On Software Infrastructure for Computational Earth Sciences

L. Gross, J. Smillie, E. Thorne

Earth Systems Science Computational Centre (ESSCC), The University of Queensland, Brisbane, Australia

Abstract

Simulation software are build with three layers: the user interface, the mathematical mod-
els and the numerical methods. The mathematical layer provides ab straction from the nu-
merical techniques and their implementation, the user interface pr ovides abstraction from
mathematical models. Each of the layer has a particular terminology being used, requires
special skills fro the user to work within this layer and consequently needs particular com-
putational tools. Appropriate tools for implementing numerical tec hniques is C/C++, for
programming mathematical models is a scripting language such as pyt hon and for user
interfaces are input files and graphical user interfaces. In this talk we will present the con-
cepts of the mathematical modelling language escript and will show how escript is linked
downwards into numerical numerical and upwards into user interfa ces.

Keywords:Software Infrastructure; Mathematical Modelling, Finiiiement Method;

Introduction

Conceptional the three layers "user interface”, "mathérahimodels” and "numerical algorithms” found in numerical
simulation codes are independent. For instance informatgeded to describe a salinity scenario in a specific region
is independent from the mathematical calculus used to nsadielity. The model on the other hand should be general
enough to treat the relevant cases and is independent fridmdlements (FEM), finite differences or finite volumes
used to discretise the relevant partial differential eiquist Moreover, the model is independent from the actual-com
pute platform and the actual implementation of the diszagibn method which may be even platform dependent.
Numerical algorithms are computational intensive and ctdeve sufficient code efficiency and scalability, have to be
implemented in C/C++ to work closely to the underlying haadev However, for the modeller working within the
mathematical layer handling model complexity (couplimge-dependency, non-linearity) and the flexibility to éasi
modify and test models rather than the code efficiency is gbntamncern. An object oriented scripting language, such
aspython(3), is appropriate for this layer. The end user of a verifiertlel does not want to see the mathematical for-
mulation involved in the model but wants to apply the modddigiher particular context in order to analyse and predict
the behaviour of his/her system. A file, typically in XML foat) is the appropriate way for providing a description of
the problem. The file may be created through a graphical ngenface or a web service.

It is pointed out that each of the layer has its individuatriti@ology: The numerics layer uses terms like floating point
numbers and data structures. The mathematical layer thtkg functions and partial differential equations. Theruse
interface uses terms like stress, temperature and vigcdddving from one layer to the other requires a translation:
data like viscosity and temperature become coefficientsiitigd differential equations and coefficients becomeyarra
of floating point numbers distributed across the procesaqguarallel machine.

Various tools have been developed to create graphical nwafdace and web services, some of them using graphical
user interfaces themselves. Also a lot of work has been doneab supporting the efficient and portable implementa-
tion of numerical methods. However, only very little workshizeen spent in the area of tools for the implementation
of mathematical models. In this paper we will present thédideas of the modeling environmesscript(2) and how
escriptis linked with numerical as well as the user interface lay&e will focus on the context of partial differential
equations (PDEs).

Modelling Environment

In order to make use of existing technologé&riptis an extension of the interactive scripting environmgyrthon It
introduces two new classes, namely & a class and théi near PDE class.

Objects of theDat a class define quantities with spatial distribution which egpresented through their values on
sample points. Examples are a temperature distributia@ngirough its values at nodes and a stress tensor at quadra-
ture points in the elements of a finite element meskederiptscalar, vector and tensorial quantities up to ortlare
supported. Objects can be manipulated by applying unitpeyations (for instanceos ,sin, log) and be combined by
applying binary operations (for instange — ,*, /). A Dat a object is linked with a certain interpretation provided

by the numerical library in which context the object is usddcheededescriptinvokes interpolation during data ma-
nipulation. Typically, this occurs in binary operationsevhthe arguments defined in a different context or when data
are passed to a numerical library which requires data tofresented in a particular way, such as a FEM solver that
requires the PDE coefficients on quadrature nodes.

A | i near PDE object is used to define a general linear, steady, second BRIe for an unknown functiom on the
domain2. In tensor notation, the PDE has the form

—(Ajjriung + Bijruk) j + Cimiugy + Digug = — X5, + Y5, 1)

whereu;, denotes the components of the functioandw ; denotes the derivative af with respect to thg-th spatial
direction. A general form of natural boundary conditions @onstraints can be considered. The functidns3, C,

D, X andY are the coefficients of the PDE and are typically definedata objects. When a solution of the PDE
is requestedescriptpasses the PDE to the solver library which returi®ta object representing the solution by its
values, for instance, at the nodes of a FEM mesh. Currestlyiptis linked with the FEM solver librarfinley (1) but
other libraries and even other discretization approachese included.

The following pythonfunctioni nconpr essi bl eFl ui d implements a simplified form of the penalty iteration
scheme for a viscous, incompressible fluid. It takes the P@Badndom the viscosityet a and the internal forc&
as arguments:

def inconpressibl eFl uid(dom eta, F):
E=Tensor 4(0, Cont i nuousFuncti on(donj)
for i in range(domgetDim)):

for j in range(domgetDin()):

E[i,i,j,j]+=Pe
E[i,j,i,j]+=eta
E[i,j,j,i]+=eta

nmypde=Li near PDE(dom)

nypde. set Val ue(A=E, Y=F)

p=Scal ar (0, Functi on(donj)

whi | e Lsup(vkk)>tol:
nypde. set Val ue(X=kr onecker (dom *p)
v=nypde. get Sol uti on()
vkk=di v(Vv)
p- =Pex* vkk

return v, p

The statemendi v(v) returns the divergence, ;, of v. The function returns velocity and pressurg. The tensor

E and the the pressupeare introduced with different attribut&ont i nuousFuncti on() andCont i nuous()
defining a different degree of "smoothness”. This matheraationcept of smoothness is implemented through differ-
ent representations of values. In case of FEM, the tdagsayuld typically be hold at the nodes of the FEM mesh while
the pressure is stored on the quadrature points. The sddveni and the discretization method to be used to solve the
PDE is defined by the domadom

Model Interfaces

TheLi near PDE class provides the interface froescriptdownwards into the numerical algorithm layer. To build
user interfaces models are wrappedpyhonclasses which are subclasses of éseriptMbdel class. The main
feature of avbdel class object is the ability to execute a time step for a givétakle step size which is chosen as the
minimum step size over all models involved in the simulatibforeover, model parameter such as viscosita and
external force= in the example of the incompressible fluid are "highlighted@hey can be linked with parameters of
other models and can be exposed in an XML input file to assigresao them for instance through a graphical user
interface.

If the classl nconpr essi bl eFl ow implements a model of an incompressible fluid it eri al Tabl e is a
Model class for a simple material table providing values for a terafure-dependent viscosity one uses

f 1 ow=l nconpr essi bl eFl ow()

mat =MVat eri al Tabl e()

mat . t enper at ur e=1000

fl ow. eta=Link(mat, "viscosity")

to link instances of the two classes. At any time of the simimtel nconpr essi bl eFl owwill use the value provided

by theMat er i al Tabl e object at that moment. The capability @écriptto know about the context of data and to
invoke data conversion when required is vital to make thig genple form using models actually working. This script
can be represented as an XML file which can be edited, fornostéo change the value for the temperature, and then
be used to recreate the script for the new configuration.

In case of a Mantel convection simulation we would like toraduce a temperature dependent viscosity. If the
Tenper at ur e class provides an implementation for temperature advediffusion model the following statements
link this model with the incompressible flow model

t enp=Tenper at ur e()
t enp. vel oci t y=Li nk(fl ow, "v"
mat . t enper at ur e=Li nk(tenmp, " T")

We assume here thatis the velocity provided by the flow model afids the temperature of the temperature model.
Instead of gpythonthe link between the models can be established through an d@akription.

The order in which the models perform there times stepsfigari TheSi rmul at i on class which in this example is
used in the form

Simulation([flow, mat,tenp]).run()

will make sure that incompressible flow is updating its vélobefore the temperature model is performing the next
time step. The viscosity is calculated from the temperabfithe previous time step.

TheSi mul at i on can be serialized into an XML file. The simulation can be stadirectly from the file. This opens
the door of turning models into services in a grid environmen the presented modelling environment appropriate
interfaces can be built automatically. Suitable tools f@itding graphical user interface and web services autaakyi
from the XML simualtion file are currently under constructio

Acknowledgements

This work is supported by the Australian Commonwealth Gowent through the Australian Computational Earth
Systems Simulator Major National Research Facility, Qekerd State Government Smart State Research Facility
Fund, The University of Queensland and SGlI.

References

[1] Davies, M. and Gross, L. and tuhlhaus, H. -B.: Scripting high performance Earth systemmasitions on the
SGI Altix 3700.Proceedings of the 7th international conference on higliggerance computing and grid in the
Asia Pacific region(2004).

[2] Gross, L. and Cochrane, P. and Davies, M. andhMaus, H. and Smillie J.: Escript: numerical modelling in
python.Proceedings of the Third APAC Conference on Advanced Cangp@rid Applications and e-Research
(APACO05)(2005).

[3] http://www.python.org [October 2005].

