Exploiting the data explosion using geographically local analyses

Shawn Laffan

Local v global

- Moving window vs lumped
 - spatial non-stationarity
- Surface of models vs single model

- Need more data
- Still subject to autocorrelation effects

Sparse Grids

- Machine learning
 - do not assume uncorrelated errors
- Approximate high dimensional relationships using functions on grids
 - in attribute space
- Additive
 - similar to many other models
- Use fewer parameters than regular grid functions
 - are collections of regular grid functions

Piecewise linear functions

Decomposition of piecewise linear functions

Sparse vs regular grids

- To define a function in three dimensions
 - Sparse grid uses 4 parameters
 - Regular grid uses 8 parameters

Sparse grid functions

- Can have an arbitrary number of grid points in any dimension
- So, we can have functions that are
 - order 0 (constant) in 6 dimensions
 - 1 grid point
 - order 3 and 5 in other dimensions
 - 5 & 17 grid points
 - V(0,0,0,3,0,0,5,0)

Application - Global

- Used 37 sparse grids
- All single variable grids, eg. V(5,0,0,0,0,0,0,0)
 - Order V(5) = 17 grid points
- All two variable interaction grids,
 - eg. V(5,5,0,0,0,0,0,0) , V(5,0,0,0,0,5,0,0)
- One constant grid
- Trained with 9,889 points
- Tested with 4,944 points
- 7297 parameters

Application - Local

- All single variable grids, eg. V(2,0,0,0,0,0,0,0)
 - Order V(2) = 3 grid points
- All two variable interaction grids,
 - eg. V(2,2,0,0,0,0,0), V(2,0,0,0,0,2,0,0)
- One constant grid
- Sample window of 600m radius
- Trained with 1232 points
- 20,994 models
- 129 parameters per model

0.1

0.2

Tolerance

0.3

0.4

0.5

Summary

- Sparse grids are a promising tool for the analysis of geographic data
- Potential to understand "scale" of relationships in attribute space
 - use number of grid points required in each dimension
- Parallel implementations possible
 - for the impatient