Associate Professor Meghan S. Miller

Associate Professor
Associate Director Engagement
Program Leader for AuScope Earth Imaging

APPOINTMENTS:

The Australian National University – Associate Professor 
California Institute of Technology – Visiting Professor, June 2015 – January 2017
University of Southern California – Associate Professor, February 2015 – May 2018
University of Southern California – Assistant Professor, March 2009 – February 2015
University of Calgary – Research Associate, November 2008 – March 2009  
Rice University – Postdoctoral Research Fellow, August 2006 – March 2009

EDUCATION:
Ph.D., 2006, The Australian National University
M.Eng., 2000, Cornell University
M.S., 1999, Columbia University
B.A., 1997, Whittier College

Research interests

My research is focused on structural seismology in order to understand the structural and dynamical evolution of the Earth.  I combine the use of novel seismological techniques, including the collection of new data in regions where none are available, integrated with other, sometimes disparate, geologic and geophysical data, to solve outstanding questions in plate tectonics. Most of my research is based at poorly understood but critical tectonic plate boundaries, in particular subduction zones where oceanic plates are descending into the Earth’s deep interior. These are regions where tectonic activity, as observed in seismicity and volcanism, is localized, making them natural targets of high scientific and societal relevance. As a complement to the dynamic plate boundary research, the structure of stable continental interiors provides the best long-term record of plate tectonic processes. Research questions that illustrate how those two objectives are related include: How has the outermost layer of the Earth evolved?  How do the stable continents affect the evolution of subduction zones?  How do processes and structures deep within the Earth control the geology we can observe at the surface?

Group

Postdocs

  • Dr. Chengxin Jiang
  • Dr. Voon Hui Lai
  • Dr. Sima Mousavi
  • Dr. Robert Pickle

PhD Students

  • Yuwei Li
  • Hendro Nugroho
  • Nova Roosmawati
  • Ping Zhang

Current and Recent Projects:

Enhanded 3-D seismic structure of Southwest Australia (SWAN) - ARC Linkage Project led by Assoc/Prof Miller and Prof. Kennett in collaboration with GSWA (Dr. Gessner and Murdie), Geoscience Australia (Dr. Allen), and Macquarie Uni (Dr. Yuan).  The project aims to produce new 3-D seismic velocity structure models of the southwest region of Australia with new data collected by a two-year deployment of 25 passive seismic recorders, coupled to two targeted deployments of 10 instruments, each for one year. In conjunction with previously collected geophysical datasets by our partners this project will allow the determination of structure in 3-D to lithospheric depths. The objective of this work is to provide a compilation of 3-D models of the crust and lithosphere, which will be an effective characterisation of the 3-D structure of the craton and its margins.

Banda Arc Project  Eastern Indonesia is one of the least well-understood geological domains of our planet, and yet the region provides a truly remarkable location for unraveling some of the major puzzles of plate tectonics. The recent collision of the Australian continent with the active volcanic arc in the Banda region effectively captures the initiation of continental mountain building and the cessation of island arc volcanism, offering a rare glimpse into a set of processes that have shaped Earth’s evolution over geologic time.  Since oceanic subduction and subsequent continental collision have occurred in different stages along the Banda arc, we plan to use the region to study and assess the spatio-temporal evolution of this transition using a variety of methods: seismology, geodyanmics, tectonics, low-temperature geochemistry, and geomorphology.  We have installed 30 broadband seismometers, including the first ever seismometer on Timor Leste, across the archipelago of eastern Indonesia (NTT) in 2014.   The award is co-funded by the NSF Geophysics and Tectonics Programs, and the Office of International Science and Engineering (OISE) – Global Venture Fund (GVF) and led by M.S. Miller, T.W. Becker, and A.J. West.

Large-N seismology - A new development in seismology over the past few years, “large-N” arrays, use new nodal-type seismic instrumentation. Large-N refers to 1-2 orders of magnitude more instruments per experiment and nodal refers to the small (paint can size), much less expensive, simplicity and ease of use. This new technology is transforming how seismologists acquire data and will end spatial aliasing, providing much higher resolution and a broad range of applications. We will be able to answer questions about Earth’s structure on a ~1-10 meter scale rather than >~2-5 kilometres from the most densely spaced experiments! We will no longer use waveforms (one time-series recording at each seismometer), but will be able to utilise the entire wavefield recorded at the entire array of instruments. We are collecting data and developing new techniques to utilise these large-N data to produce true high-resolution image volumes of the 3D Earth structure.

Congested Subduction:  ARC Discovery Project led by L. Moresi, P. Betts, J. Whittaker and M.S. Miller. The project addresses the geodynamics of congested subduction zones and their impacts on the convergent margins.  We are using a combination of 3D geodynamic modelling, plate kinematic reconstruction and geological and geophysical synthesis to determine how congested subduction zones influence plate kinematics, subduction dynamics, and tectonic evolution at orogen and global scales. We aim to deliver a transformation change in understanding the links between congested subduction, mantle flow, trench migration, crustal growth, transitions between stable convergent margin configurations, and deformation in the overriding plates of subduction zones. Determining these relationships is significant because it will provide dynamic context to interpret the geological record of ancient convergent margins, which host a large percentage of Earth's metal resources. 

ICED (Imaged Crust Denali Exhumation) Project:  National Science Foundation (Tectonics and EarthScope programs) funded project led by S. Roeske, T. Waldien, J. Benowitz and M.S. Miller. This project entitled "A four-dimensional view of deformation in the Eastern Alaska Range - Where did the slip on the Denali fault go?"   The Denali fault in south-central Alaska ruptured in a 7.9 magnitude earthquake in 2002, one of the largest continental strike-slip (horizontal motion of blocks of rocks past each other) earthquakes ever recorded. The event brought attention to this little-studied but major fault, which crosses the trans-Alaska oil pipeline as well as the two main highways in Alaska. Scientists predicted Denali fault earthquakes to have only strike-slip motion, but instead, the 2002 quake started as a thrust (putting one block of rock over another) earthquake and uplifted rocks in the Alaska Range along a previously unknown thrust fault. The unexpected earthquake uplift pattern provided the scientific community additional evidence that thrust faults can siphon lateral motion from the strike-slip Denali fault. If these types of fault interactions persist for millions of years, then determining the amount of thrust faulting next to the Denali fault could help solve a long- lived controversy of how much total displacement has taken place across the Denali fault and explain why the Denali fault is surrounded by large mountains on all sides (forming the Alaska Range). Unraveling the history of thrust faulting and uplift next to the Denali fault will not only help us chip away at these intriguing scientific questions but will also inform us on how significant these faults have been in the past and where the greatest seismic hazards in the Alaska Range are today.

AusPass Project (auspass.edu.au): AuScope and ANU funded Australian Passive Seismic Server.  AusPass is a service dedicated to the acquisition, management, and distribution of passive seismological data in Australia. Extensive fieldwork projects are conducted across the country, organized in seismic arrays.  

Past Graduate Students:

  • Lisa Alpert (Ph.D. 2012, USC)
  • Amber Butcher (2014, USC)
  • Mélanie Gérault (Ph.D. 2014, USC) 
  • Cooper Harris (Ph.D. 2019, USC)
  • Adam Holt (Ph.D. 2016, USC)
  • Yilei Rong (2011, USC)
  • Panxu Zhang (M.Sc. 2012, USC)

Past Postdoctoral Scholars:

  • Dr. Iain W. Bailey  – seismologist at Swiss RE
  • Dr. Leland J. O’Driscoll – earthquake early warning project manager at University of Oregon
  • Dr. Robert W. Porritt  – postdoc at University of Texas, Austin
  • Dr. Daoyuan Sun – professor at University of Science and Technology China, Hefei

Many of these publications require an academic library subscription to read the full content. Please email me if you would like me to send you a pdf copy of any of these papers. You can also access my publication history through Google Scholar.

Note: Supervised °Student and *Postdoc

In Review:

S-1. °Harris, C.W. and Miller, M.S. (2019), Mantle flow deflected by arc-continent collision and continental subduction in eastern Indonesia, Journal of Geophysical Research, under revision.

S-2. Fischer, K., Rychert, C., Miller, M.S., Beghein, C., Dalton, C.A., Schutt, D. (2020) A Comparison of Oceanic and Continental Mantle Lithosphere, Physics of the Earth and Planetary Interiors, under revision.

S-3. °Li, Y., Miller, M.S., Tkalcic, H., Sambridge, M. (2020) Small-scale heterogeneity in the lowermost mantle beneath Alaska and northern Pacific revealed from shear-wave triplications, Earth and Planetary Science Letters, under revision.

S-4. °Zhang, P. and Miller, M.S. (2020) Structural evidence from passive seismic imaging of Australian continental plate material beneath Timor at the Banda arc collisional zone, Geophysical Research Letters, in review.

In Press:

P-1. Cooper, C.M., Farrington, R., and Miller, M.S. (2020), On the destructive tendencies of cratons, Geology, accepted August 27, 2020.

P-2. Miller, M.S., N.A. Ruppert, and Abers, G. (2020) Introduction to Focus Section on EarthScope Alaska and Canada, Seismological Research Letters, accepted September 2, 2020

Published:

71.  Waldien, T.S., Roeske, S.M., Benowitz, J.A., Twelker, E., Miller, M.S. (2020), Ogliocene-Neogene lithospheric-scale reactivation of Mesozoic terrane accretionary structure in the Alaska Range suture zone, southern Alaska, USA, GSA Bulletin, doi:10.1130/B35665.1.

70. Lecocq, T. et al (76 authors), (2020), Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures, Science, eabd2438, doi:10.1126/science.abd2438.

69. Miller, M.S. (2020), Mapping Earth's deepest secrets, Science, 368 (6496), 1183-1184, doi:10.1126/science.abc3134.

68. °Harris, C.W., Miller, M.S., Supendi, P., Widiyantoro, S. (2020), Subducted lithospheric boundary tomographically imaged beneath arc-continent collision in eastern Indonesia, Journal of Geophysical Research, 125(8), e2019JB018854https://doi.org/10.1029/2019JB018854.

67. Supendi, P., Nugraha, A.D., Widiyantoro, S., Abdullah, C.I., Rawlinson, N., Cummins, P.R., °Harris, C.W., °Roosmawati, N., and Miller, M.S. (2020), Fate of forearc lithosphere at arc-continent collision zones: evidence from local earthquake tomography of the Sunda-Banda arc transition, Indonesia, Geophysical Research Letters, 47, doi:10.1029/2019GL086472.

66. °Li, Y., Miller, M.S., Sun, D. (2019), Seismic Imaging the D’’ Region beneath the Central Atlantic, Physics of the Earth and Planetary Interior, 292, 76-86, https://doi.org/10.1016/j.pepi.2019.05.005.

65. Boneh, Y., Schottenfels, E., Kwong, K., van Zelst, I., Tong, X., Eimer, M., Miller, M.S., Moresi, L., Warren, J.M., Wiens, D.A., Billen, M., Naliboff, J., Zhan, Z., (2019), Intermediate-depth earthquakes controlled by incoming plate hydration along bending-related faults, Geophysical Research Letters, 46, 3688-3697, doi:10.1029/2018GL081585.

64. Toy, V., Manatschal, G. Rosenbaum, G., Miller, M.S., and Carosi, R. (2019), Introduction to “Orogenic Cycles: From Field Observations to Global Geodynamics”, Tectonics, 38(1), 3-6, doi:10.1029/2018TC005376.

63. Martin-Short, R., Allen, R., Bastow, I., *Porritt, R.W., Miller, M.S. (2018), Seismic imaging of the Alaska subduction zone: implications for slab geometry and volcanism, Geochemistry, Geophysics, Geosystems, 19(11). https://doi.org/10.1029/2018GC007962.

62. Miller, M.S. and L. Moresi (2018), Mapping the Alaskan Moho, Seismological Research Letters, 89(6): 2430–2436. doi:10.1785/0220180222.

61. Attanayake, J., Thomas, C., Cormier, V.F., Miller, M.S., Koper, K.D. (2018),  Irregular Transition Layer Beneath the Earth's Inner Core Boundary from Observations of Antipodal PKIKP and PKIIKP Waves, Geochemistry, Geophysics, Geosystems, 19(10)https://doi.org/10.1029/2018GC007562.

60. °Harris, C.W., Miller, M.S., *Porritt, R.W. (2018), Tomographic Imaging of Slab Segmentation and Deformation in the Greater Antilles, Geochemistry, Geophysics, Geosystems, 19(8), https://doi.org/10.1029/2018GC007603.

59. Miller, M.S., *O'Driscoll, L.J., *Porritt, R.W., and Roeske, S.M. (2018), Multiscale crustal architecture of Alaska inferred from P reciever functions, Lithosphere, 10(2), 267-278, https://doi.org/10.1130/L701.1.

58. *Porritt, R. W., and M. S. Miller (2018), Updates to FuncLab, a Matlab based GUI for handling receiver functions, Computers & Geosciences, 111, 260-271, doi:10.1016/j.cageo.2017.11.022.

57. Ebinger, C., Keir, D., Bastow, I., Whaler, K., Hammond, J., Ayele, A., Miller, M.S., Tiberi, C., Haurot, S., (2017), Crustal structure of active deformation zones in Africa: Implications for global crustal processes, Tectonics, 36(12), doi:10.1002/2017TC004526.

56. Cooper, C.M. Miller, M.S. and L.N. Moresi, (2017), Structural evolution of the deep continental lithosphere, Tectonophysics, 695, 100-121 doi:10.1016/j.tecto.2016.12.004.

55.  Miller, M.S., *O'Driscoll, L.J., Roosmawati, N., °Harris, C.W., *Porritt, R.W., Teofilo de Costa, L., Soares, E., Widiyantoro, S., Becker, T.W., and West, A.J. (2016), The Banda Arc experiment: Transitions in the Banda Arc - Australian continent collision, Seismological Research Letters, 87(5), doi:10.1785/0220160124.

54. *Porritt, R.W., Miller, M.S., *O’Driscoll, L.J., °Harris, C.W., and Roosmawati, N. (2016) Continent-arc collision in the Banda Arc imaged by ambient noise tomography, for Earth and Planetary Science Letters, 449, 246-258, doi:10.1016.j.epsl.2016.06.011.

53.   Sun, D., Helmberger, D., Miller, M.S., and Jackson, J.M. (2016), Major disruption of D” beneath Alaska, Journal of Geophysical Research, 121(5), 3534-3556, doi:10.1002/2015JB012534.

52.   Jessell, M., Begg, G. and Miller, M.S. (2016), The geophysical signatures of the West African Craton, Precambrian Research, 274, 3-24, doi:10.1016/j.precamres.2015.08.010.

51.   Miller, M.S., *O’Driscoll, L., °Butcher, A.J., and Thomas, C. (2015), Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain, Earth and Planetary Science Letters, 431, 186-194, doi:10.1016/j.epsl.2015.09.026

49. °Gerault, M., Husson, L. Miller, M.S., and Humphreys, E. (2015), Topography, flat-slab subduction, and mantle dynamics in southwestern Mexico, Tectonics, 34(9), 1892-1909, doi:10.1002/2015TC003908.

48.  *Porritt, R.W., Miller, M.S., and Darbyshire, F.A. (2015), Lithospheric architecture beneath the Hudson Bay, Geochemistry, Geophysics, Geosystems, 16(7), 2262-2275, doi:10.1002/ 2015GC005845.

47. Hodges, M., and Miller, M.S. (2015), Mantle flow at the highly arcuate northeast corner of the Lesser Antilles subduction zone: constraints from shear-wave splitting analyses, Lithosphere, 7, 579-587, doi:10.1130/L440.1.

46.   *O’Driscoll, L.J. and Miller, M.S. (2015), Lithospheric thickness in Alaska determined by Sp receiver functions, Tectonics, 34(4), 694-714, doi:10.002/2014TC003669.

45.   van Hunen, J. and Miller, M.S. (2015), Collisional processes and links to episodic changes in subduction zones, Elements, 11(2), 119-124.

44.   Betts, P.G., Moresi, L., Miller, M.S., and °Willis, D. (2015), Geodynamics of oceanic plateau and plume head accretion and their role in Phanerozoic orogenic systems of China, Geoscience Frontiers, 6(1), 49-59.

43.   *Sun, D., Miller, M.S., °Holt, A., and Becker, T.W. (2014), Hot upwelling conduit beneath the Atlas Mountains, Morocco, Geophysical Research Letters, 41, 8037-8044.

42.   Levander, A., Bezada, M., Thurner, S., Palomeras, I., Masi, J., Humphreys, E.D., Schmitz, M., Gallart, J., Carbonell, R., and Miller, M.S. (2014), Subduction-driven recycling of continental margin lithosphere, Nature, 515, 253-256.

41.   Piana Agostinetti, N. and Miller, M.S. (2014), The fate of the downgoing oceanic plate: insight from the Northern Cascadia subduction zone, Earth and Planetary Science Letters, 408, 237-251.

40.   Faccenna, C., Becker, T.W., Miller, M.S., Serpelloni, E., and Willett, S. (2014), Isostasy, dynamic topography, and the elevation of the Apennines of Italy, Earth and Planetary Science Letters, 407, 163-174.

39.  Kim, Y., Lim, H., Miller, M.S., Pearce, F., and Clayton, R. (2014), Evidence of an upper mantle seismic anomaly opposing the Cocos slab beneath the Isthmus of Tehuantepec, Mexico, Geochemistry, Geophysics, Geosystems, doi:10.1002/2014GC005320, 15(7), 3021-3034.

38.   Bianchi, I., Miller, M.S., and Bokelmann, G. (2014), Insights on the upper mantle beneath the Eastern Alps, Earth and Planetary Science Letters, 403, 199-209.

37.   Miller, M.S. and Becker, T.W. (2014), Reactivated lithospheric-scale discontinuities localize dynamic uplift of the Moroccan Atlas Mountains: Comment – Reply, Geology, 42(6), doi:10.1130/G35715Y.1, 338.

36.   Moresi, L., Betts, P., Miller, M.S., Cayley, R. (2014) Dynamics of continental accretion, Nature, doi:10.1038/nature13033, 508 (7495), 245-248 (plus 11pp. supplement).

35.   *Sun, D., Miller, M.S., Piana Agostinetti, N., Asimow, P., Li, D. (2014), High frequency waves and slab structures beneath Italy, Earth and Planetary Science Letters, 391, 212-223.

34.  Cooper, C.M. and Miller, M.S., (2014), Craton formation: what happens after the early oceans closed, Lithosphere, 6 (1), 35-42.

33.   Miller, M.S., °Zhang, P., and Dolan, J.F. (2014), Moho structure across the San Jacinto fault zone: insights into strain localization at depth, Lithosphere, 6 (1), 43-47.

32.   Miller, M.S. and Becker, T.W. (2014), Reactivated lithospheric-scale discontinuities localize dynamic uplift of the Moroccan Atlas Mountains, Geology, doi:10.1130/G34959, 42, 35-38.

31.   Becker, T.W., Faccenna, C., Humphreys, E.D., Lowry, A., and Miller, M.S. (2014), Static and dynamic support of western U.S. topography, Earth and Planetary Science Letters, 402, doi:10.1016/j.epsl.2013.10.012, 234-246.

30.   Miller, M.S., Niu, F., and Vanacore, E. (2013), Aspherical structural heterogeneity within the uppermost inner core: insights into the hemispherical boundaries and core formation, Physics of the Earth and Planetary Interiors, 223, 8-20.

29.   *Sun, D. and Miller, M.S. (2013), Study of the western edge of African large low shear velocity province, Geochemistry, Geophysics, Geosystems, doi:10.1002/ggge/20185, 17pp.

28.   °Alpert, L.A., Miller, M.S., Becker, T.W., and °Allam, A.A. (2013), Structure beneath the Alboran from geodynamic mantle models of seismic anisotropy, Journal of Geophysical Research, 118(8) doi:10.1002/jgrb.50309, 4265-4277.

27.   Miller, M.S., °Allam, A.A., Becker, T.W., Di Leo, J. and Wookey, J. (2013), Constraints on geodynamic evolution of the westernmost Mediterranean and northwest Africa from shear wave splitting analysis, Earth and Planetary Sciences Letters, 375, 234-343.

26.   Miller, M.S. and Becker, T.W. (2012), Mantle flow deflected by interactions between subducted slabs and cratonic keels, Nature Geoscience, 10, 726-730 (plus 19pp. supplement).

25.   Miller, M.S. and Piana Agostinetti, N. (2012), Insights into the evolution of the Italian lithospheric structure from S receiver functions, Earth and Planetary Science Letters, 345, 49-59.

24.   Levander, A. and Miller, M.S. (2012), Evolutionary aspects of lithosphere discontinuity structure in the Western U.S., Geochemistry, Geophysics, Geosystems, 13, doi:10.1029/2012GC004056, 22pp.

23.  Kim, Y., Miller, M.S., Pearce, F., and Clayton, R.W. (2012) Seismic imaging of the Cocos plate subduction zone system in central Mexico, Geochemistry, Geophysics, Geosystems, 13, doi:10.1029/2012GC004033, 16pp.

22.   Reid, M. R., Bouchet, R. A., Blichert-Toft, J., Levander, A., °Liu, K., Miller, M.S., and Ramos, F. C. (2012). Melting under the Colorado Plateau, USA. Geology, 40, 387-390.

21.   *Bailey, I.W., °Alpert, L.A., Becker, T.W., and Miller, M.S. (2012) Co-seismic deformation of slabs based on summed CMT data, Journal of Geophysical Research, 117, doi:10.1029/2011JB008943, 19pp.

20. *Bailey, I.W., Miller, M.S., Levander, A., and °Liu, K. (2012), VS and density structure beneath the Colorado Plateau constrained by gravity anomalies and joint inversions of receiver function and phase velocity data. Journal of Geophysical Research, 17, doi:10.1029/2011JB008522, 18pp.

19.   Miller, M.S. and Piana Agostinetti, N. (2011), Erosion of the continental lithosphere at the cusps of the Calabrian arc: evidence from S receiver functions analysis. Geophysical Research Letters, 38, doi:10.1029/2011GL049455, 6pp.

18. Levander, A., Schmandt, B., Miller, M.S., °Liu, K., Karlstom, K.E., Crow, R.S., and Humphreys, E.D., (2011), Recent Colorado Plateau uplift by delamination and thermo-chemical downwelling of North American lithosphere, Nature, 472, 461-465 (plus 15pp. supplement).

17. °Liu, K., Levander, A., Niu, F., and Miller, M.S. (2011), Imaging crustal and upper mantle structure beneath the Colorado Plateau using finite-frequency Rayleigh wave tomography, Geophysics, Geochemistry, Geosystems, 12, doi:10.1029/2011GC003611, 24pp.

16.   Miller, M.S. and Eaton, D.W. (2010), Formation of cratonic mantle keels by arc accretion: evidence from S-receiver functions, Geophysical Research Letters, 37, doi:10.1029/2010GL044366, 5pp.

15.   Mason, W.G., Moresi, L., Betts, P.G., and Miller, M.S. (2010), Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones, Tectonophysics, 483, 71-79.

14.  Miller, M.S., Levander, A., Niu, F., and Li, A. (2009). Upper mantle structure beneath the Caribbean – South American plate boundary from surface wave tomography. Journal of Geophysical Research, 114, B01312, doi:10.1029/2007JB005507, 13pp.

13. Miller, M.S. (2008), News and Views on Seismology: Breaking the slab? Nature Geoscience, 1 (11), 730-731.

12.  Miller, M.S. and Lee, C.-T.A. (2008), Possible chemical modification of oceanic lithosphere by hotspot magmatism: seismic evidence from the junction of Ninety-east Ridge and the Sumatra-Andaman arc, Earth and Planetary Science Letters, 265 (3-4), 386-395.

11. Clark, S.A., Sobiasiek, M., Zelt, C.A., Magnani, M.B., Miller, M.S., Bezada, M.J., and Levander, A. (2008), Identification and tectonic implications of a tear in the South American plate at the southern end of the Lesser Antilles, Geochemistry, Geophysics, Geosystems, 9 (11), doi:10.1029/2008GC002084, 10pp.

10. Rosenbaum, G., Gasparon, M., Lucente, F.P., Peccerillo, A., and Miller, M.S. (2008), Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism, Tectonics, 27,  TC2008, doi:10.1029/2007TC002143, 16pp.

9.     Miller, M.S. and Niu, F. (2008), Bulldozing the core-mantle boundary: localized seismic scatterers beneath the Caribbean, Physics of the Earth and Planetary Interiors, 70, 89-94.

8.     Miller, M.S. and Kennett, B.L.N. (2006), Evolution of mantle structure beneath the Northwest Pacific: evidence from seismic tomography and paleogeographic reconstructions. Tectonics, 25, doi:10.1029/2005TC001909, 14pp.

7.     Miller, M.S., Kennett, B.L.N., and Toy, V. (2006), Spatial and temporal evolution of the subducting Pacific Plate structure along the Western Pacific margin. Journal of Geophysical Research, 111, doi:10.1029/2005JB003705, 14pp.

6.     Miller, M.S., Kennett, B.L.N., and Gorbatov, A. (2006), Morphology of the distorted subducted Pacific slab beneath the Hokkaido corner, Japan, Physics of the Earth and Planetary Interiors, 56, 1-11.

5.     Miller, M.S., Gorbatov, A., and Kennett, B.L.N. (2006), Three-dimensional visualization of a near vertical slab tear beneath the southern Mariana Arc. Geochemistry, Geophysics, Geosystems, 7, Q06012, doi:10.1029/2005GC001110, 8pp.

4.     Miller, M.S., Gorbatov, A., and Kennett, B.L.N. (2005), Heterogeneity within the subducting Pacific slab beneath the Izu-Bonin-Mariana arc: evidence from tomography using 3D ray-tracing inversion techniques. Earth and Planetary Science Letters, 235 (1-2), 331-342.

3.     Miller, M.S. (2005), Active seismicity in the Flinders Ranges. in: Aikman, A., Lilly, K., Celerier, J., Kovacs, I., and Estermann, G. (eds). An excursion guide to the Flinders Ranges, South Australia. Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, 20, Paper 18, 6pp.

2.     Miller, M.S., Kennett, B.L.N., and Lister, G.S. (2004), Imaging changes in morphology, geometry, and physical properties of the subducting Pacific plate along the Izu-Bonin-Mariana arc. Earth and Planetary Science Letters. 224 (3-4), 363-370.

1.     Miller, M.S., and Powell, K. (2001), Seismic Interpretation and Processing Applications, in M. Poulton (ed) Computational Neural Networks for Geophysical Data Processing:  Pergamon, p. 101-118.

*postdoc, °graduate student, undergraduate student

EMSC2022:  Introduction to Global Geophysics

Deployment of nodal seismometers at ANU's Mt Stromlo seismic observatory - August 2020.

Field course in Morocco - May 2014