Dealing with unknown discontinuities in data and models

Kerry Gallagher
John Stephenson
Chris Holmes
Discontinuities occur in both data and processes in the Earth and Environmental Sciences

Spatial: faults, topography, lithology, phase, composition,…

Temporal: climate, seismicity, tectonics,…
What is the appropriate question?

What was the significance of the opening of the Aswan Dam?

(data from Cobb 1978)
When was the change?

\[f(t) = \mu_1 I(t \leq t_c) + \mu_2 I(t > t_c) \]

(after Denison et al. 2002)
Data interpolation and prediction with discontinuities

Standard methods may be too smooth
Need a method that can deal with an unknown number of discontinuities in unknown locations

Partition Modelling
Formulating a Partition Model

How many discontinuities, where are they?

\[f(X) \]

Space partitioned into discrete regions

Partitions defined by Voronoi tessellation

Regression function, \(f \), specified within region

Parameters:

\[(c_{1-N}, f_{1-N}, N, \sigma^2) = \theta \]
Generating Partition Models

Prediction

\[p(y \mid D) = \int_{\Theta} p(y \mid \theta, D) p(\theta \mid D) d\theta \]

Monte Carlo integration

- \(y \) = value to be predicted
- \(D \) = observed data
- \(\theta \) = model parameters

\[p(y \mid D) \approx \frac{1}{N} \sum_{i=1}^{N} p(y \mid \theta_i, D)p(\theta_i \mid D) \]

Bayes’ Theorem

\[p(\theta \mid D) \propto p(D \mid \theta) p(\theta) \]

Posterior \quad Likelihood \quad Prior

Use Markov chain Monte Carlo (MCMC) to sample the posterior distribution, \(p(\theta \mid D) \)
Sampling with (transdimensional) MCMC

Initialise θ

Iterate
- Propose new θ'
- Calculate likelihood with new θ'
- Accept new θ' or retain current θ

Acceptance criterion
$\alpha(\theta, \theta') = \min\left\{ 1, \frac{p(\theta')p(D|\theta') p(\theta'|\theta)}{p(\theta)p(D|\theta) p(\theta'|\theta)} \right\}$

Distribution of accepted models $\theta \sim p(\theta|D)$
Sampling Partition Models

natural parsimony

Likelihood

Better data fit
1D partition models for data interpolation

Atmospheric dust input to peat bogs

Looking for common signature in multiple systems

Normalised Eu
- **Depth (m)**
- **Max. Like.**
- **Mean±95%C.I.**
- **8,850 yr**
- **38,500 yr**
- **45,500 yr**

Normalised Pb
- **Depth (m)**
- **Max. Like.**
- **Mean±95%C.I.**
- **8,850 yr**
- **38,500 yr**
- **45,500 yr**

Mean ± 95% C.I.
Partition Models – 2D example function
Partition Sampling – 2D single realisation

Multiple realisations …
ensemble average (smooth, but maintain discontinuities)
Partition Models
Application to spatially variable physical processes and parameters

Example from thermochronology
Thermochronology: data are sensitive to temperature history experienced by host rock, e.g., apatite fission track analysis.

\[p(D|\theta) = f(T(t), \phi) \]

Likelihood is a non-linear function of unknown parameters at each location within each partition.
Model partition distribution and thermal histories
The problem is to find

(a) how to partition the samples in 2D
 (i) number of partitions
 (ii) location of the partitions

(b) the distribution of thermal histories in each partition
Inferred partition distribution and thermal histories

(Stephenson, Gallagher and Holmes 2006)
Summary

• Partition models allow for unknown number of discontinuities with unknown geometry in variable dimensions

• Bayesian approach deals with the problem in terms of probabilities…intuitive for model choice

• Obtain probability distributions (partitions, model parameters, posterior predictions)

• Bayesian approach is naturally parsimonious

• Potential for self-adaptive/self regularising model parameterisation
Sampling Partition Models
distribution on number of partitions
Traditionally, each sample is modelled independently.

ignores spatial relationships....
Traditionally, each sample is modelled independently.

ignores spatial relationships....

..ideally want to group samples with common thermal history
Traditionally, each sample is modelled independently..

…but the spatial relationships may be unknown…