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differential equations on highly
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An efficient numerical method is described for solving partial differential equations in problems
where traditional eulerian and lagrangian techniques fail. The approach makes use of the
geometrical concept of ‘natural neighbours’, the properties of which make it suitable for solving
problems involving large deformation and solid-fluid interactions on a deforming mesh, without
the need for regridding. The approach can also be applied to high-order partial differential
equations (such as the Navier-Stokes equation), even in cases where the evolving mesh is

highly irregular.

NuMERIcAL methods for solving partial differential equations
(PDEs) require some form of spatial discretization, or mesh of
nodes, at which the solution is specified. The nature of the mesh
is an important factor in determining the accuracy and stability
of the method as well as the type of PDE that can be solved.
Straightforward methods, such as the finite-difference method'
(FDM), are based on a regular spatial discretization, whereas
more flexible techniques such as the finite-element method
(FEM) divide the plane into triangles or rectangles, often with
an irregular distribution®. In many cases, the spatial mesh is
made to change during the course of a calculation. An example
is a ‘self-adapting mesh’ where nodes are added during the calcu-
lation to improve accuracy in a particular region, the position
of which is determined by the solution itself*. The most difficult
situation to handle is when the mesh is required to evolve with
the solution®, that is, mesh nodes move during the calculation.
An example is the case of advection in which the mesh nodes
are ‘attached’ to a deforming medium. Although an evolving
mesh allows for material properties to be accurately transported
at the nodes, large displacements quickly result in severe mesh
distortion which in turn increases numerical instability and
restricts accuracy.

Here we show how the fundamental geometrical concept of
‘natural neighbours™ may be used to overcome these problems.
The result is a new method which can be applied to problems
where traditional eulerian and lagrangian techniques fail; for
example, those involving large deformation, or fluid-solid inter-
actions. The two essential features are the way in which both
the mesh nodes and the connections between nodes are updated
during the calculation to maintain an appropriate ‘well-shaped’
triangulation, and the use of ‘natural neighbour’ coordinates
and their derivatives to interpolate smoothly between arbitrarily
distributed nodes. We use a two-dimensional (2D) example of
a sinking elasto-plastic plate in a linear viscosity fluid to illustrate
these features, but all the theory described is equally valid in
three dimensions. The crucial factor that makes the new
approach possible is that the computational cost of all of the
numerical algorithms increases at most linearly with the number
of nodes.

‘Natural neighbour’ coordinates

A unique and fundamental property of an arbitrarily distributed
set of nodes in a plane (or in any dimension) is the set of ‘natural
neighbours’” about each node. Natural neighbours are defined in
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Fig. 1a and b. Any two nodes are said to be natural neighbours
if their Voronoi cells® have a common boundary, and the
Voronoi cell about each node is the part of the plane which
is closest to that node. Natural neighbours have some very inter-
esting and useful properties. The number, and distribution, of
neighbours about each node vary with the density of the nodes.
Their distribution is a compromise between being ‘close to” and
‘surrounding’ a node, and yet they are uniquely determined by
the nodal distribution. By connecting each node to its neighbours
we obtain the Delaunay triangulation’ which results in a ‘well-
shaped’ set of triangles, that is, as near equilateral as possible.

FIG. 1 a, A set of randomly distributed
nodes and their Voronoi cells in a plane.
The natural neighbours of node A are num- 4
bered 1-7. b, The Delaunay triangulation is
obtained by connecting all pairs of natural
neighbours together. The Voronoi cells are
unique in any number of dimensions and
their boundaries consist of the perpendicu-
lar bisectors between points. The Delaunay
triangulation is unique unless four neigh-
bours lie on a circle (or five on a sphere in
three dimensions). ¢, A test point x and its
five natural neighbours. The shaded area
is the Voronoi cell about x. This first-order b
Voronoi cell can be divided into five second-
order Voronoi cells. Each second-order
Voronoi cell contains that part of the plane
which is closest to x and second closest
to one of its neighbours. Natural-neighbour
coordinates, N;(x), are defined as the ratio
of the area of the second- to first-order
Voronoi cells. For example, Nx(x) is equal to
the area of the polygon (a, f, g, h, e) divided
by the area of the polygon (a, b, ¢, d, €). ¢
Highly efficient ‘local’ algorithms have been
found for calculating Delaunay triangula-
tions and natural-neighbour coordinates in
two dimensions®***°. Sambridge et al.*®
also present analytical expressions for the
derivatives of N;(x) with respect to the com-
ponents of x in two dimensions. Recently,
we have implemented a different algorithm
for calculating natural-neighbour coordi-
nates and derivatives in three or more
dimensions (see Box 1).

Voronoi cells

convex hull

Delaunay triangulation

New Voronoi cell about x
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FIG. 2 The natural-neighbour influence function, N,(x), associated with
a node | at various locations within a set of fixed nodes irregularly
distributed in the plane. The influence function is displayed as an arti-
ficially illuminated surface with the height proportional to the value of
the trial function about the node i marked by a cross (one at the node;
zero at all other nodes). The surface is divided into five contours from
yellow to blue; each band represents an interval of 0.2 in the value
of the trial function. The surface shows how the node influences its
surrounding region and that its shape is solely dictated by the distribu
tion of nodes: it expands in regions of low nodal density (a) and shrinks
in regions of high nodal density (b-d). An example of a 3D natural
neighbour influence function is shown in Figs. 3 and 4.

Efficient methods have been developed to calculate Delaunay
triangulations (and the dual Voronoi diagram) in two and
three dimensions” '". To make the Delaunay mesh useful in
solving PDEs an interpolation method is required to estimate
the solution (and its derivatives) between the nodes. A simple
linear interpolation could be used'' but this would restrict the
approach to low-order PDEs. We use natural-neighbour

FIG. 3 Examples of the natural-neighbour influence function in three
dimensions, calculated with the new method described in Box 1. Top
left, a ray-traced image of a central node (purple} connected to its 12
natural-neighbour nodes (yellow). The connections between the neigh-
bours are marked with a thin pipe (pink), while the connections between
the central node and its neighbours are marked with a thicker pipe
(green). Together they form 20 Delaunay tetrahedra, all of which have
the central node at a vertex. The network shown is only a subset of
a larger number of surrounding nodes distributed randomly in three
dimensions. Top right, a surface on which the natural-neighbour coordi
nate with respect to the central node is a constant (N{x)=0.1). The
value of the natural-neighbour coordinate represents the weight given
to that node in natural-neighbour interpolation. Two other isosurfaces,
at values of 0.05 and 0.0000001, are shown in the bottom left and
bottom right panels, respectively. Notice how each surface is smooth.
The smoothness properties of natural-neighbour interpolation arises
directly from the continuity of this influence function. When the natural
neighbour coordinate is equal to zero, the isosurface consists of the
union of 20 spheres (see Fig. 4). Each of these spheres passes through
the four vertices of one of the Delaunay tetrahedra connected to the
central node.
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FIG. 4 The isosurface for which the natural-neighbour coordinate is zero
for the nodes shown in Fig. 3. The surface is shown from a different
perspective than employed in Fig. 3 to highlight the intersection of
the (large) spheres. The spheres always intersect at a neighbour node
(smallest spheres), and all spheres pass through the central node, which
is obscured in this view.

mterpolation’™ in which the value of f{x) at a point x 15 given

by

f(x)=% N,(x)f, (1

where the weights N, (x) are the natural-neighbour coordinates
of x with respect to its natural-neighbour nodes, and f; is
the corresponding field value at the node. Natural-neighbour
coordinates of the point x are defined in Fig. le. Each natural-
neighbour coordmate, N, (x), can be displayed as an influence
function about node i. Examples in two and three dimensions
are shown in Figs 2, 3 and 4. They are uniquely defined for
any distribution of nodes in any number of dimensions™"’
I'hey also have the important property of being orthogonal,
which means that the interpolation will recover the original
function values at the nodes, that is, we have:

Ni(x;)=0, (2)
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where x; i1s the position of node j (6, i1s the Kronecker delta).
Another important property is that they are isoparametric’,
which means that geometrical coordinates are interpolated
exactly, that is. we have:

x=Y Ni(x)x; (3)
The third important property is that they are continuously
differentiable (C, ) everywhere except at the nodes. x,, where
all derivatives are discontinuous’. These three properties make
them very powerful when used as the basis of numerical
methods for solving PDEs.

The ‘natural-element method’

In this section we present a new approach for solving PDEs
which we called the ‘natural-element method’ (NEM). It is an
example of a general Galerkin form of the weighted-residuals
method'" in which the newly defined natural-neighbour coordi-
nates are used as geometrical trial functions. In this new method,
the solution u(x) to a general set of PDEs

Alw)=0 (4)
in a domain V, with boundary conditions
T(u)y=0 (5)

on boundary S, is approximated by the solution of the following
integral equation,

- ) \ - /

J NIAY .-\",u,)dl"+ |~ TS N,zr,) ds=0 (6)
where w(x) has been expanded in terms of trial functions N, (x)
(i=1, ..oy ",

u(x) =Y N(x—x;)u, (7)

I

The u, are the estimated values of the solution, u(x), at the nodes
X

In FEM”, nodes are usually defined at the vertices of triangu-
lar or rectangular elements in two dimensions, or polyhedra in
three dimensions, and polynomials are used as trial functions
within cach element. In this case the trial functions are only
continuous to the order of the polynomial across element
boundaries. In addition, if the PDE is of high order then the
polynomials must also be of high order, which often places con-
straints on the positions of nodes, for example, nodes at the
vertices and faces of triangular or rectangular elements. In NEM,
natural-neighbour coordinates are used as trial functions and,

Delaunay

non-Delaunay

FIG. 5 The basic 'flip operation' used to update the triangulation after
each deformation step. Every triangle is checked against each of its
neighbours to ensure that the triangulation satisfies the in-circle test:
no circle constructed around the corners of the Delaunay triangles con-
tains any node. If two neighbouring triangles do not satisfy the test
(note that node 1 is inside the circle built around nodes (2 3 4)) then
the side common to the two triangles (2 4) is removed and a new side
is added (1 3). The tensors known at the three integration points inside
triangles (1 2 4) and (2 3 4) are interpolated onto the integration points
inside triangles (1 2 3) and (1 3 4) by simple averaging and splitting,
for example o(N)=[c(A) + a(B)]/2 and o(M)=a(P)= a(C).
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FIG. 6 Natural-element method (NEM) solution of a Stokes flow problem
in which motion is driven by the fall of an elasto-plastic plate denser
than the viscous fluid. We solve the Stokes equation®” at the integration
points in the linear fluid and the equations of force balance®’ at the
integration points located within the elasto-plastic plate, which obeys
the Von Mises failure criterion. The solution is shown at times 1 (a) and
1,000 (b). The nodes on the boundary between the plate and the fluid
are shared, which ensures no slip between the fluid and the plate. We
use an iterative predictor—corrector scheme to maintain stability in the
lagrangian grid update performed at each time step from the computed
velocity. The fluid viscosity structure, n(z), is carried by the nodes. (n(2) =
no for z=0.75L and n(z)=10n, for z<0.75L, where the box has
dimensions L x W(=10L)). The colours from purple to white represent
the initial depth of fluid particles. The time-dependent solution shows
the plate ‘falling’ down and dragging along the incompressible fluid
which causes a return flow pattern to develop. Notice how the mesh
accommodates the movement of the lagrangian nodes: points that were
originally natural neighbours (for example, B and B’) are moved apart
by the divergent flow, whereas points that were originally far apart (for
example, A and A') eventually become neighbours.
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BOX 1 A new method to calculate natural-neighbour coordinates
and their derivatives in three or more dimensions

In any number of dimensions, natural-neighbour coordinates are
defined as the ratio of the volume of a second-order Voronoi cell to
the volume of the first-order Voronoi cell about a point x,,. First- and
second-order Voronoi cells are defined in Fig. 1c, for the 2D case.
Because the sum of the second-order cells is equal to the first-order
cell, to calculate natural-neighbour coordinates in three dimensions
we need only determine the volume of each second-order Voronoi
cell. Watson'* introduced a method to do this for the 2D case. Here
we briefly describe a method that can be generalized to any number
of dimensions (a fuller treatment is available: see Supplementary
Information). Our approach is based on the fact that all second-
order Voronol cells are convex polyhedra (or convex polytopes in
higher dimensions). This means that all points inside a second-order
Voronoi cell (in dimension n) satisfy a system of linear inequality
constraints,

Ax<b 9)

where the matrix A has m+1 rows and n columns, and m+1 is
the number of boundaries (sides) of the cell. By definition the first
bounding plane is the perpendicular bisector of x, and one of its
neighbours, which we shall call x,, and the m remaining are the
bisectors of x, and the nodes which are neighbours of both x,, and
Xs. In two dimensions, these facts can easily be verified from Fig. 1c,
and they may be generalized readily to any number of dimensions,

A recursive formula for calculating the volume of any convex poly-
tope in any number of dimensions was given by Lasserre'®,

V(n, A, b)= g o L3 Viin—1,A,,b) (10)
n <o lau

where A, is the reduced matrix obtained from A by eliminating the
tth variable using the equation a,:x=0b,, b, is the corresponding
reduced vector and a, Is the tth element of a,. The value of t is
usually chosen so that |a,,| is a maximum. The recursive evaluation
of equation (10) is best viewed as a tree structure, with V at the
root and the first m+1 terms as branches attached to V. In the
second |level of the recursion, each reduced matrix and vector corre-
spond to a system of inequalities with one less constraint and one
less variable. Therefore each branch is attached to m other
branches, and so on for each level. After n —1 recursions we reach
the leaf nodes, and for each of them the system of inequalities is
reduced to a set of 1D constraints. In each case the length of the
region satisfying all constraints becomes the final contribution to
the recursive formula in equation (10).

For any given point x, the matrix A and vector b can be easily
determined for each second-order Voronoi cell, and the recursive
algorithm leads to an efficient evaluation of their volumes. The accu-
racy of the second-order Voronoi volumes can be independently
verified by comparing their sum to the volume of the first-order cell.
We have done this for a test set of 220 nodes in three dimensions;
in each case we did not find any discrepancies above the level of
machine precision. An example of natural-neighbour interpolation
using this formula is given in Figs 3 and 4.

The natural-element method requires derivatives of the natural-
neighbour coordinates with respect to the coordinates of the test
point x,. A differentiation of V in equation (10) leads, after some
algebra, to a new recursive expression for each derivative, whose
computation takes about the same time as the volume itself. The
situation is simplified by the fact that only the first row of A and b
depend upon x,. However, this property is lost for the i=0 term in
equation (10). It turns out that for these, and all lower branches
of the recursive tree, all elements of the reduced matrix A, and
vector b, become functions of x,, With the aid of some extensive
algebra it is possible to keep track of the dependent terms and
calculate all derivatives. The validity of the resulting derivative
formulae have been verified by comparison to finite difference
estimates for a set of irregularly distributed nodes in up to four
dimensions.

therefore, no discontinuities are present across element boundar-
les as natural-neighbour coordinates are continuously differen-
tiable at all points except at the nodes themselves”. Furthermore,
like “classical” trial functions they are orthogonal and isopara-
metric (equations (2) and (3)), but as they place no constraint
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on the positions of nodes they are well suited to solving problems
on deforming or self-adapting meshes, even for high-order PDEs
like the Navier Stokes equation.

In the implementation of the natural-clement method several
computational issues arise. The first, and most important, is the
need for a parametric expression for the spatial derivatives of
the natural-neighbour coordinates which can be inserted in the
integral form of the differential equation (3). In the 2D case,
these have been derived by Sambridge ¢f al.'”. A new method is
outlined in Box 1 which can handle any number of dimensions.
An additional advantage with this method is that, unlike with
the approach used by Sambridge er a/.", it does not break down
when evaluated along the lines (or planes in three dimensions)
connecting the mesh nodes. The new approach is based on the
formula of Lasserre'® for calculating the volume of n-dimen-
sional convex polyhedra. An example of a 3D trial function that
was computed with this approach is shown in Figs 3 and 4.

The second computational issue concerns evaluation of the
integrals in equation (3). In classical FEMs this is usually done
using Gauss Legendre numerical integration over individual
elements®. This involves estimating the integral as a weighted
sum of the interpolated values of the integrand at a set of Gauss
Legendre points inside each element. Often with polynomial
trial functions the integrals can be evaluated exactly. However,
natural-neighbour coordinates are not simple polynomial
expressions and so Gauss- Lengendre integration in NEM gives
only an approximate integral. For a simple 2D elastic problem,
we have evaluated the level of accuracy obtained from a series
of 2D integration schemes. namely 1, 3, 4, 7 and 13 integration
points per element™'”. In this test problem. three integration
points within each Delaunay triangle appeared sufficient. Note,
however, that as the integrand need only be evaluated inside. or
along the edge of each triangle, the discontinuity in the deriva-
tives of the natural-neighbour coordinates at the nodes is never
encountered. Nevertheless the question of finding an optimal
integration scheme for natural-neighbour coordinates remains
open.

The third issue arises in problems where tensors (such as an
initial stress) rather than scalars (such as viscosity or elastic
parameters) have to be stored from one time step to the next.
‘Tensorial memory’ is required in structural mechanics problems
for example, whereas “scalar-only memory” is required in fluid
flow or diffusion problems. Unlike scalar quantities. tensors are
characterized by orientations (Euler angles or principal
directions). Scalar quantities can be evaluated and stored at the
nodes of the numerical mesh (which represent material points),
whereas tensors must be evaluated at the integration points
inside the elements. As the triangulation is updated at each time
step. the geometry of the elements changes and a new set of
integration points has to be defined, which means that tensors
known at the old integration points have to be interpolated onto
the new ones. This interpolation will introduce some numerical
diffusion which should be minimized by ensuring fine mesh
discretization along material interfaces or in regions where ten-
sors (stresses) are discontinuous. It is important to note, how-
ever, that in 2D problems. this interpolation is only local. For
example, in our 2D implementation of NEM, the mesh update
is performed via a series of local Delaunay “flips’ (see Fig. 5)
involving two neighbouring elements. During each Delaunay
flip, we take advantage of the distribution of the three integra-
tion points within the element to devise a simple local interpola-
tion scheme based on two-point averaging and splitting (see Fig.
5). This simple scheme ensures conservation of linear relation-
ships between tensor invariants. A similar procedure is yet to be
developed for 3D problems. It is important to stress, however.
that this interpolation is needed only in problems involving "ten-
sorial memory’. No interpolation is required in cases where only
scalar quantities need be carried with the deforming mesh. for
example in the Navier Stokes equation, because, unlike tensors,
scalars can be stored at the material nodes. Therefore the present
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implementation of NEM may be used for these cases in two or
three dimensions.

The fourth computational issue concerns the type of method
used to solve the set of algebraic equations which results from
combining equations (6) and (7),

A ju=b; (8)

In classical FEMS the nodes can be arranged to minimize the
bandwidth of the matrix 4 which ultimately reduces the number
of operations needed to solve equation (8). In NEM, the node
connectivity is more complex and may change during the calcula-
tion, therefore it is not practical to attempt node numbering that
will minimize the bandwidth of 4. This problem is avoided by
using an iterative linear system solver (for example, Gauss—
Seidel with over-relaxation'®, or the ‘element by element’ method
with Cholesky factorization'®).

Efficiency of NEM. Sambridge et al.'* have shown that all opera-
tions required to compute natural-neighbour coordinates
(including the construction of the Delaunay triangulation) are
local and, therefore, require a number of arithmetic operations
that increases approximately linearly with the number of
nodes. This implies that the computational effort required to
form the NEM matrix (equation (8)) is similar to the one
required in classical FEM. Table 1 shows the results of compu-
tations demonstrating that NEM is only about half as efficient
as FEM. Furthermore, it must be stressed that the time
required to compute the NEM, or FEM, matrix is usually
only a small fraction of that needed to solve the resulting
algebraic system of equations, and therefore, in practice, there
will be little difference in overall computational time between
the two approaches.

An example of NEM: fluid—solid interactions

To illustrate the great geometrical flexibility of NEM, we have
selected a problem of creeping flow inside a rectangular box
driven by a free-falling elasto-plastic plate of greater density than
the fluid (Fig. 6a). The Navier-Stokes equations® with zero
Reynolds number are solved in the incompressible fluid whereas
the equations of static equilibrium®' are solved in the elasto-
plastic plate obeying the Von Mises failure criterion®'. Free slip
is assumed on all boundaries. The flow created in the fluid by
the falling plate exerts stresses on the plate, which may deform
elastically. Increasing internal stresses in the deforming plate
leads to irrecoverable plastic deformation (Fig. 6b). This type
of coupled fluid-solid system could not be solved using ‘classical’
eulerian or lagrangian methods. In the eulerian formulation of
flow, the boundaries of the solid plate would have to be recom-
puted at every time step by interpolation onto the ‘frozen’ mesh,
which would eventually lead to inaccuracy due to numerical
diffusion during interpolation. In a small-deformation-only lag-

TABLE 1 Relative efficiency of NEM

Number of NEM Delaunay
elements FEM  Method 1 Method 2 triangulation
32 1 1.1 2.1 0.08
200 1 1.2 21 0.03
1,800 1 1.36 2.22 0.03

Computing time required to form the NEM matrix normalized by the
time taken to form the equivalent FEM matrix for a simple elastic test
problem. Quadratic triangular finite elements with three Gauss integra-
tion points were used. NEM method 1 is based on the natural-neighbour
algorithm used in Sambridge et al.*®; NEM method 2 is based on the
algorithm described in Box 1. The last column gives the time taken to
form the Delaunay triangulation and update it at the end of the time
step (normalized by the FEM matrix-formation time). These operations
have to be performed in NEM, not FEM, but they do not require substan-
tial computational overhead.
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rangian representation, flow in the fluid would require a very
large number of remeshing and interpolating steps to avoid
excessive mesh deformation.

In our example the initial Delaunay mesh is constructed from
a random distribution of nodes with a density inversely propor-
tional to the distance from the plate (Fig. 6a). As expected, the
Delaunay triangles are as near equilateral as possible. Neverthe-
less because the nodal distribution is deliberately non-ideal, some
triangles are very elongated. These triangles would be unaccept-
able in a ‘classical’ finite element mesh as they would yield inac-
curate estimates of derivatives. There is no such restriction in
NEM as the derivative estimates at every Gauss-integration
point are derived from its surrounding natural neighbours and
not just the nodes at the vertices of the triangle containing the
point. This means that long thin triangles are less problematical
with NEM than in classical lagrangian FEM for two reasons.
First, the retention of a Delaunay mesh means that these tri-
angles are less likely to occur, and second, if thin triangles are
present the natural-neighbour interpolation ensures that the
‘quality’ of the derivative estimates everywhere depends on the
local node density and not just on the shape of a single triangular
element.

In a lagrangian formulation, the position of the nodes is
updated at each time step, using the velocity field calculated
from the previous time step, which can quickly stretch the mesh
and lead to highly distorted elements. This is the reason why
lagrangian FEM is usually restricted to small-deformation-only
problems. At each time step of NEM we update the nodal posi-
tions and connections so that a Delaunay triangulation is main-
tained. This ensures stability and accuracy of the derivative
estimates regardless of how far the nodes have moved. Also we
have the added advantage that all fluid properties are carried
with the flow without the need for re-interpolation or regridding
of the mesh. NEM is therefore very well suited to track material
interfaces, deforming boundaries or material properties, even in
large-scale-flow problems. In our example, the density of the
nodes varies because of the divergent nature of the flow around
the plate and along the sides of the box. Because the local nodal
density can easily be monitored (using the size of the associated
Voronoi cells), it is also straightforward in NEM to dynamically
‘inject’ new nodes in regions where the density falls beyond some
critical value. If this is done, it turns out that only local changes
to the Delaunay mesh are required and consequently only those
elements of the matrix 4 that correspond to the new nodes and
their neighbours need be recomputed.

Future directions

Our use of the natural-neighbour theory to solve PDEs demon-
strates the great geometrical flexibility of the method for solving
complex problems on highly irregular evolving grids without
compromising accuracy.

The power of NEM is derived from the fundamental geometri-
cal concepts on which it is based, all of which generalize to higher
dimensions; for example, triangles in two dimensions become
tetrahedra in three dimensions and Voronoi cells become convex
polyhedra. More importantly, all natural-neighbour coordinates
remain orthogonal, isoparametric and continuously differen-
tiable’. The new method we have developed to compute the
natural-neighbour coordinates (see Box 1) is valid in any number
of dimensions. NEM can therefore be used to solve problems in
two or three dimensions. However, because there is, as yet, no
direct extension of the 2D “flip operation’ in three dimensions,
the Delaunay triangulation has to be computed at every time
step by another method (for instance, by using the method of
Barber et al.’). This also means that there is no 3D equivalent
of the 2D averaging and splitting strategy that we have used in
our implementation of NEM (see Fig. 5), and therefore, in three
dimensions, NEM is at present restricted to problems requiring
scalar-only memory (like the Navier-Stokes or diffusion
equation).
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This article has dealt solely with the application of natural-
neighbour theory to the weighted residual method for solving
PDEs. We expect that many other applications of natural neigh-
bours will appear in the future. For example, it may well be
possible to generalize classical finite-difference methods (which
rely on estimating derivatives at nodes of a regular grid') to
irregular meshes. Although the natural-neighbour coordinates

themselves cannot be used to estimate derivatives at nodes, an
extension described by Sibson'? does give first-order derivatives
at the nodes. Because most numerical methods are based on
the discretization of a field onto a mesh, the theory of natural
neighbours raises the exciting possibility of generalizing methods
commonly restricted to regular grids to a Delaunay mesh based
on any irregular distribution of nodes. O
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