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Each of the following problems illustrate an aspect of Monte Carlo methods, namely numerical inte-
gration, error analysis and parameter search, and Bayesian sampling. Each requires you to write some
computer code. Feel free to use whatever programming language you feel most comfortable with. We’ll
focus on doing them with MATLAB and python in the practical class, but you could try on your own
using another programming language if you prefer.

Problem 1: Monte Carlo integration. The mass of an irregularly shaped object

With Monte Carlo integration any type of integral can be evaluated numerically. Figure 1 shows the
example of a set of circular objects inside a square box B (with side = 2m and area = 4m2). If the
thickness of the plate is a constant, z = 1m, then the mass is given by the integral of its density over
the volume of the disc. The purpose of this exercise is to evaluate the mass of various irregularly shaped
objects using numerical integration.
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Figure 1: Monte Carlo integration in complex domains by throwing random darts.

1. If density is a constant (1kg/m3) the mass, M , of the circular plate with blue outline (region R1)
is given by an integral over the square box, B,

M =

∫
B
d(x, y)dxdy (1)

where d(x, y) is the density as a function of position and given by

d(x, y) = 1 if (x,y) lies inside chosen region

= 0 Otherwise

From simple geometry the mass of the circular plate is equal to πr2z. With thickness z = 1 and
radius r = 1 this gives a mass of π kg. Write a program to evaluate the mass using Monte Carlo
integration and see how quickly it converges to this value.
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Procedure:

(a) First generate N random points inside the box B and count those that fall inside the circular
region R1, call this value h, i.e. h =

∑N
i=1 d(xi, yi).

(b) Recall that the Monte Carlo estimate of the integral (1) is given by

Mmc =
N∑
i=1

d(xi, yi)

ρi
(2)

where (xi, yi) is the position of the ith random sample and ρi is the sampling density at that
point. Since the box has volume = 4m3 and there are N samples the density is uniform we
have ρi = N/4, which gives

Mmc =
4h

N
(3)

Evaluate the Monte Carlo approximation to the mass as a function of the number of points,
N , and see how quickly this converges to the correct answer.

2. Repeat the Monte Carlo integration to find the mass of the irregular objects contained within the
blue circle and red vertical lines at x = ±0.6m (region R2 in figure 1),

3. Now do the same again within the blue circle and red vertical lines but outside the green circle
with radius r = 0.5m (region R3 in figure 1).

4. Repeat the integral for regionR3 but with density varying inversely with radius, d(x, y) = 0.1(x2+
y2)1/2

5. You could also plot the 1 σ error for each integral using the formula in the notes. Recall we have
the general formula

σMC =

 N∑
i=1

d(xi, yi)
2

ρ2i
− 1

N

(
N∑
i=1

d(xi, yi)

ρi

)2
1/2

(4)

Substituting from above we have

σMC =
4

N

[
h(1− h

N
)

]1/2
(5)

Even though there is no simple analytical solution for the integrals over shapes R2 and R3, they are just
as easy to evaluate with Monte Carlo integration by rejecting the random points which fall outside the
required region.
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Problem 2: Error propagation with the Bootstrap: The cannonball problem
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Figure 2: Cannon heights as a function of time.

A cannon ball is fired directly upwards from an unknown starting height above the surface, m1, with
unknown initial velocity, m2 and unknown gravitational acceleration, m3 . Newton’s laws of motion tell
us that the relationship between position and time follows

y(t) = m1 +m2t−
1

2
m3t

2. (6)

An experiment has been performed and heights, yi, (i = 1, . . . , 8) are collected at fixed time intervals of
a second. We obtain the data

y t
26.94 1.0
33.45 2.0
40.72 3.0
42.32 4.0
44.30 5.0
47.19 6.0
43.33 7.0
40.13 8.0

To find the unknowns (m1,m2,m3) we must fit a quadratic curve (equation 2) to the observed data (see
figure 2). This can be achieved by evaluating the following expression

 m1

m2

m3

 =

 N
∑
ti −1/2

∑
t2i∑

ti
∑
t2i −1/2

∑
t3i

−1/2
∑
t2i −1/2

∑
t3i 1/4

∑
t4i

−1 ∑
yi∑

tiyi
−1/2

∑
t2i yi

 (7)

where N = 8 is the number of data, (yi, ti) represent the ith data pair and each summation is over all N
data. All terms on the right hand side of equation (7) are known and so its a simple case of plugging in
values to determine the best fit estimates of (m1,m2,m3). Write a computer code to calculate the best
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fit values of the three unknowns (height, velocity and gravitational acceleration). We call these values
(m0

1,m
0
2,m

0
3) our solution. By the way can you guess where this experiment took place ?

The problem now is to use the bootstrap to determine how error in the data propagate into the estimated
unknowns. We do not know the size of errors in the data but we can apply the bootstrap. Since the data
are associated with increasing time it does not make sense to directly resample the data (because we
could end up with two heights of the same value associated with different times). The data are not IID,
since they belong to a trend. However we can still proceed by applying the bootstrap principle to the data
residuals produced by the best fit solution., i.e. we have 8 residuals, ri, where

ri = yi −m0
1 −m0

2ti +
1

2
m0

3t
2
i . (i = 1, . . . , 8).

If we assume that the residuals are IID they can be re-sampled with replacement in the usual way to form
multiple sets of 8 residual values r∗j , (j = 1, . . . , 8) and new bootstrap data are constructed using this set
of residuals by

y∗j = r∗j +m0
1 +m0

2tj −
1

2
m0

3t
2
j . (j = 1, . . . , 8).

Using this approach the residuals are mixed between different data, and so each y values does not simply
get its own residual back. Write a computer code to build bootstrap data sets and for each of these
insert them into the above expressions to calculate the bootstrap estimates of the unknowns. Lets call
these (mi

1,m
i
2,m

i
3), (i = 1, . . . , B). The number of bootstrap samples B is your choice but it should be

at least 100.

95 % 

68 % 

99 % 

Best fit
solution 

m1

m2

Bootstrap
solutions

Figure 3: Bootstrap solutions and confidence intervals distributed about the best fit solution.

It can be instructive to plot the bootstrap samples as a scatter plot for the three pair of variables, i.e.
(mi

1,m
i
2), (m

i
2,m

i
3) and (mi

1,m
i
3), (i = 1, . . . , B). They should look something like figure 3.

From the bootstrap output samples (mi
1,m

i
2,m

i
3), (i = 1, . . . , B) and the formulae in your handouts

calculate the i) the mean, ii) the variance, iii) the bias corrected solution, and iv) the 95% confidence
intervals for each of the three unknowns . The mean should look similar to the best fit values and the
bias should be small. The variance and confidence intervals characterize the error in the estimated values
of the unknowns.
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Problem 3: Parameter search with nested grids

Suppose we have two unknowns, (x1, x2). We measure x1 directly and obtain a value of 1±σ (where the
measurement error is σ = 10). Suppose also that we know the following property should hold, x21 = x2.
We wish to find the best compromise values of (x1, x2) which both fit the data and the extra constraint.
We could solve this problem by finding (x1, x2) which minimizes the least squares misfit function

f(x1, x2) =
(1− x1)2

100
+ (x2 − x21)2. (8)

This is hardly necessary because the solution is fairly obvious, i.e. x1 = x2 = 1, and indeed this solution
corresponds to a global minimum in the misfit function f(1, 1) = 0. The misfit surface is plotted in
figure 4 and is known as the Rosenbrock function1. Although its global minimum is known it can be
quite difficult to locate with an optimization algorithm (because it lies at the end of a long valley).

Figure 4: The Rosenbrock data misfit function for a two parameter problem.

1. Find the global minimum of this function using simple uniform Monte Carlo random search. Write
a computer program to generate random points in a plane in the ranges −1.5 ≤ x1 ≤ 1.5, and
−1.5 ≤ x2 ≤ 1.5. Calculate f(x1, x2) for each of your points and monitor the minimum as a
function of the number of points. How many do you need to generate to get a good solution? It
can be instructive to plot the minimum in f(x1, x2) as a function of the number of points you
generate.

2. Now repeat the exercise but stop the process after a fixed number of samples, say Ns (you choose
Ns). Then centre a new smaller box with side length L (you choose L, e.g. 1/2 or 3/4 of the length
of the original) at your current best solution and repeat the process. You have built a nested grid
parameter search scheme. Repeat this several times and see if the solution is more accurate and
the convergence any quicker than with the single stage approach.

3. If you want a challenge then repeat the problem with multiple unknowns and data. The N variable
Rosenbrock function is

f(x1, x2, . . . , xN ) =

N−1∑
i=1

(1− xi)2 + 100(xi+1 − x2i )2. (9)

1Actually the Rosenbrock function is a factor of one hundred larger, i.e. 100f(x, y).
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But beware this function has local minima as well as a global minimum.

Problem 4: How much profit can you make from Lotto?

The question refers to how we can use published information about the number of Lotto winners and the
likelihood of winning to determine how much profit the owners (and not you) make from a given Lotto
game.

The unknown in the problem is the total number of entries (i.e. sets of 6 numbers) sold, which we will
call n, from knowledge of the number of winners of each division di, (i = 1, . . . , Ndiv), where Ndiv

is 6 for the example below. The values of di, (i = 1, . . . , Ndiv) are our data and are assumed to be a
known set of integers without error. Of course, since both the cost per entry and the total prize money
are published then an estimate of n, allows a direct inference on the total profit before costs made by the
lotto organisation. (In reality the real value of n is never made public!)

We will attack the problem both from a Frequentist viewpoint, using the data to make a single estimate of
n, and also a Bayesian inference viewpoint where we use the data to construct a probability distribution
for n.

Background theory

The probability of winning each division, is independent of the total number of entries n, so these may
be treated as a set of known constants, pi, (i = 1, . . . , Ndiv), the value of which depends on the details
of the game.

i 1 2 3 4 5 6

di 14 169 3059 149721 369543 802016

p−1
i 8145060 678756 36696 732 300 144

Table 1: Tattslotto dividend results for draw number 3253 on 29/09/2012. Total prize pool of $49.92m, with
division 1 prize of $22m. The cost of a single entry is about $0.65.

1. A Frequentist solution might be to take the number of winners of each division and divide by the
probability of winning to get multiple estimates of n. These estimates are independent and we
could average them. Do this for the data above to get an estimate for n. By how much do these
estimates vary ?

2. A Bayesian inference approach requires us to find the Likelihood and prior and then multiply them
together. Lets assume our prior is uniform between 1 < n < 3× 108 which is a safe assumption.
The likelihood is the probability of the data given the model, i.e. the probability that there would
be di winners of division i and n − di non winners when there are n tickets sold. The binomial
theorem tells us that this probability, p(di|n), is given by

p(di|n) =
n!

di!(n− di)!
× pdii (1− pi)

n−di (10)
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All values in this expression are known except the single unknown n. Since the number of winners
in each division provides independent data, the total likelihood is the product of similar terms for
each division, i.e.

p(d|n) =
Ndiv∏
i=1

p(di|n) (11)

Bayes’ theorem says that to find the a posteriori probability distribution for the unknown n we just
multiply the likelihood by the prior. Since the prior is a constant the result is

p(n|d) ∝
Ndiv∏
i=1

n!

(n− di)!
× (1− pi)n−di (12)

which holds for 1 ≤ n ≤ 3×108. Outside this range the posterior PDF is zero because the prior is
zero. Our only interest is in the unknown n and so the constant of proportionality is used to absorb
all quantities independent of n.

Your task is to use the values of (di, pi), i = 1, . . . , 6 from the table and plot the probability
distribution as a function of n. Do this in the range 112.5m - 114.5m and your figure should look
similar to figure 5. Compare this curve to the single frequentist estimate of n you obtained in part
1, what do you notice?

[Hint: In any computer program it is always best to calculate log p(n|d)
first and then take an exponent to evaluate the curve as a function
of n. Stirling’s formulae for the approximation to n! may be useful.
This is what is done in the example solution script lotto.py]
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Figure 5: Bayesian posterior PDF for number of tickets sold in Lotto game 3253. The red line is the mean of the
estimates obtained from table .

3. Repeat the problem using the Maximum Likelihood (ML) approach. This is done by finding
the value of n which maximises the the likelihood expression in eqn. (11). Since the prior is a
constant for this problem the likelihood is proportional to the curve you produced in part 2. You
could probably do it visually. Plot the average estimate you obtained in part 1 on top of the curve
from part 2. How does the ML solution compare to the solution from part 1?
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Problem 5: Bayesian inference: Regression

Suppose we have a 2-D data set of noisy (x, y) values and have no idea about the underlying function
which produced it (Figure 6). The task is to recover information about the (red) function from the
observations. In this exercise you can do this without fixing the complexity (polynomial order) of the
curve in advance. Instead the data is used to constrain the number of degrees of freedom in the curve
using (transdimensional) Bayesian sampling.
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Figure 6: 2-D data set. Red curve is the real function, dots are observed data.

This exercise makes use of Bayesian Markov chain Monte Carlo sampling software contained in the
AuScope-ilab inversion software library. The library is available as Fortran or C source code with a
python interface. A tutorial to the python routines is available on the course website. The tutorial can be
used as a guide to carry out the following exercises. In fact you can either try and write python scripts
yourself to carry out the exercises below, or just load the solutions, run them and examine what they do.

The task is to estimate the red curve, as well as its uncertainty using the Partition Modelling algorithm
described in the lectures. This is implemented in the python software library rjmcmc.

Lets assume that the errors are independent and only in the y-co-ordinate and have a Gaussian distribu-
tion, with variance σ2i . If the data are yi, (i = 1, . . . , n) and the model predictions at the same locations
are yi, (i = 1, . . . , n), then the Likelihood function which measures the success of the model in fitting
the data is given by

p(d|m) =
1

(2π)n/2
∏n
i=1 σi

e−
∑n

i=1[y
obs
i −yi(m)]2/σ2

i . (13)

1. Follow instructions in the rjmcmc library tutorial guide (file rjmcmc tutorial single.pdf) to load
the given data set of (xobsi , yobsi ) values and plot the data. (This is done for you by running the
script ch1-loading.py.)

2. In this exercise we assume a polynomial representation for the unknown function (red curve) with
maximum order 5 and a uniform prior PDF.

p(m|d) ∝ 1

(2π)n/2
∏n
i=1 σi

e−
∑n

i=1[y
obs
i −yi(m)]2/σ2

i . (14)

Follow instructions in the rjmcmc library tutorial guide to sample from the Bayesian posterior PDF
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using an McMC algorithm. Use the 1-D Partition modelling software to generate 50000 curves
and take the mean. (This is done for you by running the script ch2-analyse.py.)
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Figure 7: 2-D data set with mean reconstructed model from 50000 McMC samples.

You should get a figure similar to figure 7.

3. In this example the maximum order of the polynomial has been fixed at 5. Use script ch3-orderanalysis.py
to adjust the maximum order between 0 and 5 and plot the posterior distribution of the order. Plots
the two figures showing the mean predicted curve for each case (Figure 8a)and the posterior PDF
on the order of the polynomial (Figure 8b). The shows how the data support has detected the
degree of
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Figure 8: a) (left) Means models for 6 separate McMC runs with different maximum order of polynomial, 0 to
5; b) (right) Posterior probability distribution showing the support of the data for different polynomial orders as a
function of maximum order.

4. Repeat the run with maximum order 5 to generate an ensemble of solutions, just as in exercise 2
above, only this time use the library routines to plot a density model of the entire ensemble. In this
way we get a visual impression of the error in the predicted curve. You can use script Use script
ch4-confidence.py to do this and you should get a plot similar to Figure 9.

5. Use the script ch5-hierarchical.py to try and estimate the standard deviation of the noise
in the data. In fact we invert for a parameter λ which is the ratio of the estimated noise (i.e. σ in
eqn. 10) to the true noise. Plot a histogram of the results and see how well the Bayesian sampling

9



0 2 4 6 8 10
15

10

5

0

5

10

15

Figure 9: Grayscale image of probability density of all curves in the ensemble when assuming maximum polyno-
mial order equal to 5.

is able to constrain the level of noise in the data. Your results should be similiar to Figure 10. If
the data were estimated with σ = 3, what do you think the true value was ?
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Figure 10: Posterior PDF of the data noise parameter λ values found from sampling.
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Problem 6: Bayesian inference: Regression with discontinuities

Now consider a new data set of noisy (x, y) values only this time with discontinuities evident (See figure
11). The task is again to recover information about the (red) function from the observations, but this time
the data must also be used to constrain the number and position of discontinuities.

This exercise is an expanded version of the previous one only now we allow for multiple polynomial
functions separated into partitions along the x axis. We do not know where the discontinuities occur, nor
how many there are. Algorithms for constructing solutions using the Partition modelling approach are
in the python software library rjmcmc. To carry out the exercise you need to follow the rjmcmc library
tutorial guide (file rjmcmc tutorial multi.pdf).

The same Likelihood function and prior is assumed as in problem 4, only now we introduce the number
of partitions as unknowns and this also has a flat prior.

1. Follow instructions in the rjmcmc library tutorial guide to load the new data set of (xobsi , yobsi )
values and plot the data (similar to Figure 11). (This is done for you by running the script
ch1-loading.py.)

2. In this exercise we assume a polynomial representation for the unknown function (red curve) with
maximum order 1 and a uniform prior PDF, and also sample over the number of partitions and the
locations of the discontinuities.

Follow instructions in the rjmcmc library tutorial guide to sample from the Bayesian posterior PDF
using an McMC algorithm. Use the 1-D Partition modelling software to generate 50000 curves
and take the mean. (This is done for you by running the script ch2-analyse.py.) Plot the a)
the mean curve, b) the posterior PDF of the discontinuity locations and c) the posterior PDF of the
number of partitions. Your figures should be similar to Figure 12.

Looking at the results of the Bayesian sampling try and answer the following: How many partitions
have been detected ? Where are the most likely location of the partition boundaries/discontinuities
? Can you see a difference in how well the data is able to detect boundaries of each partition ?
What would you estimate as the likely position and error of the discontinuities ?

3. In the previous example linear polynomials were used in each partition. We now increase the
maximum order of the polynomial to 5, meaning that up to quintic polynomials are used within
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Figure 11: 2-D data set with discontinuities. Red curve is the real function, dots are observed data.
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Figure 12: a) (Top left) 2-D data set with mean reconstructed model from 50000 McMC samples; b) (bottom left)
the posterior PDF of the location of discontinuities in the data (notice the two peaks); c) the posterior PDF of the
number of partitions detected in the data.

each partition. Script ch3-orderanalysis.py does this for you are reruns the Markov chain.
Plot the same figures as in the previous exercise showing a) the mean curve, b) the posterior PDF
of the discontinuity locations and c) the posterior PDF of the number of partitions. See how they
have changed at the inference process now picks out the discontinuity number and location much
better. Your figures should be similar to Figure 13. Using these probabilistic sampling results we
might draw different conclusions than in Q2, but remember here the maximum polynomial order
provided as prior information to the Bayesian procedure is different from in Q2.
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Figure 13: a) (Top left) 2-D data set with mean reconstructed model from 50000 McMC samples, with maximum
order of polynomial set to 5; b) (bottom left) the posterior PDF of the location of discontinuities in the data (notice
the two peaks); c) the posterior PDF of the number of partitions detected in the data.

4. Repeat the run, only this time use the library routines to plot a density model of the entire ensemble
of curves and 95% confidence intervals at each point along the axes. In this way we get a visual im-
pression of the error in the predicted curve. You can use script Use script ch4-confidence.py
to do this and you should get a plot similar to Figure 14. This gives an indication of the confidence
in the predictive capability of the ensemble of curves.
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Figure 14: a) (left) Grayscale image of probability density of all curves in the ensemble when maximum polyno-
mial order equal to 5 inside each partition; b) (right) 95% (point by point) confidence intervals from the ensemble
of solutions.
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