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Abstract
Data mining, the central activity in the process of knowledg ediscovery in databases (KDD),
is concerned with finding patterns in data. This paper introd uces and illustrates the most
common types of patterns considered by data mining approach es and gives rough outlines
of the data mining algorithms that are most frequently used t o look for such patterns. In
this paper, we also to give an overview of KDD applications in environmental sciences,
complemented with a sample of case studies. The latter are de scribed in slightly more
detail and used to illustrate KDD-related issues that arise in environmental applications.

The application domains addressed mostly concern ecologic al modelling.
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Introduction

Knowledge discovery in databases (KDD) was initially dedirmes the “non-trivial extraction of implicit, previously
unknown, and potentially useful information from data”Y1A revised version of this definition states that “KDD is the
non-trivial process of identifying valid, novel, poteriljauseful, and ultimately understandable patterns in tiita).
According to this definition, data mining (DM) is a step in tiBD process concerned with applying computational
techniques (i.e., data mining algorithms implemented aspeder programs) to actually find patterns in the data. In
a sense, data mining is the central step in the KDD process.oftfer steps in the KDD process are concerned with
preparing data for data mining, as well as evaluating theodisred patterns (the results of data mining).

The above definitions contain very imprecise notions, sicknawledge and pattern. To make these (slightly) more
precise, some explanations are necessary concerningpddtiarns and knowledge, as well as validity, novelty, use-
fulness, and understandability. For example, the disem/patterns should be valid on new data with some degree
of certainty (typically prescribed by the user). The paiteshould potentially lead to some actions that are useful
(according to user defined utility criteria). Patterns cartieated as knowledge: according to Frawley et al. (14),“a
pattern that is interesting (according to a user-imposttaést measure) and certain enough (again according to the
user’s criteria) is called knowledge.”

This paper will focus on data mining and will not deal with tb#ner aspects of the KDD process (such as data
preparation). Since data mining is concerned with findinggpas in data, the notions of most direct relevance here
are the notions of data and patterns. Another key notioraisdha data mining algorithm, which is applied to data to
find patterns valid in the data. Different data mining altforis address different data mining tasks, i.e., have éiffier
intended use for the discovered patterns.

Data is a set of facts, e.g., cases in a database (accordiayyad et al. (11)). Most commonly, the input to a data
mining algorithm is a single flat table comprising a numbeattributes (columns) and records (rows). When data from
more than one table in a database needs to be taken into actdifeft to the user to manipulate the relevant tables.
Usually, this results in a single table, which is then useithpst to a data mining algorithm.

The output of a data mining algorithm is typically a patteraaet of patterns that are valid in the given data. A pattern
is defined as a statement (expression) in a given languagejelcribes (relationships among) the facts in a subset of
the given data and is (in some sense) simpler than the entiomeséall facts in the subset (14; 11). Different classes of
pattern languages are considered in data mining: they depethe data mining task at hand. Typical representatives
are equations; classification and regression trees; amdiaten, classification, and regression rules. A giveradat
mining algorithm will typically have a built-in class of gatns that it considers: the particular language of pattern
considered will depend on the given data (the attributedfagidvalues).



Many data mining algorithms come form the fields of machirsnéng and statistics. A common view in machine
learning is that machine learning algorithms perform a edtypically heuristic) through a space of hypotheses
(patterns) that explain (are valid in) the data at hand. I8nhgj we can view data mining algorithms as searching,
exhaustively or heuristically, a space of patterns in otddind interesting patterns that are valid in the given data.

In this paper, we first look at the prototypical format of datal the main data mining tasks addressed in the field of
data mining. We next describe the most common types of patteat are considered by data mining algorithms, such
as equations, trees and rules. We also outline some of thedagh mining algorithms searching for patterns of the
types mentioned above.

Environmental sciences comprise the scientific disciglirne parts of them, that consider the physical, chemical and
biological aspects of the environment (2). A typical repreative of environmental sciences is ecology, which studi
the relationships among members of living communities atd/ben those communities and their abiotic (non-living)
environment.

Such a broad, complex and interdisciplinary field holds mpatential for application of KDD methods. However,
environmental sciences also pose many challenges torexiKiDD methods. In this paper, we attempt to give an
overview of KDD applications in environmental sciencesnptemented with a sample of case studies in which the
author has been involved. The latter are described in §ligihdre detail and used to illustrate KDD-related issues tha
arise in environmental applications.

Data mining tasks

This section first gives an example of what type of data iscigihy considered by data mining algorithms. It then defines
the main data mining tasks addressed when such data is gitese include predictive modeling (classification and
regression), clustering (grouping similar objects) andmsarization (as exemplified by association rule discovery)

Data

The input to a data mining algorithm is most commonly a siffigletable comprising a number of fields (columns) and

records (rows). In general, each row represents an objeat@nmns represent properties of objects. A hypothetical
example of such a table is given in Table 1. We will use thisvgxa in the remainder of this paper to illustrate the

different data mining tasks and the different types of pageonsidered by data mining algorithms.

Here rows correspond to persons that have recently (in gtaerlanth) visited a small shop and columns carry some
information collected on these persons (such as their agejag, and income). Of particular interest to the store is
the amount each person has spent at the store this year (oltgslenvisits), stored in the field Total. One can easily
imagine that data from a transaction table, where each paedls recorded, has been aggregated over all purchases for
each customer to derive the values for this field. Custonmatshtave spent over 15000 in total are of special value to
the shop. An additional field has been created (BigSpenkathtas value yes if a customer has spent over 15000 and
no otherwise.

In machine learning terminology, rows are called examptes@lumns are called attributes (or sometimes features).
Attributes that have numeric (real) values are called omatiis attributes: Age, Yearlylncome and Total are contiisuo
attributes. Attributes that have nominal values (such asd@eand BigSpender) are called discrete attributes.

Classification and regression

The tasks of classification and regression are concernédongdicting the value of one field from the values of other
fields. The target field is called the class (dependent Variabstatistical terminology). The other fields are called
attributes (independent variables in statistical terriaigp).

If the class is continuous, the task at hand is called reignessf the class is discrete (it has a finite set of nominal
values), the task at hand is called classification. In bosegaa set of data is taken as input, and a model (a pattern or
a set of patterns) is generated. This model can then be uggddat values of the class for new data. The common
term predictive modeling refers to both classification aagtession.

Given a set of data (a table), only a part of it is typicallydise generate (induce, learn) a predictive model. This part
is referred to as the training set. The remaining part isveskfor evaluating the predictive performance of the ledrn



Table 1: A single table with data on customers (taBlst orrer ).
CID Gender Age Income Total Big
Spender
cl Male 30 214000 18800 Yes
c2 Female 19 139000 15100 Yes
c3 Male 55 50000 12400 No
c4 Female 48 26000 8600 No
c5 Male 63 191000 28100 Yes
c6 Male 63 114000 20400 Yes
c7 Male 58 38000 11800 No
c8 Male 22 39000 5700 No
c9 Male 49 102000 16400 Yes
cl10 Male 19 125000 15700 Yes
cl1 Male 52 38000 10600 No
cl2 Female 62 64000 15200 Yes
cl3 Male 37 66000 10400 No
cl4 Female 61 95000 18100 Yes
cl5 Male 56 44000 12000 No
cl6 Male 36 102000 13800 No
cl7 Female 57 215000 29300 Yes
cl8 Male 33 67000 9700 No
cl9 Female 26 95000 11000 No
c20 Female 55 214000 28800 Yes

model and is called the testing set. The testing set is usedtimate the performance of the model on new, unseen
data, or in other words, to estimate the validity of the pa(®) on new data.

Clustering

Clustering is concerned with grouping objects into clasdesmilar objects (19). A cluster is a collection of objects
that are similar to each other and are dissimilar to objectstiher clusters. Given a set of examples, the task of
clustering is to partition these examples into subsets{eis). The goal is to achieve high similarity between dijec
within individual clusters (interclass similarity) andacsimilarity between objects that belong to different otust
(intraclass similarity).

Clustering is known as cluster analysis in statistics, asatuer segmentation in marketing and customer relatipnshi
management, and as unsupervised learning in machinerngar@onventional clustering focusses on distance-based
cluster analysis. The notion of a distance (or conversihjlarity) is crucial here: objects are considered to benpi

in a metric space (a space with a distance measure). In cluatefpustering, a symbolic representation of the resgltin
clusters is produced in addition to the partition into ahust we can thus consider each cluster to be a concept (much
like a class in classification).

Association analysis

Association analysis (15) is the discovery of associatidas. Market basket analysis has been a strong motivation
for the development of association analysis. Associatidesrspecify correlations between frequent itemsets (gets
items, such as bread and butter, which are often found teggtfa transaction, e.g., a market basket).

The task of association analysis is typically performedan steps. First, all frequent itemsets are found, where an
itemset is frequent if it appears in at least a given percgnigcalled support) of all transactions. Next, association
rules are found of the for’X — Y, whereX andY are frequent itemsets and confidence of the rule (the pexgent
of transactions containing that also contairy”) passes a threshotd



Other data mining tasks

The above three data mining tasks receive by far the mosttttewithin the data mining field and algorithms for
performing such tasks are typically included in data mirio@s. While classification and regression are of predictiv
nature, cluster analysis and association analysis are sufrigéive nature. Subgroup discovery is at the boundary
between predictive and descriptive tasks. Several additidata mining tasks (15) are of descriptive nature, inoigid
data characterization and discrimination, outlier arialgad evolution analysis.

Patterns

Patterns are of central importance in data mining and kraydealiscovery. Data mining algorithms search the given
data for patterns. Discovered patterns that are validrésting and useful can be called knowledge.

Frawley et al. (14) define a pattern in a dataset as a stateéheamtescribes relationships in a subset of the dataset with
some certainty, such that the statement is simpler (in s@nge3 than the enumeration of all facts in the dataset. A
pattern thus splits the dataset, as it pertains to a partafd involves a spatial aspect which may be visualized.

This section introduces the most common types of patteatsaife considered by data mining algorithms. Note that
the same type of pattern may be used in different data midgayithms addressing different tasks: trees can be used
for classification, regression or clustering (conceptwaiyl so can distance-based patterns.

Equations

Statistics is one of the major scientific disciplines thatdaining draws upon. A predictive model in statistics most
commonly takes the form of an equation.

Linear models predict the value of a target (dependentpkgias a linear combination of the input (independent)
variables. Three linear models that predict the value ofvdréable Total are represented by Equations 1, 2, and 3.
These have been derived using linear regression on therdatalable 1.

Total = 189.5275 x Age + 7146.89 (2)
Total = 0.093 x Income + 6119.74 (2)
Total = 189.126 x Age + 0.0932 x Income — 2420.67

Linear equations involving two variables (such as Equatitrand 2) can be depicted as straight lines in a two-
dimensional space (see Fig. ). Linear equations involvimge variables (such as Equation 3) can be depicted as
planes in a three-dimensional space. Linear equationgriergl, represent hyper-planes in multidimensional space
Nonlinear equations are represented by curves, surfacdsyger-surfaces.
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Figure 1: Two regression lines that predict the value of variable Tétam each of the variables Age and Income,
respectively. The points correspond to the training exaspl



Note that equations (or rather inequalities) can be alsd faeclassification. If the value of the expressian9g3 x
Income + 6119.744 is greater than 15000, for example, we can predict the vdidlbeovariable BigSpender to be
“Yes”. Points for which “Yes” will be predicted are those afedhe regression line in the left-hand part of Fig. .

Decision trees

Decision trees are hierarchical structures, where eaeiatnode contains a test on an attribute, each branch-corre
sponds to an outcome of the test, and each leaf node givesliate for the value of the class variable. Depending
on whether we are dealing with a classification or a regragsioblem, the decision tree is called a classification or
a regression tree, respectively. Two classification tregiveld from the dataset in Table 1 are given in Fig. 2. An
example regression tree, also derived from the datasetile Tais given in Fig. 3.

Figure 2: Two classification trees that predict the valueasfable BigSpender from the variables Age and Income,
and Age and Gender, respectively.

Regression tree leaves contain constant values as poegictr the class value. They thus represent piece-wise con-
stant functions. Model trees, where leaf nodes can coriteal models predicting the class value, represent piese-w
linear functions.
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Figure 3: A regression tree and the partition of the dataespatuced by the tree. The tree predicts the value of the
variable Total from the variables Age and Income.

Note that decision trees represent total partitions of #ia dpace, where each test corresponds to an axis-papétlel s
This is illustrated in Fig. 3. Most algorithms for decisiore induction consider such axis-parallel splits, butelee

a few algorithms that consider splits along lines that nesicbe axis-parallel or even consider splits along non-linea
curves.

Predictive rules

We will use the word rule here to denote patterns of the fofCbnjunction of conditions THEN Conclusion.” The
individual conditions in the conjunction will be tests cenging the values of individual attributes, such as “Income
108000” or “Gender=Male”. For predictive rules, the corsdtun gives a prediction for the value of the target (class)
variable.



If we are dealing with a classification problem, the condasassigns one of the possible discrete values to the class,
e.g., “BigSpender=No". A rule applies to an example if th@joaction of conditions on the attributes is satisfied by
the particular values of the attributes in the given examipéeh rule corresponds to a hyper-rectangle in the dat@spac
as illustrated in Fig. 4.

Age
Yes
IF Income< 102000
AND Age < 58 S8
THEN BigSpender=No
ELSE
DEFAULT BigSpender=Yes. No

102 000 Income

Figure 4: A partition of the data space induced by an ordésedfrules, derived from the data in Table 1. The shaded
box corresponds to the first rule in the list IF Incoriel02000 AND Age< 58 THEN BigSpender=No, while the
remainder of the data space is covered by the default rul8gigder=Yes.

Predictive rules can be ordered or unordered. Unordered are considered independently and several of them may
apply to a new example that we need to classify. A conflictltggm mechanism is needed if two rules which recom-
mend different classes apply to the same number of exanldsfault rule typically exists, whose recommendation
is taken if no other rule applies.

Ordered rules form a so-called decision list. Rules in teedre considered from the top to the bottom of the list.
The first rule that applies to a given example is used to prédiclass value. Again, a default rule with an empty
precondition is typically found as the last rule in the dexidist and is applied to an example when no other rule
applies.

An ordered list and an unordered list of rules are given inda@bBoth have been derived using a covering algorithm,
described in the next section. The ordered list of rulesdn &j on the other hand,has been generated from the decision
tree in the left-hand side of Fig. 2. Note that each of thedsaf a classification tree corresponds to a classification
rule. Although less common in practice, regression rulgs ekist, and can be derived, e.g., by transcribing regressi
trees into rules.

Table 2: An ordered (top) and an unordered (bottom) set skiflaation rules derived from the data in Table 1.

Ordered rules

IF Age < 60 AND Income< 81000 THEN BigSpender = No ELSE
IF Age > 42 THEN BigSpender = Yes ELSE

IF Income> 113500 THEN BigSpender = Yes ELSE

DEFAULT BigSpender=No

Unordered rules

IF Income> 108000 THEN BigSpender = Yes

IF Age > 49 AND Income> 57000 THEN BigSpender = Yes
IF Age < 56 AND Income< 98500 THEN BigSpender = No
IF Income< 51000 THEN BigSpender = No

IF 33 < Age < 42 THEN BigSpender = No

DEFAULT BigSpender=Yes




Data mining algorithms

The previous section described several types of patteaictn be found in data. This section outlines some basic
algorithms that can be used to find such patterns in data. &t cases, this involves heuristic search through the space
of possible patterns of the selected form.

Linear and multiple regression

Linear regression is the simplest form of regression (18)afate linear regression assumes that the class vadahle
be expressed as a linear function of one attribute (e, « + 3 x A. Given a set of data, the coefficientands can
be calculated using the method of least squares, which rizesthe errod ", (¢; — a — a;)* between the measured
values forC' (¢;), and the values calculated from the measured value4 fef) using the above equation. We have

B = Z (ai —a)(ci —5)/2 (a; —a)?

a =¢— (a,
wherea is the average aof, . . ., a, andc is the average ofy, . . ., ¢,.

Multiple regression extends linear regression to allowube of more than one attribute. The class variable can thus
be expressed as a linear function of a multi-dimensionabate vector, i.e.C' = " | 5; x A;. This form assumes
that the dependent variable and the independent variallesrhean values of zero (which is achieved by transforming
the variables - the mean value of a variable is subtracted &rach measured value for that variable). The method of
least squares can also be applied to find the coeffici&nt§we write the equatiol’ = >"" , 3; x A; in matrix form

C = BA, whereC = (cy,...,c,) is the vector of measured values for the dependent varialolelas the matrix of
measured values for the independent variables, we canla@lthe vector of coefficient$ as

B=(ATA)ATC
where the operations of matrix transposithand matrix inversiom—! are used. The use of non-linear transforma-
tions, such ast; = A%, i = 1,...,n, allows non-linear models to be found by using multiple esgion: such models
are linear in the parameters.

Note that both for linear and multiple regression, the coiffitsa, 3, andg; can be calculated directly from a formula
and no search through the space of possible equations téas pEquation discovery approaches (10), which do
not assume a particular functional form, search throughagespf possible functional forms and look both for an
appropriate structure and coefficients of the equation.

Linear regression is normally used to predict a continudassc but can also be used to predict a discrete class.
Generalized linear models can be used for this, of whichstagregression is a typical representative. The fitting of
generalized linear models is currently the most frequeagiiylied statistical technique (32).

Top-down induction of decision trees

Finding the smallest decision tree that would fit a given datds known to be computationally expensive (NP-hard).

Heuristic search, typically greedy, is thus employed tdcbdécision trees. The common way to induce decision trees
is the so-called Top-Down Induction of Decision Trees (TD)27)). Tree construction proceeds recursively starting

with the entire set of training examples (entire table). Atlestep, an attribute is selected as the root of the (seb)tre
and the current training set is split into subsets accortinige values of the selected attribute.

For discrete attributes, a branch of the tree is typicaljated for each possible value of the attribute. For contisuo
attributes, a threshold is selected and two branches aasigedrbased on that threshold. For the subsets of training ex-
amples in each branch, the tree construction algorithnlliscceecursively. Tree construction stops when the example
in a node are sufficiently pure (i.e., all are of the same laisg some other stopping criterion is satisfied (there is no
good attribute to add at that point). Such nodes are calldkand are labeled with the corresponding values of the
class.

Different measures can be used to select an attribute inttitileude selection step. These also depend on whether we
are inducing classification or regression trees (4). Fasifi@ation, Quinlan (27) uses information gain, which is th
expected reduction in entropy of the class value caused bwikig the value of the given attribute. Other attribute
selection measures, however, such as the Gini index or theaay of the majority class, can and have been used in



classification tree induction. In regression tree indugtibe expected reduction in variance of the class value ean b
used.

An important mechanism used to prevent trees from ovendittiata is tree pruning. Pruning can be employed during
tree construction (pre-pruning) or after the tree has beastcucted (post-pruning). Typically, a minimum number
of examples in branches can be prescribed for pre-prunidg@amnfidence level in accuracy estimates for leaves for
post-pruning.

The covering algorithm for rule induction

In the simplest case of concept learning, one of the classegdrred to as positive (examples belonging to the copcept
and the other as negative. For a classification problem eitkral class values, a set of rules is constructed for each
class. When rules for class are constructed, examples of this class are referred tositdveoand examples from all
the other classes as negative.

The covering algorithm works as follows. We first constructike that correctly classifies some examples. We then
remove the positive examples covered by the rule from theitg set and repeat the process until no more examples
remain. The pseudo code for this algorithm is given in Tabl1

Within this outer loop, different approaches can be takefini individual rules. One approach is to heuristically
search the space of possible rules top-down, i.e., fromrgétwe specific (in terms of examples covered this means
from rules covering many to rules covering fewer examplé}) o construct a single rule that classifies examples
into classc;, we start with a rule with an empty antecedent (IF part) ardstilected class as a consequent (THEN
part). The antecedent of this rule is satisfied by all exampighe training set, and not only those of the selected
class. We then progressively refine the antecedent by addingjtions to it, until only examples of clasg satisfy

the antecedent. To allow for handling imperfect data, we ommstruct a set of rules which is imprecise, i.e., does not
classify all examples in the training set correctly.

Date mining applications in ecological modelling

Ecological modelling is concerned with the development oideis of the relationships among members of living
communities and between those communities and their algatiironment. These models can then be used to better
understand the domain at hand or to predict the behavioedittidied communities and thus support decision making
for environmental management. Typical modelling topias@opulation dynamics of several interacting species and
habitat suitability for a given species (or higher taxonomniit).

Modelling population dynamics

Population dynamics studies the behavior of a given comtyafiliving organisms (population) over time, usually
taking into account abiotic factors and other living comiitigs in the environment. For example, one might study
the population of phytoplankton in a given lake (33) and é@kation to water temperature, concentrations of nutri-
ents/pollutants (such as nitrogen and phosphorus) andidngabs of zooplankton (which feeds on phytoplankton).
The modelling formalism most often used by ecological etgisrthe formalism of differential equations, which de-
scribe the change of state of a dynamic system over time. ialyppproach to modelling population dynamics is
as follows: an ecological expert writes a set of differdngiguations that capture the most important relationships
in the domain. These are often linear differential equatiorhe coefficients of these equations are then determined
(calibrated) using measured data.

Relationships among living communities and their abioticienment can be highly nonlinear. Population dynamics
(and other ecological) models have to reflect this to be stali This has caused a surge of interest in the use of
techniques such as neural networks for ecological mode(%). Measured data are used to train a neural network
which can then be used to predict future behavior of the stugopulation. In this fashion, population dynamics of
algae (28), aquatic fauna (30), fish (5), phytoplankton &) zooplankton (1) - among other - have been modelled.

While regression tree induction has also been used to mogelation dynamics. Systems for discovery of differential
equations have proved most useful in this respect (10)edifterential equations are the prevailing formalism used
for ecological modelling. Algal growth has been modelledtfe Lagoon of Venice (21; 23) and the Slovenian Lake
of Bled (22), as well as phytoplankton growth for the Danistké& Glumsoe (33).



Case study: Modelling algal growth in the Lagoon of Venice

The beautiful and shallow Lagoon of Venice is under heaviupioh stress due to agricultural activities (use of fértil

ers) on the neighboring mainland. Pollutants are food @niis) for algae, which have on occasions grown excessively
to the point of suffocating themselves, then decayed anskethunpleasant odors (noticed also by the tourists). Models
of algal growth are needed to support environmental managedecisions and answer questions such as: "Would a
reduction in the use of phosphorus-rich fertilizers redalgal growth?”

Kompare and DZeroski (21) use regression trees and equditioovery to model the growth of the dominant species
of algae Ulva rigida) in the lagoon of Venice in relation to water temperaturssdived nitrogen and phosphorus and
dissolved oxygen. The trees give a rough picture of theivel@mnportance of the factors influencing algal growth
(cf. Fig. 5), revealing that nitrogen is the limiting fact@nd thus providing a negative answer to the question in the
above paragraph). The equations discovered, on the othdr e better prediction of the peaks and crashes of algal

biomass.
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Figure 5: A regression tree for predicting algal growth, ichange in biomass3io(t), DO(t) and NOs(t) stand for
the concentrations of biomass, dissolved oxygen and edti@ttimel. AX (¢) stand forX (¢) — X (¢ — 1).

Severe problems of data quality were encountered in thiscapipn.

1. Dissolved oxygen, for example, was measured at the watésce approximately at noon (when oxygen is
produced by photosynthesis and is plentiful) and does weailgotential anoxic conditions (which might occur
at night) - which it was supposed to reveal.

2. Measurement errors of algal biomass were estimated taibelgrge by the domain experts (up to 50% relative
error).

3. Finally, winds were not taken into account: these mightenalgae away from the sampling stations and cause
huge variations in the observed biomass values.

Case study: Phytoplankton growth in Lake Glumsoe

The shallow Lake Glumsoe is situated in a sub-glacial vaheenmark. It has received mechanically-biologically
treated waste water, as well as non-point source pollutientd agricultural activities in the surrounding area. High
concentration of pollutants (food for phytoplankton) ldadexcessive growth of phytoplankton and consequently no
submerged vegetation, due to low transparency of the watkoaygen deficit (anoxia) at the bottom of the lake. It
was thus important to have a good model of phytoplankton tiréwsupport environmental management decisions.

We used KDD methods for the discovery of differential equadi(10) to relate phytoplanktop/yt) growth to water
temperaturetemp), nutrient concentrations (nitrogeni+ro and phosphorusphosp) and zooplankton concentration -
zoo (33). Some elementary knowledge on population dynamicsetting was taken into account during the discovery
process. This domain knowledge tells us that a term calledddis term, which has the fordVutrient /(Nutrient +
constant) is a reasonable term to be expected in differential equatiescribing the growth of an organism that feeds
on Nutrient. It describes the saturation of the population of organisittsthe nutrient.



Table 3: The discovered model for phytoplankton growth ikd-&lumsoe.

phosp

hyt = 0.553 - temp - phyt - —————
phy emp * by 0.0264 + phosp

—4.35 - phyt — 8.67 - phyt - zoo

The discovered model is given in Table 3. Hefest denotes the rate of change of phytoplankton concentrafiba.
model reveals that phosphorus is the limiting nutrient foytpplankton growth, as it includes a Monod term with
phosphorus as a nutrient. This model made better predictian a linear model, which has the form

pﬁyt = —5.41 — 0.0439 - phyt — 13.5 - nitro — 38.2 - zoo 4+ 93.9 - phosp + 3.20 - temp

It was also more understandable to domain experts: thedmst describes phytoplankton growth, where temperature
and phosphorus are limiting factors. The last two termsrites@hytoplankton death and the feeding of zooplankton
on phytoplankton.

The following issues were raised in this application:

1. Data quantity and preprocessing: measurements werentendye at 14 time points during two months (once
weekly). Some preprocessing/interpolation was thus sacgs$o generate enough data for discovering differen-
tial equations.

2. Data quality: ecological experts often have poor undeding of modelling concepts, which strongly influences
the way data are collected. An electrical engineer with Kedge of control theory would know much better that
sampling frequency has to be increased at times when thensysider study has faster dynamics (e.g., at peaks
of phytoplankton growth).

3. The need for taking into account domain knowledge duriregkDD process: this can compensate to a certain
extent for poor data quality and quantity (as was the cadeisnapplication). This issue is of great importance,
yet few KDD methods allow for the provision of domain knowdedoy experts.
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Figure 6: A regression tree for predicting the degree of bégowsing.

Case study: Modelling theinteractionsof ared deer population with the new growth in a forest

Here we studied the interactions among a population of red aled new forest growth in a natural regenerated forest
in Slovenia. Ideally, foresters would like to keep in balatiwe size of the deer population and the rate of regeneration
of the forest: if the deer population is large, so are the kiog/rates of new forest growth and regeneration slows

down. Understanding the relationship between the two isiakfior managing the balance. Our study has shown that

meteorological parameters strongly influence this retetiip and have to be taken into account.

A preliminary study using regression trees to model the&utions was performed by Stankovski et al. (31). Here we
summarize the results of a follow-up study that used a dlidatger dataset, cleaner data, and more reliable methods
of regression tree induction (8). The induced models shaittie degree of browsing for maple (the preferred browse
species of red deer) depends directly on the size of the ppal The degree of beech browsing, on the other hand,
was most strongly influenced by meteorological parameiterswinter monthly quantity of precipitation (snow) and
average monthly minimal diurnal air temperature. (cf. Ey. While beech is not the preferred browse species of red
deer, it is consumed yearlong; it is also elastic and snaistant and thus more exposed to the reach of red deer even
in deeper snow.



The following issues were raised by this application:

1. Data quantity: the size of the deer population and braogwsites are only estimated once a year. Even though we
were dealing with 18 years worth of data, these were stily 48l data points.

2. Data quality: some of the data collected in this domairewenreliable and had to be cleaned/corrected/removed
before obtaining reasonable results.

3. Missing information: the outcome of the data analysicpss suggested that measuring winter and summer
browsing rates separately would greatly improve the mod#igs information was not measured and it couldn’t
be reconstructed from the currently measured data, buidieumeasured in the future.

Habitat-suitability modelling

Habitat-suitability modelling is closely related to poatibn dynamics modelling. Typically, the effect of the alo
characteristics of the habitat on the presence, abundand&ersity of a given taxonomic group of organisms is
studied. For example, one might study the influence of salatteristics, such as soil temperature, water content,
and proportion of mineral soil on the abundance and speitiesass ofCollembola(springtails), the most abundant
insects in soil (24). The study uses neural networks to tauildmber of predictive models for collembolan diversity.
Another study of habitat suitability modelling by neuratwerks is given by Ozesmi and Ozesmi (26).

Several habitat-suitability modelling applications dfiet data mining methods are surveyed by Fielding (13). Figld
(12) applies a number of methods, including discriminaraiysis, logistic regression, neural networks and genetic
algorithms, to predict nesting sites for golden eagles.| 83luses decision trees to describe the winter habitat of
pronghorn antelope. Jeffers (17) uses a genetic algorittdistover rules that describe habitat preferences fortaqua
species in British rivers.

The author has been involved in a number of habitat suitglstudies using rule induction and decision trees. Rule
induction was used to relate the presence or absence of eemafrgpecies in Slovenian rivers to physical and chemical
properties of river water, such as temperature, dissolxgden, pollutant concentrations, chemical oxygen demand,
etc. (9). Regression trees were used to study the influenseilofharacteristics, such as soil texture, moisture and
acidity on the abundance (total number of individuals) aiverdity (number of species) @ollembola(springtails)
(18). We have also used decision trees to model habitabditigdor red deer in Slovenian forests using GIS data, such
as elevation, slope, and forest composition (7). Finalgision trees that model habitat suitability for brown Isear
have been induced from GIS data and data on brown bear sigh#0). The model has then been used to identify the
most suitable locations for the construction of wildlifédwes/underpasses that would enable the bears to safsly cro
the highway passing through the bear habitat.

Summary

This paper introduced data mining, the central activityhia process of knowledge discovery in databases (KDD),
which is concerned with finding patterns in data. It also ganeoverview of KDD applications in environmental
sciences, complemented with a sample of case studies. Pee iscbased on the chapter "Data Mining in a Nutshell”
by S. DZeroski, which appears in the bde&lational Data Miningedited by S. DZeroski and N. Lavra¢ and published
by Springer in 2001, as well as the article "Applications dDB in Environmental Sciences”, that appears in the
"Handbook of Data Mining and Knowledge Discovery”, editeg W. Kloesgen, and J. M. Zytkow, published by
Oxford University Press in 2002. For more information ontiby@c of this paper, we refer the reader to these.
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