Using dense seismic arrays to map deep mantle sharp features (Miller and Sun)

Observations of seismic phases sampling the lower mantle have suggested Ultra Low Velocity Zones (ULVZs), a possible perovskite to postperovskite related D” layer, Large Low Shear Velocity Provinces (LLSVPs), and rolling-hills of primordial material on the core-mantle boundary (CMB). Considerable progress has been made toward developing dynamical and mineralogical based mantle models compatible with seismic observations at the deep mantle, yet many details are still missing. It is still uncertain whether the densities and velocities of ULVZs are related to possible partial melting or have a distinct chemical origin, but the information about physical properties needed to answer this question are poorly constrained. For example the major phase used in imaging ULVZs, SPdKS, is not particularly sensitive to density and the velocities have strong trade-off with the shape of the structures. 

This project aims to answer questions: (1) Can we resolve and distinguish between the trade-off of different elastic properties? (2) Can we determine the 3D geometry of the ULVZ’s? (3) Are there other types of low velocity zones besides ULVZs existing at CMB? (4) How compatible are the inferred slab histories with the presence of lower mantle structures? (5) What is the relationship between D” and slabs in the deep mantle? (5) How well can we resolve the edges of the LLSVPs? 

For more information about this potential research topic or activity, or to discuss any related research area, please contact A/Prof Meghan Miller


Prof. Daoyuan Sun - University of Science and Technology China