Linking Observations to Subduction Process Modelling

Sdrolias M.¹, Müller R.D.¹, Gurnis M.²

1. EarthByte Group, School of Geosciences, University of Sydney

2. Seismological Laboratory, California Institute of Technology

EarthBYTE

Outline

The data explosion

- Observational data that we have compiled from the world's subduction zones
- Some results
- End with some examples of how this data has been used in geodynamic modelling

Subduction Factory

 Subduction affects every aspect of the earth system and is the primary driving force of plate tectonics and mantle convection

Subduction Factory

However, there has been a lack of a detailed, self-consistent observational dataset of global subduction zone parameters through time.

Observational Dataset

- Our observational dataset is based on a new global plate motion model which includes:
 - New absolute reference frame of O'Neill et al., [2005] based on moving Atlantic-Indian hotspots
 - Tighter constraints on spreading histories of major plates including East-West Antarctic motion
 - Spreading histories in the major back-arc basin plates of the Western Pacific
- We create global palaeo-age grids from late Cretaceous to the present

Palaeo age grids

- Palaeo age grids based on plate motion model
- Extract data along subduction zones

Some Useful Subduction Parameters

Observational Dataset

- Our new dataset includes densely and evenly spaced sample points along the 8 major subduction zones for:
 - Age of subducting lithosphere
 - Convergence rate and direction
 - Absolute motion of the downgoing and overriding plates
 - Dip angle of the slab
- Can also derive global plate velocity grids
- These observational constraints can be used as boundary layer input into 2D or 3D mantle convection models to achieve more realistic models of subduction initiation and development.

Location of Data

Age of Subducting Lithopshere

Age of Subducting Lithosphere

Subduction and Back-arc Basins

 We used our observational data to examine the question of why back-arc basins form associated with some subduction systems but not all subduction systems.

Tonga-Kermadec example

Tonga-Kermadec subduction of old lithosphere - youngest at the location of Osbourn Trough

Age of subducting lithosphere increases thorugh time migration of ridge

Andes example

Variable age along the Andes

absolute motion (overriding plate)absolute motion (downgoing plate)

convergence rate (normal to trench) including back-arc basin plate

convergence rate (normal to trench)

convergence rate (parallel to trench)

convergence rate (parallel to trench) including back-arc basin plate

Subduction and Back-arc Basins

- Back-arc basins occur only when the age of the subducting lithosphere is greater than ~ 55 m.y old
- Back-arc extension initiates when the absolute motion of the over-riding plate is away from the trench
- Once back-arc spreading is established, rollback becomes the principle driving force for back-arc spreading
- The dip of the subducting slab is greater than 30 degrees when there is active back-arc spreading

Subduction Process Modelling

 Previous models have relied on instantaneous snapshots and/or theoretical boundary conditions not well constrained by geological and geophysical observations.

Subduction Process Modelling

 However, we know that subduction zones are extremely dynamic and have continuously changing shapes, locations, orientations and physical properties through time.

 There is real benefit in incorporating observational data into subduction modelling

Subduction Modelling - CitcomS

- Linking observational data with a 3D spherical mantle convection code, CitcomS*
- CitComS is a finite element code designed to solve thermal convection problems relevant to earth's mantle.
- Plate velocity vectors as top boundary layer input

*Moresi, L., Gurnis, M., and Zhong, S., 2000. Plate tectonics and convection in the Earth's mantle: Toward a numerical simulation, Comput. Sci. Eng., 2, 22-33.

Example - Middle America

 Present day image of Middle America plate motion model

Example - Middle America

- Mike Gurnis and Vlad Manea have been working on combining observational data into their geodynamic models.
- Preliminary results

Mesh over Mid-America showing different plates

Top boundary layer velocity

Example - Middle America

 Development of an east-dipping slab under Mexico by imposing overriding and downgoing plate velocities

Subduction Modelling -Underworld

- Courtesy of Stuart Clark
- Preliminary movie of subduction and rollback
 processes
 with
 overriding
 plate motion
 prescibed

Resources

You can download these subduction datasets from the EarthByte webpage:

http://www.earthbyte.org

And follow the links to the subduction pages

