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Definition

Monte Carlo method. A computational technique making
use of random numbers to solve problems that are either
probabilistic or deterministic in nature. Named after the
famous Casino in Monaco.

Monte Carlo inversion method. A method for sampling
a parameter space of variables representing unknowns,
governed by probabilistic rules.

Markov chain Monte Carlo (McMC). A probabilistic
method for generating vectors or parameter variables
whose values follow a prescribed density function.

Introduction

Because geophysical observations are made at (or very
near) the Earth’s surface, all knowledge of the Earth’s

interior is based on indirect inference. There always exists
an inverse problem where models of physical properties
are sought at depth that are only indirectly constrained
by the available observations made at the surface. Geo-
physicists have been dealing with such problems for many
years, and in doing so have made substantial contributions
to the understanding of inverse problems.

Pioneering work on lincar inverse problems in the
1960s arose out of the need to understand how to use
new surface observables from seismology to constrain
radial variations in geophysical properties at depth within
the Earth. Data were few in number and attention was
focused on the mathematical structure of the inverse prob-
lem and the ways in which reliable information could be
recovered, This resulted in a series of important papers
beginning with Backus and Gilbert (1967, 1968, 1970).
Since that time the geosciences, like many other fields,
have moved into a data-rich environment with increasing
availability of computational power. Considerable pro-
gress has been made over 30 years utilizing the class of
linear (typically least squares) parameter estimation algo-
rithms, which are common to many areas of the physical
sciences (Aster et al., 2005). In many of the inverse prob-
lems encountered the dependence of data on models is
nonlinear and this must be taken into account for meaning-
ful solutions. Often this is achieved by performing a local
linearization and using Inverse Theory, Linear. As the
mathematical relationship between data and unknowns
becomes complex then linearized methods fail because
they depend heavily on having a starting model for the
iterative process which must be close enough to the solu-
tion for convergence.

Over the last 30 years there has been considerable pro-
gress in the solution of highly nonlinear inverse problems
involving a limited number of parameters so that thorough
exploration can be made of the character of models. Many
algorithms have been devised, most of which make use of
random numbers to make decisions, that is, in how to gen-
erate a set of values of the unknowns whose predictions
can be compared to the available data. The original
description of Monte Carlo methods by Hammersley and
Handscomb (1964) is “the branch of experimental mathe-
matics which is concerned with experiments on random
numbers.” By this definition all inversion techniques that
make use of random numbers are Monte Carlo methods.
Many of the Inverse Theory, Global Optimization inver-
sion methods fall within the class. The particular approach
known as Markov chain Monte Carlo is the primary focus
of the present article.

Nonlinearity and multimodal fitness functions

Figure 1 shows a fitness surface from an inverse problem
that arises in the analysis of infrasound array data.
(Infrasound arrays are used by the United Nations Com-
prehensive Test Band Treaty Organization to monitor
international adherence to the nuclear test ban treaty.)
The height of the surface represents the degree of
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Inverse Theory, Monte Carlo Method, Figure 1 A multimodal
data fit surface arising from the mismatch between two
oscillatory fields in the infrasound inversion problem (Kennett
et al., 2003).

agreement between two oscillatory fields. There are just
two unknowns in this case, which represent tuning param-
eters in the infrasound array. The object of the exercise is
to best tune the array for sensitivity to incoming atmo-
spheric signals, which means finding the point on the sur-
face where the fitness is maximum, We see a curved rim of
local maxima from background to foreground, with
a broader valley of low fit to the left of the central maxi-
mum (red). The physics of the forward problem, that is,
calculating the oscillatory field corresponding to a pair
of tuning parameters, as well as the nature of the data itself
result in a complicated 2-D fitness function.

The set of unknowns that gives the best fit (i.e., smallest
misfit) to data corresponds to the global maximum of the
multimodal function and to find it one must employ
Inverse Theory, Global Optimization techniques such as
model space search. In this example the global maximum
(at the red central peak) was efficiently found with the
neighborhood algorithm of Sambridge (1999), which uti-
lizes ideas from the field of computational geometry. Opti-
mization techniques based on local Inverse Theory, Linear
would only be suitable once a trial solution is found within
the vicinity of the global peak (shaded red). Adaptive
Monte Carlo-based direct search approaches like genetic
algorithms, simulated annealing, and the neighborhood
algorithm (see Inverse Theory, Global Optimization) are
able to solve this (two unknown parameters) problem rel-
atively easily due to their ability to detect the variation of
the fit and concentrate sampling where there is most
benefit.

This example demonstrates the complexity of inverse
problems in cases where the data are highly oscillatory
waveforms, a common situation in fields such as acoustics

and seismology, where the dimension of the problem is
often much higher.

For the 2-D example in Figure 1, the objective is to tune
a particular instrument for maximum sensitivity, and it is
appropriate to seek a global maximum. More generally
in inverse problems the fitness landscape would represent
the difference between observations and predictions made
by a mathematical model. In this case simply finding the
best-fit solution is inadequate. One needs to characterize
the uncertainty in the solution, for example, assess how
noise in the data lead to errors and trade-offs in the esti-
mated model. Linearized techniques (see /nverse Theory,
Linear) could be used, but all uncertainty estimates are
then based on the assumption of local linearity and do
not truly reflect the global nature of the data constraint.

Another issue that often arises in inverse problems is
that of nonuniqueness (see Inverse Theory, Singular Value
Decomposition). In this case it is not possible to fully con-
strain the unknowns from the data. The model is
unbounded and so best data fit solutions do not exist.
and extra assumptions or independent information must
be introduced to achieve a single optimal solution. In lin-
earized inversion some form of regularization is used.
An example is damping a solution back to some reference
set of values (or model) (Aster et al., 2005). It is well
known that in this case the details of the solution depend
on the nature of regularization used. In addition, uncer-
tainty estimates produced by linearized theory often
reflect the choice of regularization. Typically, the least
well-constrained components of the solution require the
most regularization and resulting uncertainty estimates
are severe underestimates of the real errors (Aster et al.,
2005 for an example) potential leading to overconfidence
in the results.

Bayesian inference

An alternative approach to inversion is Bayesian infer-
ence. Many textbooks and review papers are available.
Discussions within a geophysical context can be found
in Tarantola and Valette (1982), Duijndam (1988a, b),
Sambridge and Mosegaard (2002), and Mosegaard and
Sambridge (2002). In Bayesian inference, all information
on the unknowns is represented in terms of probability
density functions (PDF). Within this framework it is
accepted that all inference is relative. What one learns
from the data gets added to what is known prior to
collecting the data and represented in terms of an
a posteriori PDF. The most commonly used form of
Bayes’ rule is given below

p(mld) = kp(d|m)p(m) (1)

where p(m|d) is the PDF of the model vector, m,
containing the unknowns, given the data vector, d,
containing the data; p(d|m) is the likelihood function mea-
suring the probability of the data, d, being observed given
the model m1; p(im) is the a priori PDF on the model (which
is known or assumed about m before the data arc
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collected), and & is a constant of proportionality. In
a Bayesian framework, all information on the unknown
variables in the model is represented by the posterior
PDF, p(m|d) and one usually sets about trying to generate
an ensemble of candidate solutions to the inverse problem
whose density is distributed according to this function.
This is termed sampling the posterior PDF.

The posterior PDF is the product of the likelihood
and the prior PDF. Only the former contains the data
vector, d. The likelihood increases as the model fits the
data better relative to the noise in the data. The form of
the likelihood depends on the statistical character of the
data errors. A simple example is a multidimensional
Gaussian function characterized by a mean and
a covariance matrix, both of which are usually known or
assumed. The prior PDF represents information known
about the model before collecting the data represented in
a probabilistic manner, and may take a variety of forms.
Again a multidimensional Gaussian is the most simple,
but rarely is real information in this convenient form.
Prior PDFs can be the most controversial component of
Bayesian inference as there is always a degree of subjec-
tivity in any choice, and the only way to represent no prior
information is to not have a prior PDF. Comparisons of
Bayesian and alternate approaches can be found in
Malinverno and Parker (2005).

We see then that instead of seeking a single optimal solu-
tion, in a Bayesian framework many samples are sought.
Assessment of the constraints placed on the model is
achieved by examining collective properties. Typically, this
is done by plotting the distribution of samples as a function
of one or more subsets of unknowns, calculating credible
intervals to represent uncertainty and covariance matrices
to examine the trade-offs between parameters.

The main task to be carried out is then to generate ran-
dom samples that follow the multidimensional posterior
PDF p(m|d)arising from the inverse problem. McMC
methods are practical tools for dealing with complicated
probability distributions. Used correctly they result in
(quasi)-independent samples whose density follows any
target PDF. They have been the subject of much research
in fields from Theoretical Physics to Computational statis-
tics. For summaries, see Smith (1991), Smith and Roberts
(1993), and Bernardo and Smith (1994). Below we
describe the McMC method briefly and provide a simple
illustrative example.

Markov chain Monte Carlo
Fixed dimension approach

McMC can be regarded as a combination of random
Monte Carlo sampling and a Markov chain random walk
strategy around the model space. The aim is to produce
an ensemble of models from a probability distribution,
that is, the posterior PDF, using only function evaluations.
The basic approach was developed from the work of
Metropolis et al. (1953), placed in a Bayesian framework
by Hastings (1970), and a useful overview is given in

Gilks et al. (1996). The practical applications lagged
behind theoretical developments as a consequence of the
need for many simulations. However, the increase in com-
puting power over the last 15 years or so has led to a rapid
increase in use of this methodology in geophysics and
other fields of Earth Sciences (e.g., Mosegaard and
Tarantola, 1995; Malinverno, 2002; Sambridge et al.,
2006; Gallagher et al., 2009).

The algorithm is as follows: first we choose an initial
model from the prior distribution, and calculate its likeli-
hood. Then we generate a new model by making
arandom perturbation (Monte Carlo) to the current model.
This new model is known as the proposed model and
depends only on the values of the current model (Markov
chain). The final stage is to decide whether we replace the
current model with the proposed model, or stay at the cur-
rent model and repeat the whole process. This important
step is determined from the acceptance criterion, which
is defined below

! ' 7
oFi== [‘nin l,p(}” )P(dlfﬁ )q(.’??|ﬁ! )
p(m)p(d|m)g(m'|m)

where m’ and m are the proposed and current models,
respectively, g(a|b) is the probability of proposing model
a, given a current model b, and the other distributions are
as defined earlier. The decision to accept or reject
a proposed model is made by comparing the value of o
(which is always between 0 and 1) to a uniform (between
0 and 1) random number, u. If # < o then we replace the
current model with the proposed model, if not we discard
the proposed model and stay at the current model. We then
continue the sampling process (perturb the new current
model and so on) for many iterations.

The choice of the proposal function is not critical to the
correctness of the sampler, but does affect the efficiency,
performance, and convergence. A typical choice might
be a normal distribution, centered on the current model,
and then we need to tune the performance through the
scale parameter of this distribution (e.g., the variance). If
we choose too small a scale parameter, the proposed
model will be very similar to the current model, their like-
lihoods will be similar, and we will almost always accept
the proposed model. If we choose too large a scale param-
cter, the proposed model will tend to be very different to
the current model, and lead to large changes in the likeli-
hood, which are more likely to be rejected. In practice,
both situations mean that we tend to move slowly around
the model space. The proposal functions need then to be
tuned for particular problems to achieve a reasonable bal-
ance between accepting and rejecting the proposed
models. A reasonable rate of acceptance is around
30-40%. Generally, we can choose proposal functions
that are symmetrical, so that g(alb) = g(bla), so these
terms cancel out in the acceptance criterion. Also, if we
choose uniform prior distributions, then the prior terms
also cancel. The acceptance criterion then reduces to the
original Metropolis et al. (1953) algorithm.

)
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After an initial period sampling (known as the burn-in),
the current model from each iteration is taken as
representing a sample from the posterior distribution (the
sampling chain is then stationary). If the model space
has N dimensions, and we are interested in the distribution
on one of the parameters, m;, for example, then formally
we need to solve the following integral

plm;) = /p(m,—,mj)dmj;
j=1i=1,i41,.., N

G)

that is we need to integrate out the variation in all param-
eters except m;. This is known as marginalizing and
p(m;)is the marginal probability distribution of m;. Using
the McMC samples, we can just plot all value of m; as
a histogram as the sampling effectively deals with the
integration.

Also, it is straightforward to calculate estimates of the
expected (or average) value for any parameter. Formally,
we have the expected value for parameter m; defined as

E(m;) = /p(m,—)m,—drrr,- (4)

Using the McMC samples, we simply average over all
the samples accepted for that parameter, that is,

E(m;) = Ni Zﬁi;" (3)

where N, is the number of samples accepted (post-burn-
in) for model parameter m;

Transdimensional approach

A major issue concerning most inverse problems, and the
approaches used to solve them, is how best to balance the
twin desires of fitting the observations and avoiding intro-
duction of unjustified complexity in the resulting models.
Green (1995) introduced a transdimensional form of
McMC (referred to as Reversible Jump), in which the
inversion procedure involves the inference of the model
complexity (see also birth-death McMC Geyer and
Moller, 1994). For finite dimension models (with a fixed
number of unknowns) this then typically becomes
a question of determining the dimension of the model. If
we are dealing with two models with dimensions & and
k', then acceptance criterion can be written as

" p(K)p(m’ (K p(d|m' K )g(m|m")
= mln{], pk)p(m|k)p(dim,k)g(m'|m) } ©)

Here we separate the prior on the number of dimension,
plk), from the model parameter prior, p(m|k). The proposal
function ¢() becomes more complex as we now want to
propose models with different dimensions. Moreover, we
need to allow for the transformation from one model to
another to ensure that theoretical probability requirements

are maintained. In dealing with a situation where we are
simply increasing or decreasing the number of parameters,
we can write

s { | I IK)p(d]on K )g(), ”} -

p(K)p(mlk)p(d|m, k)g(u*)

Here «* and 1/* are vectors of random numbers of length
# and r, respectively, and used to transform from one
model to another, such that r+k = /+k, and g(.) is the
probability distribution used to generate these random
numbers. The term |J] is the Jacobian, and allows for the
transformation between the two models, that is,

a(m', u“’)
W= A(m, uk) ®

The last equation for « is actually a general form for the
acceptance criterion, although for fixed-dimensional
problems the Jacobian is generally 1, and the proposal
functions are of the form as described earlier. The details
of the reversible jump acceptance criterion are discussed
in more detail by Green (2003), Malinverno (2002), and
Sambridge et al. (2006) and examples of the implementa-
tion algorithms for variable dimension problems are given
in Jasra et al. (2006), Bodin and Sambridge (2009),
Charvin et al. (2009), and Hopcroft et al. (2009). One
important characteristic of the Bayesian transdimensional
formulation is that it is naturally parsimonious. For two
models that fit the data equally well, it will tend to favor
simpler models over complex ones as a consequence of
the posterior probability effectively being penalized
through the addition of more terms to the prior
distribution.

A simple example

To demonstrate McMC in action, we choose a simple two
parameter linear regression problem, that is,

yi=mo+mx;+e,i=1,...,.N (9)

where mo and m; are the model parameters, y is an
observed/measured value, and ¢ is the data error. In
a Bayesian formulation, this problem has an analytical
solution for a uniform prior on the model parameters,
assuming the data error is known (Lee, 1989, p. 180).
We chose my = m = | and generated 100 synthetic data
(y) for random values of x between 0 and 100, and added
noise (& = 0.5). We used Gaussian proposal distributions,
with different scale parameters (g,, = 0.01, and
Gy, = 0.001). In Figure 2 we show the sampling for the
two parameters, starting from a randomly selected model.
Figure 2a shows that the sampler has not reached the sta-
tionary state until at least 1,500--2,000 iterations. Figure 2b
shows the sampling for parameter m; for later iterations
which is clearly stationary. The sampling resembles
a white noise spectrum about the mean (or expected)
value, lacking any internal structure as a function of
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Inverse Theory, Monte Carlo Method, Figure 2 (a) Intitial 5,000 iterations for sampling of two parameters for the linear
regression problem. (b) Post-burn-in iterations for parameter m;. (c) The green points show the post-burn-in sampling, and the
contours are the log likelihood function. The blue cross is the best solution (equivalent to the analytical maximum likelihood or
least squares solution). (d) Marginal distribution for parameter my. The histogram is constructed from the post-burn-in accepted
samples, and the curve is the analytical solution for the marginal distribution. The two vertical bars mark the upper and lower
bounds on the 95% credible interval. (e) As (d) but for parameter m;.

iteration. It is also clear that the sampler manages to move
toward the upper and lower extreme values of the param-
eter range (determined by the posterior PDF and the pro-
posal function scale parameter). These are diagnostic
(but qualitative) characteristics of stationarity.

Figure 2¢ shows the 2-D distribution of samples of the
post-burn-in accepted samples (here we thinned the chain
taking every 100th sample), compared to the log likeli-
hood function (which is proportional to the log of the pos-
terior distribution as we use uniform priors). The density
of the sampling increases around the high likelihood
values, but there are still some samples from the lower
likelihood regions. Figure 2d and e shows the marginal
distributions for the two parameters as a frequency

histogram, and also the analytical solutions (scaled to the
same peak height). These are constructed simply by taking
all the accepted values for a given model parameter, as the
sampler effectively integrates out the other parameters.
Also shown are the 95% credible interval ranges for each
parameter. These are constructed by sorting all the sam-
ples for a given parameter in ascending order, and finding
the indices for the credible values such that 2.5% of the
samples are less than the lower credible value, and 2.5%
of the values are greater than the upper credible value.
Again, we can see that the sampler has managed to distrib-
ute itself across the distribution according to the posterior
probability and these histograms are good representations
of the marginal distributions.
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Summary

Monte Carlo sampling, relying on random numbers, has
been used in Geophysics for over 40 years, although the
increase in computing power has seen a commensurate
increase in applications in the last 15 years or so. This
approach avoids the use of gradients, is robust to local
minima, and so is suitable for nonlinear inverse problems
which often have complex misfit (or fitness) surfaces in
high dimensions. McMC, particularly when used in
a Bayesian formulation, provides a means of sampling
a model space according to the (unknown) posterior distri-
bution for the model parameters. Transdimensional (or
reversible jump) Markov chain Monte Carlo generalizes
this approach to allow models of different dimensions to
be considered, and provides a means of choosing between
models of differing complexity. Quantifying the posterior
distribution with McMC is then a solution to the inverse
problem and various types of inference can be made from
this distribution (e.g., expected values, marginal distribu-
tions, credible intervals) to characterize the model space.
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