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SUMMARY

This paper shows how the performance of a fully non-linear earthquake location
scheme can be improved by taking advantage of problem-specific information in the
location procedure. The genetic algorithm is best viewed as a method of parameter
space sampling that can be used for optimization problems. It has been applied
successfully in regional and teleseismic earthquake location when the network
geometry is favourable. However, on a series of test events with unfavourable
network geometries the performance of the genetic algorithm is found to be poor.

We introduce a method to separate the spatial and temporal parameters in such a
way that problems related to the strong trade-off between depth and origin time are
avoided. Our modified algorithm has been applied to several test events. Perfor-
mance over the unmodified algorithm is improved substantially and the computa-
tional cost is reduced. The algorithm is better suited to the determination of
hypocentral location whether using arrival times, array information (slowness and
azimuth) or a combination of both.

A second type of modification is introduced which exploits the weak correlation
between the epicentral parameters and depth. This algorithm also improves
performance over the standard genetic algorithm search, except in circumstances
where the depth and epicentre are not weakly correlated, which occurs when the
azimuthal coverage is very poor, or when azimuth and slowness information are
incorporated. On a shallow nuclear explosion with only teleseismic P arrivals
available, the algorithm consistently converged to a depth very close to the true
depth, indicating superior depth estimation for shallow earthquake locations over
the unmodified algorithm.

Key words: earthquake location, genetic algorithms, non-linear optimization.

preferable. These methods do not require derivatives and
some rely on random processes to search the model space.

An optimization problem is any problem that involves a
minimization or maximization of some function over a set of
model parameters. When the functional relationship is
linear, or weakly non-linear, gradient methods can be used.
Using local curvature information one can iteratively
improve a random initial model, until the adjustments
become less than some specified tolerance. Examples
include least squares, conjugate gradients and steepest
descent. For non-linear functional relationships, or in
situations where the computation of derivatives is inexact or
expensive, global optimization methods such as nested grid
search (Sambridge & Kennett 1986; Kennett 1992), Monte
Carlo, simulated annealing (Kirkpatrick, Gelatt & Vecchi
1982, 1983) and genetic algorithms (Holland 1975) are

Earthquake location can be expressed as a problem of
estimating four model parameters (latitude, longitude,
depth and origin time) that best fit a set of arrival times of
seismic waves at a number of different seismic stations, and
possibly other information such as azimuth and slowness.
Usually one minimizes the discrepancy between the
observed and predicted arrival times using a maximum
likelihood criterion. In this work we use a robust Lp-norm
to measure the data misfit. For n arrival times this involves
finding a four-vector (x, y, z, 1) so that;

o
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is minimal, where §*'°(x, y, z) is the calculated traveltime
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obs

from a location (x, y, z) to station i, t?" is the observed
arrival time of the seismic wave at station i, and o; is the
standard deviation of the error in the ith arrival time. In the
examples used here, traveltimes are calculated in the iasp91

velocity model of Kennett & Engdahl (1991). The value of p

(usually 1=p =2) determines the form of the statistical
function used to describe the earthquake residuals (i.e. the
distribution of errors). As p approaches a value of 1 the
distribution becomes more robust and the misfit measure in
eq. (1) becomes less sensitive to the occasional outlier. For
p =2 the earthquake residuals are assumed to follow a
Gaussian distribution, which is non-robust and often a poor
description of arrival-time errors (Buland 1986). A more
practical choice is to use p =1 (Sambridge & Kennett 1986;
Kennett 1992) or p =1.25 as in Billings (1994) and the
present work. :

Equation (1) is non-linear in the hypocentre coordinates,
creating potential instabilities, especially when the recording
network is sparse or has poor geometry (Smith 1976; Buland
1976; Herrmann 1979; Lee & Stewart 1981; Anderson 1981;
Lienert & Frazer 1983). In addition, the computation of
derivatives is complicated and costly when multiple arrivals,
array observations or a 3-D velocity model are used. In
these cases the earthquake hypocentre can be located using
global optimization techniques such as the nested grid
search algorithms of Sambridge & Kennett (1986) and
Kennett (1992) or stochastic methods like the simulated-
annealing algorithm of Billings (1994) and the genetic
algorithms of Kennett & Sambridge (1992) and Sambridge
& Gallagher (1993).

In this paper we investigate how the performance of an
optimization algorithm can be improved by modifying the
model space. The genetic algorithm has been shown by
Kennett & Sambridge (1992) and Sambridge & Gallagher
(1993) to be effective for regional and teleseismic
earthquake location when the network geometry is ideal.
We find that the algorithm can be unreliable and inaccurate
on events with poor network geometries. This can be
overcome by exploiting the interaction between different
parameters in the location problem. We say that two
hypocentral parameters are strongly correlated if accurate
estimation of one hypocentral parameter is strongly
dependent on accurate determination of the other. Depth
and origin time are strongly correlated, while the epicentral
parameters and depth are weakly correlated. An algorithm
is presented which avoids problems associated with the
strong correlation between depth and origin time by
separating the spatial and temporal components of the
search. Billings (1994) has already shown that this improves
the performance of a simulated-annealing algorithm. A
second algorithm is presented that exploits the weak
correlation that exists between epicentre and depth by
performing separate searches on the two coordinates spaces.

2 GENETIC ALGORITHMS FOR
EARTHQUAKE LOCATION

The genetic algorithm was developed by Holland (1975) and
introduced to geophysics by Stoffa & Sen (1991) and
Sambridge & Drijkoningen (1992). Both contain com-
prehensive descriptions of the method. Kennett &

Sambridge (1992) and Sambridge & Gallagher (1993) used
the method for earthquake location.

The genetic algorithm has an analogy with biological
systems, whereas simulated annealing has an ‘analogy with
thermodynamics. A genetic algorithm always operates on a
group or ‘population’ of Q sets of hypocentral parameters
simultaneously. Initially, these may be generated randomly
and subsequent generations of models are constructed by the
action of three operators each with biological analogues.
These processes are selection, crossover and mutation, the
action . of each being controlled by a separate probability
distribution. In the selection step those hypocentral
estimates with the lowest misfit between observed and
predicted arrival times (from eq. 1) have the highest
probability of being passed on to the next generation. This
introduces a process akin to survival of the fittest. New
hypocetral parameters are created in the crossover step by
swapping of segments between pairs of bit strings which are
the binary encodings of the hypocentral parmeters. The
mutation step allows individual bits to flip from 0 to 1, and
vice versa, with a low probability. As successive generations
pass, the misfit is driven towards the minimum by the

-accumulation of information about the shape of the misfit

surface in 4-D space. .

The model space is discretized and the finite set of model
parameters are represented as concatenated binary strings.
The performance of the algorithm depends critically on the
discretization of the search space. For an extremely fine
grid spacing the potential accuracy is good, but the model
space is large, requiring many iterations to locate the global
minimum. In contrast, too coarse a discretization allows for
rapid location of the minimum on the coarse grid, but with a
subsequent loss in accuracy, as the minimum on the grid
may be far from the true global minimum. In addition, the
global minimum of a coarse grid does not necessarily lie
close to the true global minimum. In earthquake location
the model space is potentially of size 360° x 180° x 670 km X
600s. To achieve an accurate location over this search space
the genetic algorithm would have to use a very large number
of bits in the bit string. In practice, rough bounds of
2°%2°x60km X 12s can usually be obtained before
application of the genetic algorithm. Using eight bits to
represent latitude and longitude and seven bits for depth
and origin time, this gives a bit spacing of 0.87km in
latitude and longitude, 0.47 km in depth and 0.1s in origin
time.

A possible method of delineating bounds on the four
coordinates for local networks, that could easily be extended
to the case of teleseismic networks, is discussed by
Sambridge & Kennett (1986). They use the arrival-order
method of Anderson (1981) to find epicentral bounds and, if
both P and § arrivals are available, the depth and origin
time can also be bounded. The three events considered in
this paper each have a preliminary location found by
reporting agencies and so useful bounds on each parameter
can be obtained using loose tolerances about this
hypocentre.

The performance of the genetic algorithm is dependent on
several adjustable parameters. An extensive set of tests on
several earthquakes were used to determine a reliable set of
these parameters. One parameter is related to an
improvement to the selection step known as ‘tournament



selection” discussed in Goldberg & Deb (1991). This
modified form of selection improves performance in
hypocentre location and avoids problems associated with ad
hoc scaling as tournament selection only makes use of the
rank of the misfits. Random pairs of hypocentres are
selected from the population of Q individuals and the
respective misfits computed. A random number is generated
between 0 and 1 and if it is less than the tournament
selection probability (the adjustable parameter) the
hypocentre with the higher misfit is passed on to the next
generation, otherwise the lower misfit hypocentre is passed
on. Both models are then put back into the initial
population and the procedure is repeated until there are Q
models in the ‘offspring’ population. The tournament
selection probability, Py, controls the likelihood that better
models will survive the selection process. For P-=0.5 the
search is random with no discrimination between good and
bad models, while for P, > 0.5 better models are favoured.
The genetic algorithm was found to perform best when
Py =0.9, implying that nearly all better models should be
passed on to the offspring population. In the context of
earthquake location, tournament selection is discussed in
more detail by Sambridge & Gallagher (1993). A similar
approach called ‘update’ was proposed by Stoffa & Sen
(1991) but involved comparing parents with children.

The probability of crossover, which controls the amount
of information exchange between hypocentres in the
population, was set at 0.9. This means that 90 per cent of
paired hypocentres exchange information via crossover. The
probability of mutation, which controls the level of
randomness in the search, was set at 0.04. Any individual bit
has a 4 per cent chance of changing its value from 0 to 1 or
vice versa. The population size, Q, was set at 24 models. In
the absence of a better criterion, the search is terminated
after a fixed number of iterations have been performed. By
investigating performance on a large number of events it
was found that performing about 50 iterations (we settled
for 54) was ideal. When more iterations are performed,
further improvements to the hypocentre are generally small.
The model parameters are encoded using bit strings of
length eight, for latitude and longitude, and length seven for
depth and origin times. This means that there are a total of
2=1x10° possible models. The genetic algorithm
attempts to find an estimation of the global minimum by
sampling only 54 X 24 = 1024 models.

3 PERFORMANCE OF THE STANDARD
GENETIC ALGORITHM

The performance of the genetic algorithm was investigated
on three test events with differing characters of misfit
surface. Each has the common feature of the absence of
observations in a large azimuth zone. The three events were
a nuclear explosion in Eastern Kazakh, and earthquakes in
Newcastle (Australia) and Honshu (Japan). These events
are the same as those used to test the simulated-annealing
algorithm of Billings (1994).

(1) Eastern Kazakh nuclear explosion (reference loca-
tion: 49.765 °N, 78.059 °E, 0.139 km, 59.8 5): a shallow event
with 29 stations at teleseismic distances recording P arrivals
only. The azimuthal coverage is moderately good (Fig. 1a)
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Figure 1. Station distribution for test events. (a) Eastern Kazakh;
(b) Newcastle; (c) Honshu. (‘eq’ represents the approximate
location of the earthquake.)

but the stations are all at a significant distance from the
source, creating problems in resolving the depth.

(2) Newcastle, Australia, earthquake (reference location:
32.946°S, 151.602°E, 11.5km, 57.8s): regionally reported
event with 19 observations of P waves with a very poor
azimuthal coverage (Fig. 1b). The event was responsible for
the first recorded deaths in Australia due to an earthquake.

(3) Honshu, Japan, earthquake (reference location:
35.260°N, 138.58°E, 166km, 59.5s): a predominantly
teleseismically recorded event with several array observa-
tions of azimuth and slowness (Fig. 1c). Observations are
absent from the entire Pacific sector.

Once hypocentral estimates have been generated for an
event, it is difficult to determine how accurate these
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Figure 1. (Continued.)

locations are. If the hypocentre is already accurately known
(as for nuclear explosions) the relative locations can be
compared. However, the true hypocentre is not necessarily
the best location under the criterion used to locate the
event. The true arrival times are not known with perfect
accuracy, and the calculation of traveltimes occurs in a 1-D
approximation to the real earth, so the global minimum will
not necessarily correspond to the true hypocentre. In
addition, Kennett (1992) has shown that changing the
statistical distribution of residuals can have as large an effect
on the location as changing the velocity model used to
calculate the traveltimes. Therefore, exact locations cannot
be used to test the accuracy of an optimization algorithm,
although they can be used to test the validity of a location
criterion. In addition, the value of the misfit at the global
minimum is not known in advance, so this measure cannot
be used.

The performance of a stochastic algorithm is dependent
on the random numbers used in the course of the
optimization. Therefore, just one run of an algorithm is
insufficient to determine the accuracy and reliability of the
algorithm. As a means of testing reliability a total of 1000
separate locations were performed for each event. The
performance of the algorithm can be analysed by
considering the spread of locations and misfits, without prior
knowledge of the location or misfit of the global minimum.
There are three distinct outcomes from which conclusions
can be drawn.

(1) The locations are all tightly clustered (say <2km in
space, <0.5s in time) about a single region in the parameter
space.

(2) The locations are spread throughout the parameter
space and the misfits are variable.

(3) The locations are well spread but the misfits are
similar.

In general if case 2 occurs then we would infer that the

algorithm is unreliable and inaccurate. If case 3 occurs the
misfit surface may have multiple minima indicating that the
solution is non-unique, or at least not well constrained by
the data. Billings (1994) has shown that on a long-
wavelength scale the misfit surface is unimodal (at least for
the events considered here), and consequently widely
separated multiple minima are unlikely. If case 1 occurs the
algorithm is either accurate and reliable, or has consistently
converged to a local minimum or suboptimal solution. The
long-wavelength unimodal structure indicates that this latter
possibility is unlikely. Even though the performance of a
single algorithm cannot be fully separated from effects due
to the misfit structure, the relative performance of two
competing algorithms can be contrasted by comparing the
two sets of 1000 locations. This is how we shall compare the
performance of the standard and modified genetic
algorithms to be introduced in the next section.

A histogram of the misfits of the final 1000 locations for
each event is shown in Fig. 2. The horizontal axis represents
the misfit of the final location found, with better models to
the left, while the vertical axis represents the number of
times that the misfit occurred in 1000 trials. The additional
peak to the right of each diagram represents the number of
locations produced with a higher misfit than the maximum
shown on the plot. Two measures of the algorithms
performance are also shown; the mean and median. The
median is a more robust measure of performance than the
mean, which can be distorted by a few locations with a very
large misfit. -

On the Eastern Kazakh event the genetic algorithm
locates hypocentres most often with a misfit of just over
0.460, and finds fewer hypocentres with a lower misfit.
There is a range in misfit values between 0.47 and 0.485
where almost no locations are found. Then at ~0.490 there
is a secondary peak, which may correspond to the presence
of a local minimum. On the Newcastle earthquake, there is
a more even misfit frequency distribution, but with a definite
bias towards better models. For the Honshu earthquake
there is a concentration in locations with a low misfit, which
dies off quite rapidly with increasing misfit. However, there
is a small secondary peak at a misfit value of about 0.62.

If all 1000 locations for each event in Fig. 2 are clustered

_ close to the global minimum, and yet the misfit values are

highly variable, then it can be inferred that the genetic
algorithm has performed as well as it can for a highly
irregular misfit surface (case 1). The variation in misfit is
then predominantly due to systematic modelling errors and

random noise in the data. However, if locations with

relatively large misfit values are inadequate (i.e. far from
the global minimum) then the inference is that the genetic
algorithm is not a reliable method for earthquake location
(case 2). To determine the quality of locations, it is
necessary to determine the distribution of the hypocentres
within parameter space. Fig. 3 represents the frequency of
final locations for the Newcastle earthquake in four planes;
latitude—longitude, latitude—depth, longitude-depth and
depth—origin time. Each peak represents the number of
locations that occur in a particular parameter range. The
dimensions of the diagram are 22 km in latitude, 44 km in
longitude, 50km in depth and 2s origin time,. In the
latitude—longitude plane the genetic algorithm converges to
a particular region in approximately 22 per cent of the trials.



Honshu
300 L e S R T T TR
i ' Median Mean T
— .
L]
i ' 4
¥ .
3,200 = : =
1
g [[]: ;
= I ’ :
g [ .
K 00l ! -
L . _
! ' i
L $ ]
0 ' —
059 061 0.63 0.65 0.67 0.69
Newcastle
Wr—r—T——7—7 T 7 T T
B Median | + Mean 7
- H f B
L i ]
| ¢ ]
6..200 - 1 n
L}
g | : '
oo _ |
- \
{
- 4

. :
022 026 0.30 0.34 0.38 042
Eastern Kazakh
ﬂm T T T Ill T T Ll 4 ‘ T T T | T T T | T T T
» Median : *Mean T
b= ' *
1
I " ]
<yl & : 5
§ [ : '
§- I ; ]
T - : N
B 1001 : -
1]
= : ]
L]
[ : —[—' ]
L o— _I
0

0.45 0.46 0.47 0.48 049 .50

Misfit of final location

Figure 2. Frequency of misfits of hypocentral locations generated
by the genetic algorithm in 1000 separate optimizations for each of
the three test events. Lower misfit values indicate better
performance, but cross comparison of misfit values between plots is
not possible, as the misfit functions and minimum misfits are
different for different events.

However, there is no consistency as the algorithm converges
to locations with approximately a linear trend in
latitude—longitude, with the epicentres differing by as much
as 50 km. This is clearly an unacceptably large variation,
especially when superimposed on the other uncertainties
involved in earthquake location. The sections through the
other three planes show that the standard genetic algorithm
is unable to reliably resolve these parameters. Final depths
differ by as much as 50 km and the origin time by up to 2s.
Similar poor performances are found for the other two
events. Consequently, for events with poor network
geometries, the genetic algorithm’s performance cor-
responds to case 2; i.e. the misfit variation (seen in Fig. 2) is
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not due to systematic modelling errors and random noise in
the data, but rather because accurate solution to the
optimization problem has not been obtained.

The genetic algorithm used in these examples does not
take advantage of any special features of the location
problem, which makes it a very versatile and robust method
of sampling a parameter space, but often results in it being
out-performed by specialized optimization routines. The
primary purpose of this paper is to investigate the effect of
incorporating problem-specific information into a genetic
algorithm. In earthquake location there are several
correlations between hypocentral parameters that can be
exploited, and these are discussed in the next section.

4 MODIFIED GENETIC ALGORITHMS
EXPLOITING CORRELATIONS BETWEEN
HYPOCENTRAL COORDINATES

There are two parameter correlations that can be exploited
to improve the genetic algorithm’s performance for
earthquake location. The first is the strong correlation
between depth and origin time and the second is the weak
correlation between the epicentre and depth parameters.

4.1 Modified algorithm 1: exploiting the strong
correlation between depth and origin time

Billings (1994) presents an earthquake location algorithm
which separates the model space into spatial and temporal
components, with a simulated-annealing search applied to
space, and a golden section search (Whittle 1971) to time.
The algorithm presented here is identical except the spatial
simulated annealing search is replaced with a genetic
algorithm search. For completeness the reasoning and
methodology will be briefly reviewed.

It is well known that in the earthquake location problem
there exists a strong trade-off between depth and origin
time. Changing the depth of focus will change the traveltime
between the source and the recording station, but the effect
on the calculated arrival time at that station can be
compensated by varying the origin time of the earthquake.
This can best be seen in an example using the arrival times
of the nuclear explosion at Eastern Kazakh. First, we define
an ‘optimum origin time’ as that origin time which produces
the lowest misfit at a particular spatial location. Fig. 4 shows
how the origin time trades off with depth for a fixed
epicentral location. In the two side panels we have plotted
the misfit against origin time for depths of 1.04 and 9.06 km,
respectively. The single well-defined minimum, in both
plots, represents the optimum origin time at the
corresponding depth. The central panel shows how the
optimum origin time varies with depth. Notice how the
optimum origin time changes by almost 2s in a depth
interval of just 10 km. For a teleseismic event our parameter
ranges are about 60 km for depth and 12s in origin time.
Therefore, we can expect a variation of up to 10-12s in
origin time. We see that the two parameters are strongly
correlated, and an accurate estimate of one parameter will
be dependent on an accurate estimate of the other.

The strong correlation between depth and origin time
means that, in general, the depth parameter will be difficult
to resolve independently. However, the plot in Fig. 4
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Figure 3. The frequency with which, after 1000 trials, the final hypocentral location is in the range defined by the projection of locations onto
the plane in question for the Newcastle earthquake. The diffuse pattern of hypocentral locations shown here indicates that the genetic

algorithm is not reliable.

suggests that by separating the spatial and temporal searches
and computing the optimum origin time for each spatial
location, estimation of the depth parameter will be much
simpler. Since the traveltime between source and receiver is
fixed regardless of the origin time, then arrival times, and
hence misfits, may be calculated for different origin times
with only a few simple arithmetic operations. Consequently,
the optimum origin time can be quickly found using a
golden section search (Whittle 1971) over the depth

parameter. The golden section search for finding the
minimum value of a function in one dimension is similar to
the bisection method of root finding. It is appropriate
because it does not require the computation of derivatives.
For the special case of Gaussian statistics there exists a
simple analytical formula for the optimum origin time (see
Billings 1994).

With this modification the genetic algorithm need only be
applied to the spatial part of the problem, because in effect
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Figure 4. The variation of optimum origin time with depth for a fixed latitude and longitude for the Eastern Kazakh nuclear explosion. The
central box represents the variation of the optimum origin time with depth. The smaller plots either side display the variation in misfit value
with origin time for a fixed depth (z =1.04 km and z = 9.06 km) and illustrate how the optimum origin time is defined. The large variation in
optimum origin time with depth indicates that these two coordinates are strongly correlated.

the misfit in eq. (1) is always evaluated at the optimum
origin time for that depth. This means that a smaller
population size of around 20 models may be used. The
probabilities of tournament selection,
mutation were set at the same values as for a genetic
algorithm search over all four hypocentral coordinates
(0.9,0.9 and 0.04 respectively). The decreased complexity
of the search space results in the algorithm converging more
rapidly, and 40 iterations were usually found to be sufficient.

4.2 Modified algorithm 2: exploiting the weak correlation
between epicentre and depth

For events with a good azimuthal coverage the epicentre is
largely constrained by the distribution of stations, and a
reasonably accurate estimation can be made by using
Anderson’s (1981) arrival order method. Ray tracing
through an assumed earth model is required primarily for
determining the depth of the earthquake. Additonally, in
the neighbourhood of the global minimum, the optimum
depth at a particular epicentre is little affected by small
changes in the epicentre, implying that latitude and
longitude are weakly correlated with depth. An algorithm
can be developed that exploits this weak correlation by
performing separate searches in epicentre and depth-time.
We introduce ‘optimum depth’ in a similar manner to
optimum origin time and define it as that depth which
produces the minimum misfit for a fixed epicentral location.
For each depth we calculate the misfit using the optimum
origin time at that depth. The optimum depth may therefore
be plotted as a function of the epicentral parameters and for
the Eastern Kazakh event this surface is shown in Fig. 5.
The range in latitude and longitude shown spans 2° and
corresponds to the size of the model space. The grid spacing
is approximately 4.2 km. The depth varies from 0 to 35 km,

crossover and

and latitude—longitude locations with optimum depths below
this depth are coloured black. The best approximation to
the global minimum is shown by a cross. Notice in the
neighbourhood of the global minimum, that the optimum
depth is zero and does not vary with-latitude and longitude.
For this event it can be concluded that in the neighbourhood
of the global minimum, the depth is only weakly dependent
on the epicentre. This feature may not exist for events with
poorer azimuthal coverage and an algorithm relying on a
weak correlation between epicentre and depth may break
down.

The nature of the tau-spline representation (Buland &
Chapman 1983) used in conjunction with the iasp91 tables
means that it is computationally more expensive to
recompute misfit at different depths than at different
latitudes or longitudes. The total number of repeat
calculations of misfit for different depths can be reduced by
coupling a genetic algorithm search on latitude-longitude
with a nested golden section search in depth and origin time.
The 1-D golden section search can be used in two
dimensions by performing a step-wise minimization. Each
time the misfit needs to be calculated for a particular depth,
the optimum origin time is estimated by performing a
golden section search on time. A reference origin time is
then available to compute the misfit and advantage is taken
of the ease of re-calculating misfit for different origin times.
In addition, there is no need to minimize the depth for every
epicentral location, because we are assuming that the depth
is only weakly correlated with epicentre. A single, fixed
depth (and origin time) can be used as a reference to
calculate epicentral misfits.

The modified algorithm consists of the following steps.

(1) A large number of hypocentres are randomly
generated with a uniform distribution, and their misfits are
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Figure 5. The variation in optimum depth with epicentre for the Eastern Kazakh nuclear explosion. The nearest approximation to the global
minimum is shown by a cross. In the neighbourhood of the global minimum the depth is independent of epicentre. The particular range of
latitude and longitude shown here represents the model space through which the genetic algorithm searches for the global minimum.

calculated according to eq. (1). The latitude, Xop, and
longitude, y,,, from the hypocentre with lowest misfit is
used as a reference to calculate an optimum depth and
origin time pair, (Zins fmin)» DY @ nested golden section
search as described in the previous paragraph. This depth
and origin time pair is used as a reference for computing the
misfits, F, of other members of the latitude-longitude

population which we can index as (x;, y;);
F(xi~yi):F(Iiﬁyi‘zmin'frﬂin)' (2)

(2) The latitude and longitude population is evolved using
the genetic algorithm, with eq. (2) used to calculate misfits,

(3) Step (2) is repeated until the newly evolved
population contains a latitude-longitude pair, (x;, ¥;), that
decreases the misfit below that of the best epicentre,
(X¥op> Yop), found up until that point. This condition occurs
when

F{X]-, yj’ Zmin» "lllin} < F().'“p, yup' Zinin» 'rrnirl)‘ (3)

The new latitude—longitude pair then becomes the optimum

epicentral estimate. As the epicentre has altered, the
optimum depth and origin time may also change, possibly
only slightly because of the weak correlation between
epicentre and depth. The nested golden section search is
then used to find new estimates of the optimum depth, z/,,,
and origin time, ¢),;,.

(4) Steps (2) and (3) are repeated, except the reference
depth and origin time used to calculate misfits via eq. (2) are

r’ ’
Zmins l"min‘

The tournament selection number and the probabilities of
crossover and mutation were chosen as before. A
population size of 14 was found to give good results. The
algorithm was found to be fairly slow to converge, and 100
iterations were necessary. Re-calculating the misfit for
different latitude and longitudes is less expensive than for
different depths, and so these 100 iterations can be
performed relatively efficiently. Finally, better results were

. obtained if a large number of hypocentres (we chose 36)

were randomly generated at the beginning of the search.



This ensures that a reasonably good latitude-longitude pair
is chosen to compute the first minimal depth and origin
time.

5 RESULTS

The two modified algorithms were tested on the same three
events used to test the original version of the genetic
algorithm. The events are particularly suitable because they
display a range of characteristics that may affect relative
performance. The Eastern Kazakh nuclear explosion has a
relatively good azimuthal coverage (Fig. 1a) with the depth
weakly dependent on the epicentre (Fig. 5). As the P
arrivals are all at teleseismic distances there may be some
difficulty in resolving the depth. The azimuthal coverage of
the Newcastle event is poor (Fig. 1b), possibly resulting in a
dependence of depth on epicentre, which may affect the
performance of the epicentre-depth-separated algorithm.
The inclusion of azimuth and slowness information in the
Honshu event (Fig. 1c), changes the character of the misfit
surface, in particuar the depth—origin time correlation. This
may affect the performance of both modified algorithms.

For each event and each algorithm, 1000 separate
locations were again performed using different strings of
random numbers. The results are summarized in Fig. 6
where the algorithms are arranged horizontally and the
events vertically. The diagrams represent the number of
times in 1000 locations that the algorithm converged to a
location with a particular misfit. Recall that misfit gives a
measure of the performance of the algorithm, with low
values indicative of good performance. Notice that the
vertical scales differ between events. The space-time-
separated algorithm (top row) improves performance over
the standard search on four hypocentral coordinates (middle
row) in all three events. The epicentre-depth-separated
algorithm (bottom row) represents an improvement on the
Eastern Kazakh event but not for Newcastle or Honshu,
where the depth and epicentre are not weakly correlated.
The dependence of optimum depth on epicentre arises
because of the poor azimuthal coverage for the Newcastle
earthquake and the inclusion of azimuth and slowness for
the Honshu earthquake. We now consider each event
separately.

5.1 Eastern Kazakh

Consider the relative performances of the three algorithms
on the Eastern Kazakh nuclear explosion. The genetic
algorithm with no separation (middle) produces two peaks
in misfit frequency, suggesting an interaction with a
secondary minimum. The median, which gives a measure of
the performance of an algorithm, is at a misfit value of
0.462. The space—time-separated algorithm is much more
likely to locate the earthquake accurately with a median of
0.457 and a definite bias towards locating models with lower
misfit. Notice, that there is still some concentration of
locations with relatively high misfit. The epicentre—depth-
separated algorithm produces locations intermediate in
quality between the other two algorithms (median 0.459).
Clearly, the two modified algorithms improve performance
over the standard genetic algorithm search. The ability of
the two modified algorithms to locate the depth of the global
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minimum is much better than that of the standard algorithm
(Fig. 7). The epicentre—depth-separated algorithm gives the
most consistent depth estimation, with all hypocentral
locations at a depth of 0km (true depth 0.139 km). The
space—time algorithm gives only a slightly poorer estimate of
depth with 98 per cent of depths between 0 and 1km. In
contrast, the standard genetic algorithm search has poor
depth estimation with only a slight bias towards locating the
event very shallow with only 15 per cent of trials between 0
and 1km. The algorithm interacts with the valley in depth
and origin time and in many trials is unable to successfully
locate the more promising regions. Both modified
algorithms effectively eliminate problems related to the
depth—origin time trade-off and are consequently better able
to estimate the depth parameter.

5.2 Newcastle

Referring back to Fig. 6, consider the relative performances
on the Newcastle earthquake. The standard genetic
algorithm search produces a fairly uniform spread of misfit
values with only a slight bias towards better models. The
median misfit value of hypocentral locations is 0.271. The
space—time-separated algorithm improves performance
substantially, reducing the median to 0.236. In terms of
hypocentral locations the algorithm is better able to resolve
coordinates than the standard search, as shown in Figs 3 and
8. The plot for the space—time-separated algorithm (Fig. 8)
has the final locations clustered. in a much smaller region,
indicating a greater likelihood of locating the region of the
global minimum. When contrasting performance of the two
algorithms using Figs 3 and 8 note that the horizontal scales
are the same but the vertical scale in Fig. 8 has been more
than doubled from 220 to 500. This means that most of the
peaks in Fig. 8 would go off the scale in Fig. 3. Instead of a
fairly diverse spread in locations there is now a strong bias
towards locating the earthquake in a fairly small region.
This indicates that the space—time-separated algorithm
produces more accurate and reliable locations than the
standard search.

The epicentre—depth-separated algorithm does not per-
form as well in comparison to the space-time-separated
algorithm. While more likely to produce a better result than
the standard search (the median is lower at 0.267), it is also
much more likely to produce a very bad result, with 25 per

. cent of locations having misfits larger than the largest values

shown on the plot. There are two reasons for this poor
performance. First, the poor azimuthal coverage evident in
Fig. 1(b) results in a dependence of latitude and longitude
on depth. Consequently, the optimum depth varies
significantly with epicentral position (Fig. 9). There are two
regions where the optimum depth is approximately constant
(at 0 and 30 km) but neither of these are close to the depth
at the global minimum (~10 km). The algorithm relies on a
weak correlation between depth and origin time in the
neighbourhood of the global minimum, which is clearly not
present. Secondly, in ~17 per cent of trials the algorithm
converged to a depth of 20.6 km which is close to the 20 km
discontinuity in the iasp91 velocity model. For depths below
20 km, waves are identified as Pb waves, while above 20 km
they are identified as Pg waves. It is generally not possible
to separately identify Pg and Pb waves on a real
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Figure 7. The number of times in 1000 trials that the final
hypocentral location is at the depth shown on the horizontal scale.
Lower peaks are drawn in front of the higher peaks. The two
modified algorithms have much better depth resolution than the
original algorithm.

seismogram. The Pb and Pg waves have different
traveltimes, so instead of a smooth increase in velocity with
depth, there is a discontinuous change, which creates a
discontinuous jump in the misfit surface. The epicentre—
depth algorithm has a strong interaction with this feature
and is unable to accurately estimate the depth for this event.
The 20 km discontinuity in the iasp91 model is between two
layers of constant velocity. Gradient ‘methods artificially
concentrate locations on this type of discontinuity and it
would appear that the epicentre—depth-separated algorithm
is also capable of producing such artificial concentrations.

5.3 Honshu

The relative performance of the different algorithms on the
Honshu earthquake can be compared by referring again to
Fig. 6. The standard search is capable of producing poor
locations but -has a definite bias towards higher quality
locations (median 0.602). The space—time-separated algo-
rithm improves performance substantially, with ~70 per
cent of trials in the best misfit bracket. The median is very
low at 0.592 with almost no poor performances. The
inclusion of array observations has changed the nature of
the misfit surface, and in particular the trade-off between
depth and origin time. However, the space—time-separated
algorithm is still able to perform well, because it does not
depend on a strong correlation between depth and origin
time. It assumes a worst-case scenario of a strong
correlation and will work equally well when the correlation
is weak or non-existent. The epicentre—depth-separated
algorithm performs very poorly on this event with almost no
high-quality locations in the 1000 trails. In 20 per cent of
trials the final misfit is too large to fit on the plot, while the
algorithm is most likely to produce locations with a misfit in
the mid-range of the plot (median 0.639). The epicentre—
depth-separated algorithm. performs so poorly because
azimuth and slowness introduce a dependence of depth on
epicentre. Azimuth gives the direction of the earthquake
from the observing station, while slowness gives a take-off
angle. Together azimuth and slowness define a curved path
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through the Earth along which the earthquake must have
occurred, resulting in a dependence of depth on epicentre.

6 DISCUSSION

The space—time-separated algorithm improves performance
on all three test events. On an event larger set of events,
including events with ideal network geometry, the algorithm
is never out-performed by the standard search over all four
hypocentral coordinates. In terms of computational cost the
modified algorithm is also cheaper to implement. It
evaluates many more misfits (in the order of 4000) than the
standard search, but a great many of them differ only in the
origin time parameter and therefore may be formed
efficiently. As the number of observations increases, the cost
approaches that of the standard genetic algorithm, because
the discrepancy between cost of re-calculating in time
compared to space decreases with increasing numbers of
observations. The .algorithm relying on an epicentre-depth
separation improves performance when the azimuthal
coverage of the network is good, but can produce less
reliable solutions when this is not the case. It is about 20 per
cent cheaper to implement than either of the other two
algorithms presented here.

The space—time:=separated algorithm improves perfor-
mance on all three events. By minimizing in time for every
spatial location the genetic algorithm needs to search
through a model space of decreased complexity. Instead of
four unknowns the algorithm needs to find only three
unknowns, reducing .the number of possible models from
1.1x 10” to 8.4 X 10°, which is a substantial reduction. Of
course, the origin time still needs to be determined, but this
can be achieved using a simple and fast 1-D optimization
routine. In addition, the variation of the misfit surface for
the three spatial parameters is much less complicated than
the misfit surface for all four parameters and represents a
subspace of the -original four-parameter space. A further
reason for the improved convergence results from the
elimination of the depth—time relationship. As far as the
genetic algorithm is concerned there are no longer
numerous depths and origin times with very similar misfits.
This is a problem for the standard genetic algorithm over all
four hypocentral coordinates as often accurate depth
estimates are generated but the associated origin time is
poor, giving a relatively high misfit. It is then the task of
crossover and mutation to improve the origin time. In this
modified algorithm accurate depth estimates will always
have small misfits as the origin time is minimized for each
depth, substantially decreasing the complexity of the
problem.

The epicentre—depth-separated algorithm performs well
when the depth is weakly dependent on the latitude and
longitude. When this is not the case, the basic premise on
which the algorithm was constructed breaks down, and the
performance is generally poor. However, the algorithm is
capable of producing accurate depth estimates for events
which traditionally cause problems for standard location
procedures, such as shallow earthquakes or explosions. with
only teleseismic observations of P arrivals available. In
contrast to the epicentre-depth-separated algorithm, the
space—time-separated algorithm is capable of producing
reliable locations even when the correlation between depth
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Figure 8. The frequency with which, after 1000 trials, the final hypocentral location found by the space-time-separated algorithm is in the
range defined by the projection of locations onto the plane in question for the Newcastle earthquake. The strongly separated algorithms
produce a tight clustering of hypocentres indicating a better performance that the standard genetic algorithm. Compare with Fig. 3 but note

that the vertical scale here is twice that on Fig. 3.

and origin time is not strong. This arises because the
epicentre—depth-separated algorithm depends critically on
the weak correlation between depth and time, while the
space—time-separated algorithm was designed to avoid
problems associated with the strong dependence of depth on
origin time. It assumes a worst-case scenario of strong
correlation and is capable of producing good locations no
matter how the depth and origin time are correlated.

In this paper we have demonstrated that incorporating
problem-specific information into earthquake location with
genetic algorithms will generally improve performance. This
information can also be incorporated into a simulated-
annealing algorithm (Billings 1994). The algorithm de-
veloped in Billings (1994) used a space-time separation
together with information related to the long-wavelength
unimodal structure of the misfit function. In that case also,
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Figure 9. The variation in optimum depth with epicentre for the Newcastle earthquake. The nearest approximation to the global minimum is
shown by a cross. There are two plateaus in the optimum depth, at 0 and 30 km. Neither are close to the depth of the global minimum which is
at ~10 km. The particular range of latitude and longitude shown here represents the model space through which the genetic algorithm searches

for the global minimum.

the modified algorithm was shown to improve performance
substantially over a standard simulated-annealing search.
The incorporation of problem-specific knowledge makes the
genetic and simulated-annealing algorithms highly special-
ized and suited only to the particular problem at hand.
However, the accurate estimation of earthquake hypoc-
entres is so important that the development of specialized
optimization routines is well justified.
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