Exploiting the data explosion using geographically local analyses

Shawn Laffan

THE UNIVERSITY OF
NEW SOUTH WALES
SYDNEY•AUSTRALIA

Local v global

- Moving window vs lumped
- spatial non-stationarity
- Surface of models vs single model
- Need more data
- Still subject to autocorrelation effects

Sparse Grids

- Machine learning
- do not assume uncorrelated errors
- Approximate high dimensional relationships using functions on grids
- in attribute space
- Additive
- similar to many other models
- Use fewer parameters than regular grid functions
- are collections of regular grid functions

Piecewise linear functions

Decomposition of piecewise linear functions

Sparse vs regular grids

- To define a function in three dimensions
- Sparse grid uses 4 parameters
- Regular grid uses 8 parameters
(a)

(b)

Sparse grid functions

- Can have an arbitrary number of grid points in any dimension
- So, we can have functions that are
- order 0 (constant) in 6 dimensions
- 1 grid point
- order 3 and 5 in other dimensions
- 5 \& 17 grid points
- V(0,0,0,3,0,0,5,0)

Application - Global

- Used 37 sparse grids
- All single variable grids, eg. $\mathrm{V}(5,0,0,0,0,0,0,0)$
- Order V(5) = 17 grid points
- All two variable interaction grids, - eg. $\mathrm{V}(5,5,0,0,0,0,0,0)$, $\mathrm{V}(5,0,0,0,0,5,0,0)$
- One constant grid
- Trained with 9,889 points
- Tested with 4,944 points
- 7297 parameters

Application - Local

- All single variable grids, eg. $\mathrm{V}(2,0,0,0,0,0,0,0)$
- Order $\mathrm{V}(2)=3$ grid points
- All two variable interaction grids,
- eg. $\mathrm{V}(2,2,0,0,0,0,0,0)$, $\mathrm{V}(2,0,0,0,0,2,0,0)$
- One constant grid
- Sample window of 600 m radius
- Trained with 1232 points
- 20,994 models
- 129 parameters per model

Global SG

>17.0
13.8
13.8
10.6
7.4
4.2
<1.0

Local SG

kilometres

Global

Depth to Ironstone

>150 120 90 90 60 30 0

Summary

- Sparse grids are a promising tool for the analysis of geographic data
- Potential to understand "scale" of relationships in attribute space
- use number of grid points required in each dimension
- Parallel implementations possible
- for the impatient

