
Multiple Partition Regression Analysis
Rhys Hawkins and Malcolm Sambridge
September 24, 2012

This tutorial describes how to analyse discontinuous data using
Monte-Carlo Markov-Chain based regression.

Pre-requisites

This tutorial is for the Python version of the rjmcmc library. The
examples rely on the Matplotlib library for plotting. The versions
used in the development of this tutorial are as follows:

• Python 2.7.1

• rjmcmc 0.1.0

• Matplotlib 1.1.0

The Data

Similar to the single partition tutorial we will use a non-trivial syn-
thetic dataset with added noise. The difference this time is that
we will add a series of discontinuities or step functions and a sign
change.

The base function that is used is an exponentially increasing sine
wave over the domain 0 . . . 10, ie:

y = stepsign(x)× e
x
3 sin

2x
3

+ step(x) (1)

Where the step and stepsign functions are defined as follows:

step(x) =

15 x < 2.5

−20 2.5 ≥ x < 5
0 otherwise

(2)

stepsign(x) =

−1 x < 2.5

1 2.5 ≥ x < 5
−1 otherwise

(3)

0 2 4 6 8 10
25

20

15

10

5

0

5

10

15

20

Figure 1: The Synthetic Data

The actual dataset unevenly (though with fairly good coverage)
samples this function and adds some Gaussian noise and these val-
ues are save to an ASCII text file. A plot of the synthetic data points
with the true function is shown in Figure 1.

multiple partition regression analysis 2

Loading the Data

For those unfamiliar with Python, we discuss briefly the loading of
data from a simple ASCII text file. The code for loading the data and
doing a simple plot is shown in Listing 1.

Listing 1: Loading the Data
1 #
2 # Impor t t h e l i b r a r i e s we w i l l need f o r a n a l y s i s and p l o t t i n g .
3 #
4 import rjmcmc
5 import m a t p l o t l i b
6 import m a t p l o t l i b . pyplot
7

8 #
9 # Open our d a t a f i l e which c o n s i s t s o f one (x , y) c o o r d i n a t e r p e r l i n e

10 # s e p a r a t e d by w h i t e s p a c e
11 #
12 f = open (’ data . t x t ’ , ’ r ’)
13 l i n e s = f . r e a d l i n e s ()
14

15 x = []
16 y = []
17

18 for l i n e in l i n e s :
19 columns = l i n e . s p l i t ()
20

21 x . append (f l o a t (columns [0]))
22 y . append (f l o a t (columns [1]))
23

24 f . c l o s e ()
25

26 f i g = m a t p l o t l i b . pyplot . f i g u r e ()
27

28 m a t p l o t l i b . pyplot . p l o t (x , y , ’ ko ’)
29

30 f i g . s a v e f i g (’ ch1−loading . pdf ’ , format= ’PDF ’)
31 m a t p l o t l i b . pyplot . show ()

The ASCII file contains an x, y pair per line separated by a space.
On line 12, we use the built in function open to open the file. One
lines 15 and 16 we initialize 2 list that will contain the x and y coordi-
nates in the file. On line 18 we loop through the lines in the file and
add each x, y pair to the 2 separate lists.

0 2 4 6 8 10
25

20

15

10

5

0

5

10

15

20

Figure 2: The Plot of the Data

From line 26 onwards, we plot the data using the matplotlib li-
brary and save the plot to a PDF file. The plot resulting from this
script can be seen in Figure 2.

Running the default analysis

For performing a regression analysis on a continuous dataset the
function is called regression_part1d. The parameters for this func-
tion are mostly the same as the regression_single1d function with
the only additional required parameter being pd.

The complete list of parameters for this function are as follows
with default values shown where applicable:

dataset The dataset object to run the analysis on. This is an rjm-
cmc.dataset1d object which wraps the x and y vectors you load
from the file and includes individual point noise values. This is the
only parameter which doesn’t have a default value.

pd The standard deviation for the perturbation of partition bound-
aries.

multiple partition regression analysis 3

burnin = 10000 The number of initial samples to throw away.

total = 50000 The total number of samples to use for the analysis.

max_order = 1 The maximum order of polynomial to use to fit the
data.

xsamples = 100 The number of points to sample along the x direction
for the curve.

ysamples = 100 The number of points to sample along the y directory
for the statistics such as mode, median and confidence intervals.
This is the number of bins for the histograms in the y direction.

confidence_interval = 0.95 The confidence interval to use for mini-
mum and maximum confidence intervals. This should be a value
between 0 and 1.

For this analysis we are only going to use the default values and
the listing is shown in Listing 2.

Listing 2: Running the Default Analysis
1 #
2 # Impor t t h e l i b r a r i e s we w i l l need f o r a n a l y s i s and p l o t t i n g .
3 #
4 import rjmcmc
5 import m a t p l o t l i b
6 import m a t p l o t l i b . pyplot
7

8 #
9 # Open our d a t a f i l e which c o n s i s t s o f one (x , y) c o o r d i n a t e p e r l i n e

10 # s e p a r a t e d by w h i t e s p a c e
11 #
12 f = open (’ data . t x t ’ , ’ r ’)
13 l i n e s = f . r e a d l i n e s ()
14

15 x = []
16 y = []
17

18 for l i n e in l i n e s :
19 columns = l i n e . s p l i t ()
20

21 x . append (f l o a t (columns [0]))
22 y . append (f l o a t (columns [1]))
23

24 f . c l o s e ()
25

26 #
27 # S e t our x range
28 #
29 xmin = 0 . 0

30 xmax = 1 0 . 0

31

32 #
33 # E s t i m a t e our e r r o r s t a n d a r d d e v i a t i o n
34 #
35 sigma = 3 . 0

36 n = [sigma] * len (x)
37

38 #
39 # C r e a t e t h e rjmcmc d a t a s e t
40 #
41 data = rjmcmc . dataset1d (x , y , n)
42

43 #
44 # S p e c i f y t h e s t a n d a r d d e v i a t i o n f o r t h e move p a r t i t i o n
45 #
46 pd = 1 . 0

47

48 #
49 # Run an a n a l y s i s wi th r e d u c e d max o r d e r t o on ly a l l o w l i n e a r
50 # segments
51 #
52 burnin = 10000

53 t o t a l = 50000

54 max_part i t ions = 10

55 max_order = 1

56

57 r e s u l t s = rjmcmc . regress ion_par t1d (data ,

multiple partition regression analysis 4

58 pd ,
59 burnin ,
60 t o t a l ,
61 max_part i t ions ,
62 max_order)
63

64 #
65 # R e t r i e v e t h e mean c u r v e f o r p l o t t i n g
66 #
67 xc = r e s u l t s . x ()
68 meancurve = r e s u l t s . mean ()
69

70 #
71 # R e t r i e v e t h e p a r t i t i o n l o c a t i o n and count i n f o r m a t i o n
72 #
73 p a r t l o c a t i o n = r e s u l t s . p a r t i t i o n _ l o c a t i o n _ h i s t o g r a m ()
74 partcount = r e s u l t s . p a r t i t i o n s ()
75

76 #
77 # P l o t t h e d a t a with b l a c k c r o s s e s and t h e mean with a r e d l i n e
78 #
79 f i g = m a t p l o t l i b . pyplot . f i g u r e (1)
80

81 a = m a t p l o t l i b . pyplot . subplot (2 1 1)
82

83 a . p l o t (x , y , ’ ko ’ , xc , meancurve , ’ r− ’)
84 a . se t_x l im (xmin , xmax)
85

86 b = m a t p l o t l i b . pyplot . subplot (2 1 2)
87 b . bar (xc , p a r t l o c a t i o n , xc [1] − xc [0])
88 b . se t_x l im (xmin , xmax)
89

90 f i g . s a v e f i g (’ ch2−analyse . pdf ’ , format= ’PDF ’)
91

92 f i g = m a t p l o t l i b . pyplot . f i g u r e (2)
93

94 a = m a t p l o t l i b . pyplot . subplot (1 1 1)
95 a . h i s t (partcount , bins =5 , range = (0 , 5) , a l i g n = ’ l e f t ’)
96

97 f i g . s a v e f i g (’ ch2−analyse−partcount . pdf ’ , format= ’PDF ’)
98

99 m a t p l o t l i b . pyplot . show ()

The preamble (lines 1 . . . 24) consists of loading the file as in the
previous section.

An important part of the analysis is estimating the error in the
data. This is specified as a error value per data point and can be
thought of a weighting as to how well the fit will attempt to fit an
individual point. If the value is low, then the fit will be tight and
conversely if the value is high then the fit will be loose. On lines 35

and 36 we set a value of 3.0 for all data points. Use this value for
now, but try other values greater than 0.0 to see the effect.

On line 41 we construct the dataset1d object from the x, y and n
lists we created. These lists must be the same length.

On line 46 we set the value for the pd parameter. With partition
modelling, a variable number of discontinuities are trialed at random
locations along the x-axis. As part of the fitting process, the locations
of these discontinuities are perturbed by an amount determined
by sampling from a normal distribution with a standard deviation
given by the pd parameter. We will discuss how to choose this value
latter, but for now a useful rule of thumb would be to set it to 5 to 10

percent of the range of the data. So in this case our range is 10, so a
pd of 1 would seem a good first approximation.

On line 57 we run the analysis with this dataset1d object. The
regression_single1d function returns a resultset1d object which con-
tains various results and diagnostics about the analysis. For this
simple analysis we simply take the x sampling coordinates and the
mean of the fits. And plot the mean with the original data points to

multiple partition regression analysis 5

see how representative the mean is. This plot is shown in Figure 3.

0 2 4 6 8 10
25
20

15
10

5
0

5
10

15
20

0 2 4 6 8 10
0

2000

4000

6000

8000

10000

12000

14000

Figure 3: The Default Analysis Plot

In the plot, rather than just plotting the mean of the fits, we have
also plotted the histogram of the location of the partition boundaries
which indicates the most likely location of the discontinuities. As can
be seen in the figure, the histogram highlights the artificial disconti-
nuities created at x = 2.5 and 5.

We have also plotted the histogram of the number of partitions
as shown in Figure 4. From this we can infer the likelihood of the
number of the partitions in the data.

0 1 2 3 4 5
0

5000

10000

15000

20000

25000

Figure 4: The Partition Count His-
togram

It should be noted here that there are two discontinuities in func-
tion and one less prominent change in gradient in the real data.
Looking at the plot of the number of partitions, we see strong sup-
port for 4 partitions, as the algorithm has identified the four seg-
ments in the original curve.

Increasing the maximum order of the polynomial

Partition modelling and allowing higher order polynomials are in
conflict to some degree. A higher order polynomial can fit a discon-
tinuity to some degree and therefore obviate the need to create an
extra partition.

To show this, we can increase the maximum order allowed for the
polynomials in each partition to 5. This means that the fitting proce-
dure may use up to a 5th order polynomial instead of line segments.
The script to do this is shown in Listing 3.

Listing 3: Increasing the maximum order of the polynomials
1 #
2 # Impor t t h e l i b r a r i e s we w i l l need f o r a n a l y s i s and p l o t t i n g .
3 #
4 import rjmcmc
5 import m a t p l o t l i b
6 import m a t p l o t l i b . pyplot
7

8 #
9 # Open our d a t a f i l e which c o n s i s t s o f one (x , y) c o o r d i n a t e p e r l i n e

10 # s e p a r a t e d by w h i t e s p a c e
11 #
12 f = open (’ data . t x t ’ , ’ r ’)
13 l i n e s = f . r e a d l i n e s ()
14

15 x = []
16 y = []
17

18 for l i n e in l i n e s :
19 columns = l i n e . s p l i t ()
20

21 x . append (f l o a t (columns [0]))
22 y . append (f l o a t (columns [1]))
23

24 f . c l o s e ()
25

26 #
27 # S e t our x range
28 #
29 xmin = 0 . 0

30 xmax = 1 0 . 0

31

32 #
33 # E s t i m a t e our e r r o r s t a n d a r d d e v i a t i o n
34 #
35 sigma = 3 . 0

36 n = [sigma] * len (x)
37

38 #
39 # C r e a t e t h e rjmcmc d a t a s e t
40 #

multiple partition regression analysis 6

41 data = rjmcmc . dataset1d (x , y , n)
42

43 #
44 # S p e c i f y t h e s t a n d a r d d e v i a t i o n f o r t h e move p a r t i t i o n
45 #
46 pd = 1 . 0

47

48 #
49 # Run t h e d e f a u l t a n a l y s i s
50 #
51 r e s u l t s = rjmcmc . regress ion_par t1d (data , pd)
52

53 #
54 # R e t r i e v e t h e mean c u r v e f o r p l o t t i n g
55 #
56 xc = r e s u l t s . x ()
57 meancurve = r e s u l t s . mean ()
58

59 #
60 # R e t r i e v e t h e p a r t i t i o n l o c a t i o n and count i n f o r m a t i o n
61 #
62 p a r t l o c a t i o n = r e s u l t s . p a r t i t i o n _ l o c a t i o n _ h i s t o g r a m ()
63 partcount = r e s u l t s . p a r t i t i o n s ()
64

65 #
66 # P l o t t h e d a t a with b l a c k c r o s s e s and t h e mean with a r e d l i n e
67 #
68 f i g = m a t p l o t l i b . pyplot . f i g u r e (1)
69

70 a = m a t p l o t l i b . pyplot . subplot (2 1 1)
71

72 a . p l o t (x , y , ’ ko ’ , xc , meancurve , ’ r− ’)
73 a . se t_x l im (xmin , xmax)
74

75 b = m a t p l o t l i b . pyplot . subplot (2 1 2)
76 b . bar (xc , p a r t l o c a t i o n , xc [1] − xc [0])
77 b . se t_x l im (xmin , xmax)
78

79 f i g . s a v e f i g (’ ch3−order . pdf ’ , format= ’PDF ’)
80

81 f i g = m a t p l o t l i b . pyplot . f i g u r e (2)
82

83 a = m a t p l o t l i b . pyplot . subplot (1 1 1)
84 a . h i s t (partcount , bins =5 , range = (0 , 5) , a l i g n = ’ l e f t ’)
85

86 f i g . s a v e f i g (’ ch3−orderpartcount . pdf ’ , format= ’PDF ’)
87

88 m a t p l o t l i b . pyplot . show ()

The results of running this script can be seen in Figures 5 and 6.
As can be seen, the fit is more smooth than the previous analysis
and supports a fewer number of partitions. In particular we can
see that there is some support for no discontinuities, but it is more
likely that there are 1 or 2 which matches our artificially created
boundaries (the discontinuity at x = 5 is not that large so it can be
accommodated by a higher order polynomial). Try changing the
maximum allowed order to, say, 2, i.e. allow up to a quadratic, and
examine what happens to the Partition Count Histogram.

0 2 4 6 8 10
25
20

15
10

5
0

5
10

15
20

0 2 4 6 8 10
0

200

400

600

800

1000

1200

Figure 5: The Order Analysis Plot

0 1 2 3 4 5
0

5000

10000

15000

20000

25000

Figure 6: The Partition Count His-
togram

Confidence

So far we have only plotted the mean of the fits, however this gives
only a glimpse as to how the data is being fitted. One way to look at
the fitting is to takes samples of the fitting curves. The script to do
this is showing in Listing 4.

Listing 4: Sampling the Fitting
1 #
2 # Impor t t h e l i b r a r i e s we w i l l need f o r a n a l y s i s and p l o t t i n g .
3 #
4 import rjmcmc
5 import m a t p l o t l i b
6 import m a t p l o t l i b . pyplot
7 from mpl_too lk i t s . mplot3d import axes3d , Axes3D
8

9 #
10 # Open our d a t a f i l e which c o n s i s t s o f one (x , y) c o o r d i n a t e r p e r l i n e

multiple partition regression analysis 7

11 # s e p a r a t e d by w h i t e s p a c e
12 #
13 f = open (’ data . t x t ’ , ’ r ’)
14 l i n e s = f . r e a d l i n e s ()
15

16 x = []
17 y = []
18

19 for l i n e in l i n e s :
20 columns = l i n e . s p l i t ()
21

22 x . append (f l o a t (columns [0]))
23 y . append (f l o a t (columns [1]))
24

25 f . c l o s e ()
26

27 #
28 # E s t i m a t e our e r r o r s t a n d a r d d e v i a t i o n
29 #
30 sigma = 3 . 0

31 n = [sigma] * len (x)
32

33 #
34 # C r e a t e t h e rjmcmc d a t a s e t
35 #
36 data = rjmcmc . dataset1d (x , y , n)
37

38 #
39 # S e t our x range
40 #
41 xmin = 0 . 0

42 xmax = 1 0 . 0

43

44 #
45 # Th i s i s our c a l l b a c k f u n c t i o n which s a m p l e s t h e c u r v e s g e n e r a t e d
46 # dur ing t h e a n a l y s i s
47 #
48 sample_x = None
49 sample_curves = []
50 sample_i = 0

51 sample_rate = 250

52 def sampler_cb (x , y) :
53 global sample_x , sample_curves , sample_i , sample_rate
54

55 i f sample_i == 0 :
56 sample_x = x
57

58 i f sample_i % sample_rate == 0 :
59 sample_curves . append (y)
60

61 sample_i = sample_i + 1

62

63 #
64 # Run a s e r i e s o f a n a l y s e s wi th v a r y i n g maximum a l l o w e d o r d e r
65 #
66 #
67 # S p e c i f y t h e s t a n d a r d d e v i a t i o n f o r t h e move p a r t i t i o n
68 #
69 pd = 1 . 0

70

71 #
72 # Run an a n a l y s i s wi th r e d u c e d max o r d e r t o on ly a l l o w l i n e a r
73 # segments
74 #
75 burnin = 10000

76 t o t a l = 50000

77 max_part i t ions = 10

78 max_order = 3

79

80 r e s u l t s = rjmcmc . regression_part1d_sampled (data ,
81 sampler_cb ,
82 pd ,
83 burnin ,
84 t o t a l ,
85 max_part i t ions ,
86 max_order)
87

88 #
89 # P l o t t h e d a t a with b l a c k c r o s s e s , t h e sample c u r v e s as f a i n t l i n e s , and
90 # t h e mean as a r e d l i n e
91 #
92 f i g = m a t p l o t l i b . pyplot . f i g u r e (1)
93 ax = f i g . add_subplot (1 1 1)
94

95 yc = 0 . 5

96 yalpha = 1 . 0 / ((1 . 0 − yc) * f l o a t (len (sample_curves)))
97 for sy in sample_curves :
98

99 ax . p l o t (sample_x , sy ,
100 c o l o r = s t r (yc) ,
101 alpha = yalpha ,
102 l i n e s t y l e = ’− ’ ,
103 l inewidth = 10)
104

105 ax . p l o t (r e s u l t s . x () , r e s u l t s . mean () , ’ r− ’)
106 ax . p l o t (x , y , ’ ko ’)
107 ax . se t_x l im (xmin , xmax)
108

109 f i g . s a v e f i g (’ ch4−conf idence . pdf ’ , format= ’PDF ’)
110

111 f i g = m a t p l o t l i b . pyplot . f i g u r e (2)
112 ax = f i g . add_subplot (1 1 1)

multiple partition regression analysis 8

113

114 ax . p l o t (r e s u l t s . x () , r e s u l t s . mean () , ’ r− ’)
115 ax . p l o t (x , y , ’ ko ’)
116 ax . p l o t (r e s u l t s . x () , r e s u l t s . credible_min () , ’ b : ’)
117 ax . p l o t (r e s u l t s . x () , r e s u l t s . credible_max () , ’ b : ’)
118

119 ax . se t_x l im (xmin , xmax)
120

121 f i g . s a v e f i g (’ ch4−c o n f i d e n c e i n t e r v a l s . pdf ’ , format= ’PDF ’)
122

123 m a t p l o t l i b . pyplot . show ()

The resulting plot is shown in Figure 7. This plot shows the mean
as well as 200 curves sampled from the fitting process overplotted
with transparency so that the darker regions are where the true curve
is more likely to be. What should be noted is that there are large
spikes about the discontinuities and this is to be expected as the
fitting process will trial fitting curves across these discontinuities
which will produce high order curves which will overshoot.

0 2 4 6 8 10
40

30

20

10

0

10

20

30

40

Figure 7: Sampled Curves from the
Fitting

Another feature to notices is that at approximately x = 4.5, the
curves tends to take 2 alternate paths. This type of feature is likely
due to whether a partition boundary is located at approximately x =
5 or not.

An alternative look at the breadth of curves is to plot the confi-
dence intervals that are generated during the fitting process. This
result is shown in Figure 8.

0 2 4 6 8 10
25

20

15

10

5

0

5

10

15

20

Figure 8: Confidence Intervals from the
Curve Fitting

The confidence interval curves are shown in blue dashed lines.
What these curves represent is 95 percent of the curves generated
during the fitting process were contained within these lines. Similarly
to the sampled curves, there is some overshoot near severe disconti-
nuities. Lowering the maximum order can sometimes alleviate these.

	Pre-requisites
	The Data
	Loading the Data
	Running the default analysis
	Increasing the maximum order of the polynomial
	Confidence

