
On Software Infrastructure for Computational Earth Sciences

L. Gross, J. Smillie, E. Thorne

Earth Systems Science Computational Centre (ESSCC), The University of Queensland, Brisbane, Australia

Abstract

Simulation software are build with three layers: the user interface, the mathematical mod-
els and the numerical methods. The mathematical layer provides ab straction from the nu-
merical techniques and their implementation, the user interface pr ovides abstraction from
mathematical models. Each of the layer has a particular terminology being used, requires
special skills fro the user to work within this layer and consequently needs particular com-
putational tools. Appropriate tools for implementing numerical tec hniques is C/C++, for
programming mathematical models is a scripting language such as pyt hon and for user
interfaces are input files and graphical user interfaces. In this talk we will present the con-
cepts of the mathematical modelling language escript and will show how escript is linked
downwards into numerical numerical and upwards into user interfa ces.

Keywords:Software Infrastructure; Mathematical Modelling, FiniteElement Method;

Introduction

Conceptional the three layers ”user interface”, ”mathematical models” and ”numerical algorithms” found in numerical
simulation codes are independent. For instance information needed to describe a salinity scenario in a specific region
is independent from the mathematical calculus used to modelsalinity. The model on the other hand should be general
enough to treat the relevant cases and is independent from finite elements (FEM), finite differences or finite volumes
used to discretise the relevant partial differential equations. Moreover, the model is independent from the actual com-
pute platform and the actual implementation of the discretization method which may be even platform dependent.
Numerical algorithms are computational intensive and, to achieve sufficient code efficiency and scalability, have to be
implemented in C/C++ to work closely to the underlying hardware. However, for the modeller working within the
mathematical layer handling model complexity (coupling, time-dependency, non-linearity) and the flexibility to easily
modify and test models rather than the code efficiency is of major concern. An object oriented scripting language, such
aspython(3), is appropriate for this layer. The end user of a verified model does not want to see the mathematical for-
mulation involved in the model but wants to apply the model inhis/her particular context in order to analyse and predict
the behaviour of his/her system. A file, typically in XML format, is the appropriate way for providing a description of
the problem. The file may be created through a graphical user interface or a web service.
It is pointed out that each of the layer has its individual terminology: The numerics layer uses terms like floating point
numbers and data structures. The mathematical layer talks about functions and partial differential equations. The user
interface uses terms like stress, temperature and viscosity. Moving from one layer to the other requires a translation:
data like viscosity and temperature become coefficients in partial differential equations and coefficients become arrays
of floating point numbers distributed across the processorsin parallel machine.
Various tools have been developed to create graphical user interface and web services, some of them using graphical
user interfaces themselves. Also a lot of work has been done on tool supporting the efficient and portable implementa-
tion of numerical methods. However, only very little work has been spent in the area of tools for the implementation
of mathematical models. In this paper we will present the basic ideas of the modeling environmentescript(2) and how
escript is linked with numerical as well as the user interface layer.We will focus on the context of partial differential
equations (PDEs).

Modelling Environment

In order to make use of existing technologiesescriptis an extension of the interactive scripting environmentpython. It
introduces two new classes, namely theData class and thelinearPDE class.
Objects of theData class define quantities with spatial distribution which arerepresented through their values on
sample points. Examples are a temperature distribution given through its values at nodes and a stress tensor at quadra-
ture points in the elements of a finite element mesh. Inescriptscalar, vector and tensorial quantities up to order4 are
supported. Objects can be manipulated by applying unitary operations (for instancecos ,sin, log) and be combined by
applying binary operations (for instance+, − ,∗, /). A Data object is linked with a certain interpretation provided



by the numerical library in which context the object is used.If neededescript invokes interpolation during data ma-
nipulation. Typically, this occurs in binary operations when the arguments defined in a different context or when data
are passed to a numerical library which requires data to be represented in a particular way, such as a FEM solver that
requires the PDE coefficients on quadrature nodes.
A linearPDE object is used to define a general linear, steady, second order PDE for an unknown functionu on the
domainΩ. In tensor notation, the PDE has the form

−(Aijkluk,l + Bijkuk),j + Cikluk,l + Dikuk = −Xij,j + Yi , (1)

whereuk denotes the components of the functionu andu,j denotes the derivative ofu with respect to thej-th spatial
direction. A general form of natural boundary conditions and constraints can be considered. The functionsA, B, C,
D, X andY are the coefficients of the PDE and are typically defined byData objects. When a solution of the PDE
is requested,escriptpasses the PDE to the solver library which returns aData object representing the solution by its
values, for instance, at the nodes of a FEM mesh. Currentlyescriptis linked with the FEM solver libraryfinley(1) but
other libraries and even other discretization approaches can be included.
The following python function incompressibleFluid implements a simplified form of the penalty iteration
scheme for a viscous, incompressible fluid. It takes the PDE domaindom, the viscosityeta and the internal forceF
as arguments:

def incompressibleFluid(dom,eta,F):
E=Tensor4(0,ContinuousFunction(dom))
for i in range(dom.getDim()):

for j in range(dom.getDim()):
E[i,i,j,j]+=Pe
E[i,j,i,j]+=eta
E[i,j,j,i]+=eta

mypde=LinearPDE(dom)
mypde.setValue(A=E,Y=F)
p=Scalar(0,Function(dom))
while Lsup(vkk)>tol:

mypde.setValue(X=kronecker(dom)*p)
v=mypde.getSolution()
vkk=div(v)
p-=Pe*vkk

return v,p

The statementdiv(v) returns the divergencevk,k of v. The function returns velocityv and pressurep. The tensor
E and the the pressurep are introduced with different attributesContinuousFunction() andContinuous()
defining a different degree of ”smoothness”. This mathematical concept of smoothness is implemented through differ-
ent representations of values. In case of FEM, the tensorE would typically be hold at the nodes of the FEM mesh while
the pressure is stored on the quadrature points. The solver library and the discretization method to be used to solve the
PDE is defined by the domaindom.

Model Interfaces

TheLinearPDE class provides the interface fromescriptdownwards into the numerical algorithm layer. To build
user interfaces models are wrapped bypythonclasses which are subclasses of theescriptModel class. The main
feature of aModel class object is the ability to execute a time step for a given suitable step size which is chosen as the
minimum step size over all models involved in the simulation. Moreover, model parameter such as viscosityeta and
external forceF in the example of the incompressible fluid are ”highlighted”. They can be linked with parameters of
other models and can be exposed in an XML input file to assign values to them for instance through a graphical user
interface.
If the classIncompressibleFlow implements a model of an incompressible fluid andMaterialTable is a
Model class for a simple material table providing values for a temperature-dependent viscosity one uses

flow=IncompressibleFlow()
mat=MaterialTable()
mat.temperature=1000
flow.eta=Link(mat,"viscosity")



to link instances of the two classes. At any time of the simulationIncompressibleFlowwill use the value provided
by theMaterialTable object at that moment. The capability ofescriptto know about the context of data and to
invoke data conversion when required is vital to make this very simple form using models actually working. This script
can be represented as an XML file which can be edited, for instance to change the value for the temperature, and then
be used to recreate the script for the new configuration.
In case of a Mantel convection simulation we would like to introduce a temperature dependent viscosity. If the
Temperature class provides an implementation for temperature advection-diffusion model the following statements
link this model with the incompressible flow model

temp=Temperature()
temp.velocity=Link(flow,"v")
mat.temperature=Link(temp,"T")

We assume here thatv is the velocity provided by the flow model andT is the temperature of the temperature model.
Instead of apythonthe link between the models can be established through an XMLdescription.
The order in which the models perform there times steps is critical. TheSimulation class which in this example is
used in the form

Simulation([flow,mat,temp]).run()

will make sure that incompressible flow is updating its velocity before the temperature model is performing the next
time step. The viscosity is calculated from the temperatureof the previous time step.
TheSimulation can be serialized into an XML file. The simulation can be started directly from the file. This opens
the door of turning models into services in a grid environment. In the presented modelling environment appropriate
interfaces can be built automatically. Suitable tools for building graphical user interface and web services automatically
from the XML simualtion file are currently under construction.

Acknowledgements

This work is supported by the Australian Commonwealth Government through the Australian Computational Earth
Systems Simulator Major National Research Facility, Queensland State Government Smart State Research Facility
Fund, The University of Queensland and SGI.

References

[1] Davies, M. and Gross, L. and M̈uhlhaus, H. -B.: Scripting high performance Earth systems simulations on the
SGI Altix 3700.Proceedings of the 7th international conference on high performance computing and grid in the
Asia Pacific region, (2004).

[2] Gross, L. and Cochrane, P. and Davies, M. and Mühlhaus, H. and Smillie J.: Escript: numerical modelling in
python.Proceedings of the Third APAC Conference on Advanced Computing, Grid Applications and e-Research
(APAC05),(2005).

[3] http://www.python.org [October 2005].


