Quantifying GRACE data contamination effects on hydrological analysis in the Murray–Darling Basin, southeast Australia

N. J. BROWN1* AND P. TREGONING2

1Geoscience Australia, GPO Box 378 Canberra, ACT 2601, Australia. 2Research School of Earth Sciences, Australian National University, ACT 0200, Australia.

This paper investigates and quantifies the near-field and far-field contamination effects from Groupe de Recherche en Géodesie Spatiale GRACE products to assess whether or not they influence the accuracy with which hydrological signals in the Murray-Darling Basin, southeast Australia can be estimated. Far-field contamination was assessed by simulating some of the world’s largest geophysical processes which generate major gravitational signals (e.g. melting of the Greenland ice-sheet, hydrology in the Amazon Basin) and measuring the proportion of the simulated signal detected in the Murray-Darling Basin. Near-field contamination from the Australian continent (excluding the Murray-Darling Basin) was also assessed. The sum of the near-field and far-field effects revealed a maximum of ~10 mm (equivalent water height) of spurious signal within the Murray-Darling Basin. This equates to only one quarter of the formal uncertainty of the basin-scale estimates of changes in total water storage. Thus, GRACE products can be used to monitor broad-scale hydrological trends and variability in the Murray-Darling Basin without the need to account for contamination from external geophysical sources.

KEY WORDS: GRACE, hydrology, modelling, Murray-Darling Basin, satellite geodesy.

INTRODUCTION

The Gravity Recovery and Climate Experiment (GRACE) Project is jointly managed by National Aeronautics and Space Administration (NASA) and Deutsches Zentrum für Luft-und Raumfahrt (DLR) (Tapley et al. 2004). The products derived from GRACE satellite data provide accurate models for both the static and time variable components of the Earth’s gravity field such as the oceans (Wahr et al. 2002), ice sheets (Ramillien et al. 2006) and land hydrology (Ramillien et al. 2005; Schmidt et al. 2006; Leblanc et al. 2009).

The Murray–Darling Basin is the source of ~85% of Australia’s irrigation and supports an agriculture industry valued at over $9 billion per annum (DEWHA 2009). Leblanc et al. (2009) showed a high correlation in the Murray-Darling Basin between groundwater variations observed by borehole measurements and total water storage from GRACE. This demonstrates the ability of GRACE products to track groundwater variations, although it is difficult to quantify the uncertainty of the estimates because of the sparse ground-based groundwater and gravity measurements.

Fundamental to any measurement is a strong understanding of the associated uncertainty. Global GRACE spherical-harmonic fields are truncated at some pre-defined degree in the estimation process. Consequently, the finite number of spherical-harmonic coefficients causes leakage or ripples in the global gravity fields (Swenson & Wahr 2002; Seo & Wilson 2005). That is, the inability of the chosen spherical-harmonic models to perfectly model a region causes geophysical signals to propagate through the spherical harmonics and contaminate other regions of interest. For example, the Groupe de Recherche en Géodesie Spatiale products used in this analysis have global averaged formal uncertainties of ~40 mm of equivalent water height for each solution (Llubes et al. 2007).

Velicogna & Wahr (2006) modelled and removed the contamination from hydrological signals from their estimates of Antarctic mass-balance change using the GLDAS hydrological model (Rodell et al. 2004). Other authors (Ramillien et al. 2006) have adopted similar techniques. However, the accuracy of this process is dependent on the accuracy of the hydrology model to represent the actual signals. The magnitude of the correction applied is generally not indicated, although
Velicogna & Wahr (2006) claimed that 24% of the +31 ± 14 km2/a ice volume trend in Antarctica was caused by hydrology leakage.

This paper quantifies the magnitude of spurious signals that appear in estimates of total water storage in the Murray–Darling Basin from not only the near-field, but also from some of the largest geophysical processes throughout the world. A combination of simulations and analysis of real data was used to extract information on the amount of contamination that is likely to occur in estimates of hydrological processes.

GEOPHYSICAL SIGNALS

Geophysical signals from Australia and 18 of the world’s major geophysical processes (Figure 1) were extracted from the GRGS solutions over the period 2002.6 to 2008.1. Using least squares, periodic and/or linear trends were estimated for each source and were subsequently used to generate synthetic spherical-harmonic fields over the same time period. We generated the simulated fields for each geophysical signal separately as well as the combination of all signals. Importantly, no signal was modelled in the Murray–Darling Basin itself. Thus, any signal detected in the Murray–Darling Basin must be contamination from the simulated sources.

Extracting geophysical signals

We generated kernels to describe geographical regions, with boundaries derived from Oki & Sud (1998). Following, for example, Ramillien et al. (2006), we assigned a value of 1 inside each simulation source and 0 outside, then generated a spherical-harmonic representation (to degree 50) of the region (Figure 2).

Next, these geographical masks were used to extract geophysical signals from the GRACE product in units of equivalent water height (EWH) (Ramillien et al. 2006):

$$\delta S(t) = 4\pi R^2 \sum_{l=2}^{l_{\text{max}}} \sum_{m=0}^{m_{\text{max}}} [(A_{lm} \delta C_{lm}(t)) + (B_{lm} \delta S_{lm}(t))]$$

where $\delta S(t)$ is the integrated variation in gravity (expressed in terms of volume of water) at time t. A_{lm} and B_{lm} are normalised harmonic coefficients of the kernel; and $\delta C_{lm}(t), \delta S_{lm}(t)$ are the surface mass density anomalies (Ramillien et al. 2006):

$$\left(\frac{\delta C_{lm}(t)}{\delta S_{lm}(t)} \right) = \left(\frac{4\pi G \rho_w R}{2l+1} \right)^{-1} \left(\frac{\delta U_{lm}(t)}{\delta V_{lm}(t)} \right)$$

where geod anomalies δU_{lm}, δV_{lm} were calculated by subtracting the mean value from the time period 2002.6 to 2008.1, G is the gravitational constant ($6.673 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$), ρ_w is the mean density of freshwater (1000 kg m$^{-3}$), R is the mean radius of the Earth (6371 km), γ is the mean gravity acceleration (9.807 m s$^{-2}$) and K_l is the elastic Love number of degree l (Wahr et al. 1996).

The corresponding variation in units of equivalent water height at time, t, was estimated by dividing the variation in volume of water, $\delta S(t)$, by the surface area of the kernel.

Simulating geophysical processes

We used the time series of each geophysical source to estimate periodic and/or linear trend parameters of
a function defining the simulated EWH (EWH_{SIM}) at time t:

$$EWH_{SIM}(t) = a \cos (2 \pi x(t)) + b \sin (2 \pi x(t)) + cx + d$$ \hspace{1cm} (4)$$

where a, b, c and d are least-squares-derived coefficients and x is the epoch in decimal years. Examples of the observed and modelled signals are shown in Figure 3. While it is clear that this simple functional model does not represent all of the observed signals, it captures the first-order effects and is sufficient to model the magnitude of the signals.

Next, the functions were used to generate synthetic gravity anomaly fields of 0.25° resolution from 2002.6 to 2008.1 for each of the geophysical processes. Grid cells inside the source kernels were assigned the values calculated using equation 4 and those outside the kernel were assigned values of zero. Each global grid was then converted to a spherical-harmonic representation yielding synthetic coefficient anomalies δC_{lm}, δS_{lm} for each epoch.

The amount of contamination from each source that propagates into the Murray–Darling Basin was then evaluated using equation 2, where A_{lm}, B_{lm} are the normalised harmonic coefficients for the kernel of the Murray–Darling Basin.
QUANTIFYING CONTAMINATION

The contamination from a simulation source, $\%C_{SIM}$, can be represented as a percentage of the source signal (Table 1):

$$\%C_{SIM} = \frac{EWH_{SIM, MDB}(t)}{EWH_{SIM, SOURCE}(t)} \times 100$$ \hspace{1cm} (5)$$

where $EWH_{SIM, SOURCE}(t)$ is the simulated EWH value in the source, and $EWH_{SIM, MDB}(t)$ is the component of
the source signal that appears within the Murray–Darling Basin at time \(t \). Approximately 12\% of the Australian gravity signal contaminates the Murray–Darling Basin and the largest far-field contamination originates from the Amazon Basin, with 1.37\%.

We can then use this percentage to convert the magnitudes of actual observed geophysical signals at each epoch into the magnitude of spurious signal that appears in the Murray–Darling Basin estimates:

\[
C_{\text{SOURCE IN MDB}}(t) = \frac{\% C_{\text{SIM}}}{100} \times EWH_{\text{GRGS SOURCE}}(t)
\]

where \(EWH_{\text{GRGS SOURCE}}(t) \) is the EWH value of the source calculated from GRGS products at time \(t \).

Finally, the total contamination from Australia and the 18 far-field sources were summed

\[
C_{\text{TOTAL}}(t) = \sum_{1}^{19} C_{\text{SOURCE IN MDB}}(t)
\]

yielding a time series of contamination in the Murray–Darling Basin (Figure 4).

The contamination effect is not cumulative since the geophysical signal and contamination are not always in phase, with the latter being dependent on the location of the source relative to the Murray–Darling Basin. This is evidence of the ripple effect (Seo & Wilson 2005).

The maximum amount of combined contamination detected was \(\sim 10 \text{ mm} \) (Figure 4). The hydrological signals detected in the Murray–Darling Basin are in the order of 50–100 mm (Llubes et al. 2007). Although the combined contamination does not represent all contamination sources throughout the world, it does account for the majority of contamination and we therefore believe the analysis is sufficient to claim that contamination effects are insignificant and can be ignored when assessing hydrological trends in the Murray–Darling Basin.
CONCLUSIONS

Simulations have shown that the combined contamination from near-field and far-field signals only generates a maximum of ~10 mm spurious signal in basin-scale estimates of total water storage variation in the Murray–Darling basin using GRACE products. This is well below the formal uncertainties of the estimates from the degree 50 spherical-harmonic fields of the Groupe de Recherche en Géodésie Spatiale. Thus, conventional techniques of scalar products of regional kernels and temporal gravity fields can be used with confidence to estimate hydrological processes in this region without the need to correct for leakage effects from external sources.

ACKNOWLEDGEMENTS

We thank the GRGS GRACE team for making their temporal fields freely available and journal reviewers Joseph Awange and Adam Smith for their constructive feedback.

REFERENCES

Figure 5 Murray–Darling Basin signal from GRGS products (black solid) with global averaged uncertainties (grey vertical bars) and the combined contamination in the Murray–Darling Basin (black dashed).

Received 12 October 2009; accepted 6 January 2010