band (which encapsulates the first-arrival wavefront) in advance, so we set it as a

fraction of the total number of propagation grid points. This is an ad hoc measure

and wouldn’t be required if a linked list was used to store the binary tree. The

default value of 0.5 is unlikely to be exceeded, but if you want to guarantee that it

doesn’t, set it to 1.0 (but at the expense of more memory).

• On line 12, there is an option that reads limit traveltime field to receivers. This means

that fm3dt will terminate when all grid points at the surface within a specified

boundary around a receiver array have an associated traveltime. This measure can

save CPU time, particularly when multiple receiver arrays are specified that together

span a large region.

• On line 13, the boundary around the receiver is set, but only used if the option

on line 12 is set to 1. In both example1 and example2, the cushion is set to 0.4◦,

which means that fm3dt will terminate as soon as all points within a distance of

0.4◦ from the edge of each array (only one in the case of example1) have associated

traveltimes.

fm3dt can be executed to give the source-receiver traveltimes (by default put in a

file called rtravel.out). Ray paths and wavefronts can be written to file if required. In

the latter case, the traveltime field of only one source can be dumped in order to save

disk space. Wavefronts are simply iso-contours of the traveltime field. Ray paths are

computed a posteriori by following the gradient of the traveltime field (∇T) from each

receiver, back to the source. At coarse grid resolutions, these rays can be a bit jagged,

due to limited traveltime accuracy. However, they are sufficiently smooth and accurate at

the type of grid spacings necessary to tackle realistic problems. The Fréchet derivatives

11

are computed using these ray trajectories. Note: The switches controlling traveltime and

Fréchet derivative output must be turned on in order to use tomo3dt.

7 Inversion Routine

A locally linearized traveltime inversion iteration is carried out using the program subinv,

which has an input parameter file called subinv.in, the entries of which are reasonably

self-explanatory. The important parameters that may need to be changed include the

Damping factor (set to 5.0 in example1) and the Smoothing factor (set to 10.0 in ex-

ample1)). The Damping factor effectively prevents the solution model from straying too

far from the initial model, while the Smoothing factor constrains the smoothness of the

solution model. In practice, they are both ad hoc variables controlled by the user, but

the idea is to get a smooth model that is not greatly perturbed from the initial model,

yet satisfies the data.

The other variable that can be changed at the user’s discretion is the size of the

subspace dimension. The inversion method that is used is called subspace inversion,

because it projects the full linearized inverse problem onto a much smaller n-dimensional

model space. The advantage of this approach is that the solution to the inverse problem

only requires the inversion of an n×n matrix. In example1, the subspace dimension is set

to 10. If n = 1, then the solution is equivalent to that obtained by the steepest descent

method. Increasing n increases the time it takes to solve the inverse problem. However,

this increase in time is not significant compared to the solution of the forward problem.

The set of vectors which span the n-dimensional subspace are computed based on the

gradient vector and Hessian matrix in model space. It turns out that as n increases,

the vectors become less linearly independent. Singular Value Decomposition is used to

orthogonalize the resultant set of n vectors, and throws away those vectors that are

redundant. From experience, there is little point in setting n to a value greater than 10.

The variable that is rather mysteriously labelled Fraction of max. G size for sparse

matrix is simply there as a result of the way that the sparse matrix manipulation is set

up in the code. It indicates the expected maximum number of non-zero elements in the

Fréchet matrix as a fraction of the total number of elements. Setting this to a larger

value increases the memory requirements of the program. This value could actually be

computed during the FMM step and automatically inserted into the inversion program,

12

but I haven’t got around to making this change yet. In practice, I’ve found that G is rarely

more than 5% full, but you may need to increase this number if the program complains

during execution.

Finally, an option exists for including station terms as unknowns in the inversion.

Due to ray path geometry, teleseismic data do not constrain shallow structure (the up-

per limit is largely controlled by station spacing), which often contributes significantly

to arrival time residual patterns. One means of trying to mitigate the influence of these

contributions in the reconstruction of well resolved deeper structure is to allocate a trav-

eltime residual parameter (or station term) to each receiver station. By including these

as unknowns in the inversion, the hope is that shallow structural contributions to arrival

time residual patterns will be absorbed by the station term rather than get erroneously

mapped into deeper structure. Although commonly used, I personally find the inclusion

of station terms to be somewhat dubious, as they are generally poorly constrained, and

can be very sensitive to the imposed regularization. Nevertheless, I have included them as

an option for completeness, but would encourage the user to exercise caution in their use.

At the very least, I suggest plotting the values produced by the output file (stationres.dat)

to see if the pattern makes any sense. [NOTE: If you decide to include station terms,

it is worth increasing the subspace dimension from the default value of 10 (e.g. to 20).

This is because the velocity and station terms represent different parameter classes and

are minimized along orthogonal search directions.]

8 Performing a Tomographic Inversion

A complete tomographic inversion run can be carried out simply by using the shell script

tomo3dt. If tomo3dt is used, manual execution of all programs related to computing

traveltimes and running an inversion step, as specified above, is not required. tomo3dt is

a Korn shell script, so you will need ksh installed (see first line of code). Note that the

authentic ksh is a commercial product not often included in Linux distributions. However,

most come with the Public Domain Korn Shell, which contains several known bugs. I

have tested the script with this version of ksh, and it works fine. zsh may also be used.

The default parameter file for tomo3dt is called tomo3dt.in, and contains only two

entries. The first entry asks whether traveltimes to the base of the model need to be

computed. If the source input file and diced velocity grid are unchanged from the previous

13

run of tomo3dt, then this can be set to zero, which will speed up the inversion slightly as

ak135 traveltimes do not need to be re-computed in this case. The second entry prompts

the user to specify the number of iterations of sequential forward and inversion steps. In

example1, this is set to 6, but in general should depend on your convergence criteria.

When you run tomo3dt with the default input files and parameters for example1, you

should get something like the following output to the screen:

Program fm3dt has finished successfully!

Program fm3dt has finished successfully!

Program fm3dt has finished successfully!

Program fm3dt has finished successfully!

Program fm3dt has finished successfully!

Program fm3dt has finished successfully!

Program fm3dt has finished successfully!

Each time the FMM program is successfully executed, the line Program fm3dt has finished

successfully! appears. When the inversion program is run, and it finds redundancy in the

subspace vectors, a message specifying the actual number of subspace dimensions that

are used is produced. The total run time of tomo3dt on a 1.6 GHz Opteron PC with 4

Gb memory and running 64 bit Suse Linux 9.1 is 12 minutes. In this case, the code was

compiled using ifort (the Intel compiler in 32 bit mode).

8.1 Required input files

In order to set up an inversion using your own data, you will need the following input

files. Once they are in place, all you need to do is run tomo3dt to carry out the full

tomographic inversion.

• sources.dat: This file specifies the location of all sources and the associated phase

types that have been picked. The first 8 lines of the example1 source file are:

1

163

-6.260000 150.5800 50.00000

P

8.150000 94.14000 17.00000

14

P

-31.64000 -177.9900 9.000000

PcP

The first line specifies the number of receiver arrays present. This would normally be

set to 1, unless there are multiple adjacent arrays present that have been deployed at

different times (i.e. a rolling array type scenario), and hence have detected different

sources. The second line nominally specifies the total number of sources ns(i) for

array i. The third line gives the source coordinates in (latitude, longitude, depth).

Southern hemisphere latitudes are negative, and western hemisphere longitudes are

also negative. Depth is in km and is positive (i.e. 50.0 means 50.0 km below sea

level). The third line indicates the phase type associated with the source. The

remaining lines simply repeat lines three and four for the remaining sources and

phases. All phase types should end in P if a P-wave model is specified, and S if an

S-wave model is specified. Note that if there is more than one phase type associated

with a single source, then the source location and phase type entries need to be

repeated for each phase. For example, if one picked P, PcP and PKiKP from one

event, then six lines would be added to the file, with the source coordinates repeated

three times, one for each phase. ns(i) would also need to be increased by 3. Thus,

ns(i) doesn’t really represent the total number of sources, but the total number of

phases picked from all sources. If additional arrays are present, then multiple source

lists must be appended.

• receivers.dat This file specifies the location of all receivers in the array. The first

four lines of the example1 input file are:

1

20 SEAL ARRAY STATIONS

0.292 -35.4463 147.0653 se01

0.101 -35.4618 146.2128 se02

The first line specifies the number of receiver arrays present, and should be identical

to the first line of sources.dat. The second line contains the number of receivers

nr(i) and the name of array i. This name can be omitted as it is not read in by

any program. The third line specifies the location of the station in (height, latitude,

15

longitude). Height is in km above sea level and latitude is negative for the southern

hemisphere. The last entry is the station name, but again this can be omitted as it

is not read in by any program. The remaining lines contain the coordinates of the

other stations. This is repeated for additional arrays if they are present.

• gridi.vtx: This file describes the initial or starting model velocity field. The first

7 lines of the example1 input file are:

13 35 37

1.500000 -31.500000 138.000000

25.000000 0.239000 0.355000

4.90000000 0.30000000

4.90000000 0.30000000

6.58750000 0.30000000

The first line specifies the number of velocity vertices in (depth, latitude, longitude).

The second line contains the origin of the 3-D grid as (height, latitude, longitude).

Height is in km above sea level, and should be set at or above the elevation of the

highest station in your array. The third line contains the grid spacing in (depth,

latitude, longitude). Depth spacing is in km, while latitude and longitude spacing

is in degrees. The remaining lines specify the velocity and associated a priori error

estimate for each velocity vertex, beginning from the grid origin and looping in the

order depth, latitude, longitude. Important: The number of nodes specified on the

first line doesn’t include a cushion of boundary nodes that surrounds the compu-

tational grid, although the file actually contains these nodes. This is necessary in

order to describe a smoothly varying cubic spline velocity field. The origin of the

grid specified on line two defines the origin of the computational grid. For most to-

mographic applications, you should be able to utilize the model generation program

grid3dtg, in which case you don’t have to worry about the concept of a boundary of

cushion nodes, as it is automatically taken care of by grid3dtg.

• otimes.dat: This file contains the observed arrival time residuals. The total number

of entries in this file should be equal to the product of the number of receivers (given

at the top of receivers.dat) and the total number of phases that have been picked

16

(given at the top of sources.dat). If more than one receiver array is present (as in

example2), then the total number of entries is equal to
∑

n

i=1
ns(i) × nr(i), where n

is the number of receiver arrays. For example1, n = 1, ns = 163 and nr = 20, so the

number of entries is 163 × 20 = 3260. The first three lines of the example1 file are:

1 -0.4131579 6.0899999E-02

1 -0.5131579 5.2299999E-02

1 0.1368421 3.7500001E-02

The first line contains three numbers; the first is either 1 or 0. A 1 indicates that the

following traveltime residual is to be included in the inversion; a 0 indicates that the

following traveltime is to be ignored in the inversion. For example, if you are unable

to identify a pick at a particular station, then you can simply supply a dummy value

and set the switch to 0. The second entry is the arrival time residual in seconds.

The third entry is the error associated with the pick (also in seconds), which is

subsequently used to weight the relative importance of picks in the inversion. Note

that this value cannot be zero. The following lines repeat this information for all

source-receiver pairs. The order of the entries is:

DO i=1,n

DO j=1,ns(i)

DO k=1,nr(i)

switch(k,j,i),tres(k,j,i),trerr(k,j,i)

ENDDO

ENDDO

ENDDO

(switch, tres,trerr) simply refer to the switch value, the arrival time residual, and

the associated picking error respectively.

• rtimes.dat: This file contains reference traveltimes for the initial model. In most

cases, you will not need to worry about this file as it is automatically generated by

tomo3dt. However, if your relative arrival time picks have not been corrected for

topography, and station elevations vary, then you may want to generate your own

reference traveltimes. To do this, run fm3dt with all station elevations set to zero

with the initial model. Then rename the output file rtravel.out to something like

17

rtimesf.dat. Finally, edit the input file subinv.in (and residualst.in) so that the file

containing the reference traveltimes is correctly named. It is important that you do

not simply call this new file rtimes.dat, as tomo3dt will by default copy rtravel.out

to this filename for the initial model, which, when the inversion is run, will have

non-zero station elevations.

• Input parameter files: As mentioned previously, you may want to edit some of

the input parameter files that feed into the component programs of the tomographic

inversion routine. In particular: (1) tomo3dt.in to set the number of non-linear

iterations; (2) fm3dt.in to set the resolution of the computational grid and to adjust

other FMM parameters (in general, I wouldn’t change these except for the output

file parameters); (3) subinv.in to control damping and smoothing regularisation.

8.2 Useful output files

When you perform an inversion, the code generates output files that you will need in

order to visualize the solution model and see how well it satisfies the data. These files

include:

• gridc.vtx: This file describes the velocity field of the solution model. It has exactly

the same format as the reference velocity field file gridi.vtx

• rtravel.out: This file contains the source-receiver traveltimes through the solution

model. In order to obtain arrival time residuals through the solution model, simply

take the difference between these values and rtimes.dat.

• raypath.out: This file contains raypath geometries generated by fm3dt, if they are

turned on in fm3dt.in. This file is in binary format. Refer to the next section on

plotting for more information.

• frechet.out: This file contains the Fréchet matrix. It is in binary format. It is

essential that fm3dt.in is set up so that this file is generated, as it is required by the

inversion routine.

• residuals.dat: This file contains the RMS value and variance of the current model

arrival time residuals at each iteration. The example1 file that comes with the

18

distribution contains:

197.97 0.03920

105.39 0.01111

97.46 0.00950

95.07 0.00904

94.08 0.00885

93.52 0.00875

93.14 0.00868

The first line corresponds to the residual for the starting model, and each subsequent

line corresponds to the residual for the model produced by each of the six iterations.

For each line, the first value is the RMS data residual in ms, and the second value

is the data variance in s2.

9 Plotting the Results

A suite of plotting programs are provided for plotting various components of the output

from the FMM code. These plotting programs are based on GMT scripts, and allow

wavefronts and rays computed by FMM to be superimposed on the velocity field. The

program that takes output from the FMM code and converts it into a format suitable for

input into GMT scripts is gmtslicet and has an input parameter file called gmtslicet.in,

which is largely self-explanatory. It allows the user to take depth, N-S and/or E-W slices

through the velocity model and/or traveltime field. In addition, it allows all ray paths

to be projected onto any of these three planes. The resolution of the velocity plot is

controlled by user-supplied inputs.

Three GMT plotting scripts are provided (see subdirectories example1/gmtplot/ and

example2/gmtplot/):

• plotd Plots a depth slice. Insert or remove # at the beginning of the relevant

command line to include or exclude wavefronts and rays.

• plotns Plots a N-S slice. Insert or remove # at the beginning of the relevant

command line to include or exclude wavefronts and rays.

19

• plotew Plots an E-W slice. Insert or remove # at the beginning of the relevant

command line to include or exclude wavefronts and rays.

The default output postscript file in all three cases is gmtslice.ps, but this can be

easily modified. Some knowledge of GMT programs/scripts is required in order to obtain

satisfactory plots - see http://gmt.soest.hawaii.edu/.

Other plotting programs that may be useful are resplott and gmthist. These programs

allow frequency histograms of the arrival time residuals for a particular model to be

plotted. resplott is a Fortran program that simply converts output from the inversion

programs into a format suitable for input into GMT. gmthist is the GMT script that

performs the actual plotting.The input parameter file for resplott (called resplott.in) is self

explanatory. The first entry sets a switch that generates arrival time residual files for the

initial model or the solution model (see example1/gmtplot/ or example2/gmtplot/).

10 Examples

10.1 Example 1

The first example provided with this distribution (see subdirectory example1) images

the upper mantle beneath the Murray Basin in southeast Australia by inverting arrival

time residuals recorded by an array of 20 short period stations. Refer to the paper

seaustralia.pdf located in the subdirectory docs for more detail about this experiment,

data analysis, results and interpretation. Prior to running this example, ensure that the

binary files ak135.hed and ak135.tbl are copied to this directory (they should be located

in source/aktimes after compilation). Once this has been done, simply execute tomo3dt.

In order to visualize the results using the Generic Mapping Tools (GMT - freely

available from http://gmt.soest.hawaii.edu/), enter the subdirectory gmtplot and execute

gmtslicet. The three GMT scripts plotd, plotew and plotns contained in this directory

allow depth, E-W and N-S slices to be plotted. By default, each of these scripts produces

a postscript file called gmtslice.ps. Figure 1 shows the default output of the three scripts

if the above procedure is carried out.

Within the same subdirectory, it is possible to generate a plot of a frequency histogram

that shows the traveltime misfit of the current model. Simply run resplott and then gmthist

to generate gmthist.ps. The input file resplott.in can be edited in order to toggle between

20

−250

−200

−150

−100

−50

0

−250

−200

−150

−100

−50

0

138 139 140 141 142 143 144 145 146 147 148 149 150

138 139 140 141 142 143 144 145 146 147 148 149 150
−300 −200 −100 0 100 200 300

−250

−200

−150

−100

−50

0

−250

−200

−150

−100

−50

0

−39 −38 −37 −36 −35 −34 −33 −32

−39 −38 −37 −36 −35 −34 −33 −32
−300 −200 −100 0 100 200 300

−300−200−100 0 100 200 300

138˚

138˚

140˚

140˚

142˚

142˚

144˚

144˚

146˚

146˚

148˚

148˚

150˚

150˚

−39˚ −39˚

−38˚ −38˚

−37˚ −37˚

−36˚ −36˚

−35˚ −35˚

−34˚ −34˚

−33˚ −33˚

−32˚ −32˚(a)

(b)

(c)

Figure 1: Example output from gmtslicet using example1 provided with the distribution.

(a) Depth slice; (b) E-W slice; (c) N-S slice.

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

N
um

be
r

of
 r

ay
s

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

Relative arrival time residual (s)

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

N
um

be
r

of
 r

ay
s

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

Relative arrival time residual (s)

(a) (b)

Figure 2: Frequency histograms showing fit to observed arrival time residual data of (a)

initial model, and (b) solution model.

the initial and solution models. Figure 2a shows the frequency histogram for the initial

(constant velocity) model, and Figure 2b is the equivalent plot for the solution model

21

obtained after six iterations.

Other things to note about this example are that the initial model was constructed

using the input file located in the subdirectory mkmodel (simply enter this directory and

execute grid3dtg), and that appropriate damping and smoothing factors can be chosen

with the aid of the program misfitt. Simply enter the subdirectory analysis and execute

misfitt to obtain the variance and roughness of the current model.

10.2 Example2

The second example provided with this distribution (see subdirectory example2) is a simple

synthetic test involving a relatively small number of sources. It has been included mainly

to demonstrate how data from multiple arrays can be simultaneously inverted. In this

case, there are two receiver arrays, each comprising 49 instruments, which have been

deployed at different times. Correspondingly, each have detected a separate set of events.

Therefore, the first line in both sources.dat and receivers.dat is “2”, indicating that two

arrays are present. In sources.dat, there are two consecutive lists of event locations and

phase types, and in receivers.dat, there are two lists of receiver locations. Note that in

theory, one could in fact exploit the flexible switching options allowed for in otimes.dat

to have only one array present, by “switching off” half of the receivers for the first set

of sources, and then reversing the switches for the second set of sources. However, it

turns out that this is computationally much less efficient than specifying separate receiver

arrays.

As in the previous example, the binary files ak135.hed and ak135.tbl must be copied

to the current working directory (they should be located in source/aktimes after compila-

tion) in order to run tomo3dt. Due to the relatively small number of sources, this example

should execute in around 90 s or less on a relatively recent PC. The output residuals.dat

file should look something like:

151.91 0.02310

63.89 0.00409

53.88 0.00291

50.83 0.00259

49.90 0.00249

49.13 0.00242

22

−200

−150

−100

−50

0

−200

−150

−100

−50

0

138 139 140 141 142 143 144 145 146 147 148 149

138 139 140 141 142 143 144 145 146 147 148 149
−300 −200 −100 0 100 200 300

−200

−150

−100

−50

0

−200

−150

−100

−50

0

−39 −38 −37 −36 −35 −34 −33 −32

−39 −38 −37 −36 −35 −34 −33 −32
−300 −200 −100 0 100 200 300

−300−200−100 0 100 200 300

138˚

138˚

140˚

140˚

142˚

142˚

144˚

144˚

146˚

146˚

148˚

148˚

−39˚ −39˚

−38˚ −38˚

−37˚ −37˚

−36˚ −36˚

−35˚ −35˚

−34˚ −34˚

−33˚ −33˚

−32˚ −32˚
(a)

(b)

(c)

Figure 3: Example output from gmtslicet using example2 provided with the distribution.

(a) Depth slice (red and blue triangles denote receivers from different arrays); (b) E-W

slice; (c) N-S slice.

48.81 0.00238

Output from the three GMT scripts plotd, plotew and plotns contained in gmtplot are

shown in Figure 3 (see previous example for more details). The recovered checkerboard

pattern does not exhibit any sign of a “suture” between the two adjacent arrays and quite

accurately replicates the true structure. This is because the velocity field contains no

long wavelength features that might otherwise have been filtered out of the image. For

instance, if the true model included a constant velocity gradient in the E-W direction,

then it is likely that this feature would not be properly recovered, unless it was included

as a priori information in the initial model. It is important to consider the limitations of

using relative arrival time residuals when data from multiple arrays are simultaneously

inverted.

The initial and synthetic models for this example were created using grid3dtg with

the input file located in the subdirectory mkmodel. The initial model was constructed by

setting the switch at the start of the “Optionally apply checkerboard” section (line 31) to

zero. The synthetic model was created by setting this switch to 1. In order to construct

the synthetic dataset contained in otimes.dat, the first step was to run fm3dt with line 7

of fm3dt.in set to gridt.vtx, where gridt.vtx is the renamed checkerboard file produced by

23

grid3dtg. The rtravel.out file produced by fm3dt should then be copied to the subdirectory

mkdata, and renamed observed.dat. The next step is to run fm3dt with line 7 of fm3dt.in

set to gridi.vtx, where gridi.vtx is the renamed background file produced by grid3dtg. The

traveltime output file rtravel.out should in this case be copied to rtimes.dat. Execution of

syntht in the subdirectory mkdata will then produce otimes.dat, which can be copied to

the main working directory. Note that the two traveltime initialization programs aktsurf

and itimes need only be run once in sequence prior to this whole process (they only need

to be rerun if the propagation grid geometry or source distribution changes).

11 FAQs

1. Q. I would like more details on how the code can be used in practice.

A. In the directory docs, a complete copy of a paper that uses the code is pro-

vided. seaustralia.pdf is a paper published in AJES which describes a teleseismic

tomography experiment in south east Australia. The solution model generated in

example1 provided with this distribution should be approximately the same as the

SEAL solution model in the AJES paper.

2. Q. How can I optimize the speed of the tomographic inversion?

A. The key to getting the maximum performance from the code is to specify the

coarsest grid spacing that still produces traveltimes with sufficient accuracy. This

is because the traveltime prediction step is much slower than the inversion step,

and FMM scales as O(NlogN), where N is the total number of points on the com-

putational grid. Therefore, if you halve the grid spacing, the computing time will

increase by a factor of at least 8. In general, I find that something like half a million

nodes is usually adequate, but of coarse this will vary depending on the problem

you are dealing with. My approach is to use a coarse dicing factor (like 1 or 2) and

then increase it and see whether the solution model changes significantly. If not,

then there is no point in increasing the dicing factor any further.

3. Q. Is the code very memory hungry, particularly for large problems involving many

unknowns and paths?

A. In short, no. The largest problem I have tried involved over 100,000 unknowns

and 6,000 ray paths, and even then the memory used was in the 10s of Mb rather

24

than 100s of Mb.

4. Q. Can teleseismic wavefronts pass through the sides of the 3-D model region?

A. No. As it currently stands, teleseismic wavefronts are computed to the base of

the 3-D model only before FMM is applied. This means that you must be careful

to make sure that the horizontal bounds of the velocity grid are sufficiently large

so that wavefronts impinging from various angles will pass through the base of the

model before hitting any of the stations. This can be checked by using the plotting

routines that visualize the raypaths.

5. Q. Will new features be added to the code in future?

A. I hope to fix any obvious bugs, but beyond this, I do not anticipate changing

anything significantly.

25

