© BN QW R W N R

Single Partition Regression Analysis
Rhys Hawkins and Malcolm Sambridge
September 25, 2012

This tutorial describes how to analyse continuous data using Monte-
Carlo Markov-Chain based regression.

Pre-requisites

This tutorial is for the Python version of the rjmcmc library. The
examples rely on the Matplotlib library for plotting. The versions
used in the development of this tutorial are as follows:

¢ Python 2.7.1
® rjmcmc 0.1.0

¢ Matplotlib 1.1.0

The Data

For this tutorial we will use a non-trivial (in the sense that it will
require a higher order polynomial to fit the function correctly) syn-
thetic dataset with added noise.

The function that is used is an exponentially increasing sine wave
over the domain o ... 10, ie:

y= e3 sin Zx (1)
3

The actual dataset unevenly (though with fairly good coverage)
samples this function and adds some Gaussian noise and these val-
ues are save to an ASCII text file. A plot of the synthetic data points
with the true function is shown in Figure 1.

Loading the Data

For those unfamiliar with Python, we discuss briefly the loading of
data from a simple ASCII text file. The code for loading the data and
doing a simple plot is shown in Listing 1.

Listing 1: Loading the Data.

#
Import the libraries we will need for analysis and plotting.

import rjmcmc
import matplotlib
import matplotlib.pyplot

#
Open our data file which consists of one (x, y) coordinater per line

Figure 1: The Synthetic Data.

SINGLE PARTITION REGRESSION ANALYSIS

separated by whitespace
#

f = open(’data.txt’, 'r’)
lines = f.readlines ()

x =[]
y =1l

for line in lines:
columns = line.split ()

x.append (float (columns[o]))
y.append (float (columns[1]))

f.close()
fig = matplotlib.pyplot. figure ()
matplotlib.pyplot. plot(x, y, 'ko”)

fig.savefig(’chi—loading.pdf’, format="PDF")
matplotlib . pyplot.show ()

The ASCII file contains an x, y pair per line separated by a space.
On line 12, we use the built in function open to open the file. One
lines 15 and 16 we initialize 2 list that will contain the x and y coordi-
nates in the file. On line 18 we loop through the lines in the file and
add each x, y pair to the 2 separate lists.

From line 26 onwards, we plot the data using the matplotlib li-
brary and save the plot to a PDF file. The plot resulting from this
script can be seen in Figure 2.

Running the default analysis

For performing an regression analysis on a continuous dataset the
function is called regression_singleld. The parameters for this
function are as follows with default values shown where applicable:

dataset The dataset object to run the analysis on. This is an rjm-
cme.datasetid object which wraps the x and y vectors you load
from the file and includes individual point noise values. This is the
only parameter which doesn’t have a default value.

burnin = 10000 The number of initial samples to throw away.
total = 50000 The total number of samples to use for the analysis.

max_order = 5 The maximum order of polynomial to use to fit the
data.

xsamples = 100 The number of points to sample along the x direction
for the curve.

ysamples = 100 The number of points to sample along the y directory
for the statistics such as mode, median and confidence intervals.
This is the number of bins for the histograms in the y direction.

confidence_interval = 0.95 The confidence interval to use for mini-
mum and maximum confidence intervals. This should be a value
between o and 1.

2 7 6 8 0

Figure 2: Noisy data and true curve
used in test problem.

2

SINGLE PARTITION REGRESSION ANALYSIS

For this analysis we are only going to use the default values and
the listing is shown in Listing 2.

Listing 2: Running the Default Analysis.

#
Import the libraries we will need for analysis and plotting.

import rjmemc
import matplotlib
import matplotlib.pyplot

#

Open our data file which consists of one (x, y) coordinate per line
separated by whitespace

#

f = open(’data.txt’, 'r’)
lines = f.readlines ()

[]
(1

for line in lines:
columns = line.split ()

x.append (float (columns[o]))
y.append (float (columns[1]))

f.close ()

#
Estimate our error standard deviation

#

sigma = 3.0

n = [sigma] + len(x)
#

Create the rjmcmc dataset
#
data = rjmemce. datasetid(x, y, n)

#
Run the default analysis
#

results = rjmcmc.regression_singleid (data)

#

Retrieve the mean curve for plotting
#

xc = results.x()

meancurve = results.mean()

#
Plot the data with black crosses and the mean with a red line
#

fig = matplotlib.pyplot. figure ()

matplotlib. pyplot.plot(x, y, 'ko’, xc, meancurve, 'r—’")
fig.savefig(’ch2—analyse.pdf’, format='"PDF’)
matplotlib . pyplot.show ()

The preamble (lines 1 ... 24) consists of loading the file as in the
previous section.

An important part of the analysis is estimating the error in the
data. This is specified as a error value per data point and can be
thought of a weighting as to how well the fit will attempt to fit an
individual point. If the value is low, then the fit will be tight and
conversely if the value is high then the fit will be loose. On lines 29
and 30 we set a value of 3.0 for all data points. Use this value for
now, but try other values greater than 0.0 to see the effect.

On line 35 we construct the dataset1id object from the x, y and n
lists we created. These lists must be the same length.

On line 40 we run the analysis with this dataset1d object. The
regression_single1d function returns a resultsetid object which con-
tains various results and diagnostics about the analysis. For this
simple analysis we simply take the x sampling coordinates and the
mean of the fits. And plot the mean with the original data points to

3

SINGLE PARTITION REGRESSION ANALYSIS

see how representative the mean is. This plot is shown in Figure 3.

Order Analysis

A question we may ask is what order best represents the underlying
function. We can develop some understanding of this by constraining
the maximum allowable order of the fit and observing when the
order histogram converges and/or the mean of the fits converges.
The script to do this for this dataset is shown in Listing 3.

Listing 3: Order Analysis.

#

Import the libraries we will need for analysis and plotting.
#

import rjmemc

import matplotlib

import matplotlib.pyplot

from mpl_toolkits.mplot3d import axes3d, Axes3D

import sys

#
Open our data file which consists of one (x, y) coordinater per line
separated by whitespace

#

f = open(’data.txt’, 'r’)
lines = f.readlines ()

x =[]

y =1

for line in lines:
columns = line.split ()

x.append (float (columns[o]))
y.append (float (columns[1]))

f.close ()

#

Estimate our error standard deviation
#

sigma = 3.0

n = [sigma] * len(x)

#
Create the rjmcmc dataset

data = rjmcmce. datasetid(x, y, n)

#
Run a series of analyses with varying maximum allowed order

results = []
burnin = 100
total = 1000
orderlimit = 5
for maxorder in range(orderlimit + 1):
print maxorder
results .append (rjmcmc. regression_singleid (data, burnin, total , maxorder))

colours = ['b’, ‘g’, ‘t’, ‘c’, ‘m, 'y, 'k, ‘w’]
formats = map(lambda x: x + '—’, colours)

#

Plot the data with black crosses the curves from each of the analyses
with a different colour

#

fig = matplotlib.pyplot. figure (1)

ax = fig.add_subplot(111)

orders = []
legendtitles = []
for result in results:

order = result.order_histogram ()
if order == None: # The max order = o case will return None so
order = [total]

ax.plot(result.x(), result.mean(), formats[len(orders)])

#

Create the order histogram data (append zeros for orders not allowed
in the analyses

#

legendtitles .append ('Max. _Order, %d’ % len(orders))

orders.append (order + [0] # (orderlimit + 1 — len(order)))

ax.plot(x, y, 'ko”)

Figure 3:

The Default Analysis Plot.

4

SINGLE PARTITION REGRESSION ANALYSIS 5

legendtitles .append('Data’)
legend = ax.legend(legendtitles, 'lower_left")
fig.savefig(’ch3—orderanalysis.pdf’, format='PDF")

#
Plot a 3D bar chart showing the progression of the order histogram
as the analysis maximum order is increased.
#
fig = matplotlib.pyplot. figure (2)
ax = Axes3D(fig)
xs = range(orderlimit + 1)
for maxorder in xs:
ax.bar(xs,
orders [maxorder],
zs=maxorder ,
zdir = 'y’,
color=colours[maxorder])

ax.set_xlabel (’Order”)
ax.set_ylabel ("Maximum_Order ")
ax.set_zlabel ('Count”)

fig.savefig(’ch3—orderanalysishist.pdf’, format='PDF")

matplotlib. pyplot.show ()

In lines 41 ... 46 we set some parameters and run several analyses
with different allowed maximum polynomial order and store the
results.

In lines 51 ... 78 we plot the mean of the fits for each of the con-
strained analyses. This plot is shown in Figure 4. As can be seen
from this plot, there is very little difference between the Max. Order
3, 4, 5 curves which implies that the data is cubic.

10

_st| — Max. Order 0
— Max. Order 1
— Max. Order 2
— Max. Order 3 y
— Max. Order 4 °

Max. Order 5 e
e o Data e

—=10}

In lines 8o ... 99 we plot the progression of the order histogram.
The order histogram reports the count of polynomials of each order
where the order is randomly choosen from a probability distribution
determined by the data itself. This plot is shown in Figure 5.

Looking at the figure, it can be seen that when the maximum
permitted order is o, all the curves sampled are oth order as ex-

Figure 4: The Mean Curves for different
maximum orders.

SINGLE PARTITION REGRESSION ANALYSIS 6

Figure 5: Posterior PDFs of the polyno-
mial order parameter as a function of
maximum allowed order.

1000
800

600

Count

400

200

pected. As this maximum order is increased, the distribution of
orders changes until the step from 4 to 5 where there is little dif-
ference. It should be noted that if a tighter noise parameter is used,
that this will change slightly as higher order polynomials will be
more favoured to fit the data better.

Confidence Intervals

So far we have only plotted the mean of the fits, however this gives
us no indication of distribution of the fit (this can be thought of as

the confidence of the fit). There are a number of ways in which we
can look at this and one of these is to look at the curves generated

during the analysis. The listing to do this is in Listing 4.

Listing 4: Confidence Intervals.

#

Import the libraries we will need for analysis and plotting.
#

import rjmcmc

import matplotlib

import matplotlib.pyplot

from mpl_toolkits.mplot3d import axes3d, Axes3D

#

Open our data file which consists of one (x, y) coordinater per line
separated by whitespace

#

f = open(’data.txt’, 'r’)
lines = f.readlines()

x =]
y =1
for line in lines:

columns = line.split ()

x.append (float (columns[o]))

y.append (float (columns[1]))

f.close()

#

Estimate our error standard deviation
#

sigma = 3.0

n = [sigma] + len(x)

#

Create the rjmcmc dataset
#
data = rjmemc. datasetid(x, y, n)

#
This is our callback function which samples the curves generated
during the analysis

sample_x = None
sample_curves = []
sample_i = o
sample_rate = 5
def sampler_cb(x, y):
global sample_x, sample_curves, sample_i, sample_rate

if sample_i == o:
sample_x = x

if sample_i % sample_rate == o:
sample_curves.append (y)

sample_i = sample_i + 1

#

Run a series of analyses with varying maximum allowed order

#

results = []

burnin = 100

total = 1000

maxorder = 5

results = rjmcmc.regression_singleid_sampled (data,
sampler_cb ,
burnin,
total ,
maxorder)

#

Plot the data with black crosses, the sample curves as faint lines,

the mean as a red line

#

fig = matplotlib.pyplot. figure ()
ax = fig.add_subplot(111)

yc = 0.5
yalpha = 1.0/((1.0 — yc) + float(len(sample_curves)))
for sy in sample_curves:

ax.plot(sample_x, sy,
color = str(yc),
alpha = yalpha,
linestyle = "=’
linewidth = 10)
ax.plot(results.x(), results.mean(), 'r—")
ax.plot(x, y, 'ko’)
fig.savefig(’chg—confidence.pdf’, format='PDF’)

matplotlib . pyplot.show ()

SINGLE PARTITION REGRESSION ANALYSIS

In this script we call a slightly different function called regression_singleld_sampled

which accepts a callback function. We define this function on lines 46

... 55. This function accepts an x and y list which is the discretiza-

tion of the current fitting polynomial being used. In this function we

sample every 5th polynomial and store them.

On lines 70 ... 9o we plot the data as black dots, and the mean

fit with a red line over plots of all the fits we sampled. This plot is

shown in Figure 6.

The sampled fits are plotted with transparency so that where they

overlap this will show increased density implying that where these

sampled polynomial ensemble appears darker, we can have higher

confidence that the underlying function passes through that region.

7

SINGLE PARTITION REGRESSION ANALYSIS 8

15

Estimating data noise

With the hierarchical Bayesian approach we include the standard
deviation of the noise on the observations as an unknown. In the
above examples the noise o was set to 3 units, but the actual ¢ of the
data noise in Figure 1 is 2.5. Can we use the data to detect the true
standard deviation of its noise? The hierarchical Bayesian sampling

scheme is implemented with the script in Listing 5. Inference on the
Gest
Otrue”’

noise is implemented by introducing a new parameter, A =
defined as the ratio of the estimated noise to the real noise.

Listing 5: Hierarchical Bayesian sampling to determine the data noise
standard deviation

#

Import the libraries we will need for analysis and plotting.
#

import rjmeme

import matplotlib

import matplotlib.pyplot

#
Open our data file which consists of one (x, y) coordinate per line
separated by whitespace

f = open(’data.txt’, 'r’)
lines = f.readlines()

x =[]
y =1
for line in lines:

columns = line.split ()

x.append (float (columns[o]))
y.append (float (columns[1]))

f.close()

#
Estimate our error standard deviation

Figure 6: Sampled Confidence Intervals.

sigma = 3.0
n = [sigma] * len(x)

#
Create the rjmemc dataset

data = rjmeme. datasetid(x, y, n)

lambda_min =
lambda_max = 2.0
lambda_std = o.05

data.set_lambda_range (lambda_min, lambda_max)
data.set_lambda_std (lambda_std)

#
Run the default analysis
#

results = rjmcmc.regression_singleid (data)

#

Retrieve the mean curve for plotting
#

xc = results.x()

meancurve = results.mean()

Retrieve the results of the hierarchical

2T 3

results . proposed ()
results.acceptance ()

print ‘Lambda_Acceptance_Rate:’, float(a[1])/ float(p[1]) * 100.0

Ih = results.lambda_history ()

Plot the data with black crosses and the mean with a red line

fig = matplotlib.pyplot. figure (1)
matplotlib. pyplot. plot(x, y, 'ko’, xc, meancurve, 'r—")

fig = matplotlib.pyplot. figure (2)
matplotlib . pyplot. plot(range (len(lh)), 1h)

fig = matplotlib.pyplot. figure(3)

a = matplotlib.pyplot.subplot(111)
Isamples = lh[10000:]

n, bins, patches = a.hist(lsamples, 100, range=(lambda_min, lambda_max))
a.set_title ('Histogram _of_Lambda’)

a.set_xlabel ('Lambda’)

a.set_ylabel ('Count”)

fig.savefig('chs—hierarchical.pdf’, format='PDF")

print ‘Lambda_average:’, sum(lsamples)/ float(len(lsamples))
matplotlib. pyplot.show ()

SINGLE PARTITION REGRESSION ANALYSIS

In this script we set up a uniform prior on A over a pre-determined

range and use a Gaussian distribution to perturb the A values dur-

ing the Markov chain. The range of the values of A as well as the

standard deviation of the perturbation are parameter that must be

chosen. These are set in lines 37-42.

We call the function regression_singleld to do the work. We plot

the posterior PDF of the noise ¢ as a histogram. This plot is shown in

Figure 7.

The histogram shows the support of the data for a range of A val-

ues. Clearly there is information in the data on the likely values of

noise. Where is the peak of the histogram ? How does this compare

to the ratio of the estimated to true ¢? Usually the ability of the data

to constrain noise parameters will trade-off with the model complex-

ity given, in this case, by the order of the polynomial. You can edit

the script by changing the estimated noise and rerun to see what

happens.

9

Count

3000

2500

2000

1500

1000

500

SINGLE PARTITION REGRESSION ANALYSIS

Figure 7: Posterior PDF of the noise
standard deviation parameter A.

Histogram of Lambda

1.2 1.4
Lambda

1.6

1.8

2.0

10

	Pre-requisites
	The Data
	Loading the Data
	Running the default analysis
	Order Analysis
	Confidence Intervals
	Estimating data noise

