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1 INTRODUCTION

SUMMARY

An inversion technique to reconstruct the heat flow history of a sedimentary basin
from downhole geochemical (or thermal indicator) data is presented. The method
has been successfully applied to other geophysical inverse problems and attempts to
bound a property of the model. This contrasts with the more common approach of
merely finding a model which can predict the data, which is less meaningful for
underdetermined problems. In this particular application we seek the smoothest
model that can predict the observed data to within a given misfit value. This
stabilizes the highly non-linear inversion problem and suppresses the generation of
complexities in the heat flow history which are unwarranted by the data. Both first
and second derivative smoothing constraints are considered, and the differences
between the resulting models allows an assessment of the resolution of the heat flow
history. Examples are given using synthetic vitrinite reflectance, sterane and hopane
isomerization and sterane aromatization data. Our synthetic inversions indicate that
for models with accurate thermal parameters, burial history, and thermal indicator
predictive models, the heat flow generally cannot be well resolved back past the
timing of maximum temperatures, which in many cases is likely to be the present
day. The ability of a particular data type to resolve heat flow back in time depends
on the effective kinetic parameters which control the rate of reaction as a function of
temperature. When realistic uncertainties in the burial history, present-day heat flow
and kinetic parameters are considered, false structure may be introduced into the
heat flow history and the inversion generated heat flow models can show significant
differences from different data types. The algorithm has the benefit of highlighting
the degree of non-uniqueness in the problem and provides an efficient way of
generating heat flow models which contain the minimum amount of variation
necessary to satisfy the observations, thereby reducing the risk of overinterpreting
the data.
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steady state values. Simple shear extension models
(Wernicke 1985) exhibit similar time dependence; the major

Of the predictions commonly made from geophysical models
of sedimentary basin formation, subsidence and surface heat
flow histories are potentially among the most useful in
constraining the relevant physical mechanisms. For ex-
ample, the pure shear extension model (McKenzie 1978)
predicts an initial period of rapid subsidence and elevated
heat flow which subsequently decay exponentially to the
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difference from the pure shear models is the asymmetry
expected across a basin (Buck et al. 1988; Voorhoeve &
Houseman 1988). Other thermally driven models (e.g. Sleep
1971; Flavey 1974; Middleton 1980; Turcotte & Angevine
1982) predict essentially the same exponential or square root
of time dependence to subsidence and heat flow as
mentioned above, although the nature of the early part of a



basin’s history may differ in detail. A variable subsidence
history is expected with foreland basin models (Beaumont
1981; Jordan 1981), dependent on the magnitude and
erosion of thrust generated topography adjacent to the
evolving basin. As there is no explicit thermal influence
involved, the heat flow is predicted to be constant with time.
In a related problem, Angevine & Turcotte (1983)
considered the temperature history of sediments buried
beneath a thrust sheet. In this case the surface heat flow is
predicted to vary with time, decreasing at first, then relaxing
back up to the steady state value. The compressional model
of Lambeck (1983) does not predict a time varying heat
flow, while the subsidence rate is expected to increase
exponentially with time, at least up to a point where
large-scale crustal failure terminates the process.

The ability to constrain and test a model ultimately
determines its usefulness. Quantitative analysis of sub-
sidence histories (Sleep 1971; Steckler & Watts 1978) is a
tremendously valuable technique for understanding basin
evolution, providing a test for particular physical mechan-
isms (e.g. Middleton 1980; Royden & Keen 1980; Barton &
Wood 1984; Bond & Kominz 1984; Hegarty, Weissel &
Mutter 1988; Gallagher & Lambeck 1989). The role of the
heat flow history in basin modelling had less significance
initially but the importance of calculating temperature
histories has been recognized as a useful technique in many
areas, not least in hydrocarbon exploration (Royden, Sclater
& Von Herzen 1980; McKenzie 1981; Middleton 1982;
Durand 1984; Beaumont et al. 1985; Tissot, Petet &
Ungerer 1987; Issler & Beaumont 1989; Deming &
Chapman 1989; Burrus & Audebert 1990). Predictive
models of subsidence and heat flow histories have been
coupled with deterministic formulations of the temperature
and time dependence of measurable quantities, or thermal
indicators, to provide constraints on thermal histories and
tectonic processes in sedimentary basins. These thermal
indicators, which need to be sensitive to temperatures of less
than about 200 °C, as are generally relevant to sedimentary
basins, include vitrinite reflectance (Stach et al. 1975; Staplin
1982), individual organic reations (MacKenzie & McKenzie
1983; Sajgé & Lefler 1986), diffusion of argon in feldspar
(Harrison & Bé 1983), fission track annealing (Gleadow,
Duddy & Lovering 1983; Green et al. 1989) and fluid

inclusions (Tilley, Nesbitt & Longstaffe 1989).
Generally, most applications have used a forward

modelling approach to calculate thermal histories. In this
situation, the predicted levels of thermal indicators are
compared with the observed value and an assessment is
made regarding the suitability of a particular thermal
history. As a natural progression from this approach,
Lerche, Yarzab & Kendall (1984) used a single parameter
search method to estimate the most suitable linear heat flow
history from vitrinite reflectance observations. Subseq-
uently, Lerche (1988a,b) has described a refined method
where the solution is constrained to be one of a variety of
functional forms chosen a priori. The parameters controlling
the particular function are perturbed in an iterative fashion,
from some starting values, so that the misfit between
observed and predicted values of thermal indicators is
minimized. This methodology has been applied by Lerche
and co-workers to a variety of thermal indicator types
(Lerche 1990). The fundamental difficulty with the inversion
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of thermal indicator data is that it does not yield a unique
solution. Often, however, a single model is preferred. In the
type of approach described above the inherent non-
uniqueness of the problem is suppressed by the para-
metrization of the model and also, if necessary, by
numerical damping (during matrix inversion). These
processes influence the character of the final solution in a
complicated and indirect manner. It can therefore become
very difficult to appreciate which features of the resulting
heat flow profiles are actually determined by the data and
which are merely artefacts of the inversion procedure.

In this paper we examine the problem of estimating a heat
flow history from thermal indicator data by applying an
inversion procedure which avoids the implicit regularization
of earlier techniques and instead seeks the least complex or
smoothest model which fits the data to an acceptable level.
The basic methodology has recently been applied to inverse
problems in electromagnetic sounding (Constable, Parker &
Constable 1987) and seismic velocity structure (Sambridge
1990). With this algorithm we are able to gain insight into
the degree of non-uniqueness of the problem and also to
address, via a series of synthetic inversions, the ability of
thermal indicator data to resolve heat flow variations back
through time.

2 FORMULATION OF THE FORWARD
PROBLEM

2.1 Calculating the thermal history in a sedimentary

basin

In detail the thermal state of a sedimentary basin is likely to
reflect a variety of processes, including differences in the
thermal properties of rock types, the perturbing effects of
the hydrodynamic regime, the insulating effect of sedimen-
tation, periods of erosion and climate change and the
temperature changes associated with diagenetic reactions.
Although 2-D and 3-D thermal models can be formulated to
include transient terms and fluid flow (Bethke 1985) some
assumptions are commonly made to simplify the calcula-
tions. As we use a simple 1-D model to -calculate
temperature histories in this paper, we shall give a brief
overview of the rationale behind these assumptions.
However, our conclusions are not affected by the simplicity
of our model as we shall be only considering synthetic
examples.

It is commonly assumed that the most significant heat
transfer occurs in a vertical direction, justified in the
absence of rapid horizontal fluid flow (Bethke 1985; De
Bredhoeft, Djevanshir & Belitz 1988) or major lateral
discontinuities in thermal properties (England, Oxburgh &
Richardson 1980). Additional assumptions are that a steady
state approximation is appropriate and that heat flow is
independent of depth. The validity of this depends on the
time- and length-scales involved in the problem. For
example, Lucazeau & Le Douaran (1985), Hutchinson
(1985) and Kominz & Bond (1986) have shown that
predicted surface heat flow can be reduced by a factor of 2
(relative to the deep heat flow) as a result of the deposition
of low heat capacity sediments and the more rapid the
deposition, the greater the difference. These calculations
were made on a lithospheric scale (i.e. over 100 km), but if
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we were considering only vertical variations of heat flow
within the sedimentary pile (a length scale of 5km or less),
then the assumption of steady state is effectively valid for
sedimentation rates of 500m Myr~' and less (Gallagher
1988). In this case the near-surface heat flow differs from the
deep heat flow value, but is effectively constant through the
sedimentary pile. Depth-dependent heat flow will occur as a
result of vertical fluid flow, and also because of the presence
of significant quantities of heat-producing elements (U, Th,
K) in the sediments. The former effect is most likely to be
significant in geothermal areas, especially in regions where
permeability is enhanced by fracturing (Garg & Kassoy
1981) and also at basin margins where near-vertical flow
may be enhanced (Smith & Chapman 1983; Andrews-
Speed, Oxburgh & Cooper 1984; Majorwicz et al. 1985). In
most situations, radiogenic heat production within the
sediments in a basin is unlikely to contribute more than a
few mW m ™ to the surface heat flow and can generally be
neglected.

In the absence of transient, advection and source terms,
heat flow is constant with depth and an appropriate energy
equation for the sedimentary column at any time is

% [K(z)j—:] =0 (1)

where K(z) is the thermal conductivity of the sediments, T
is temperature and z is depth. The lower boundary
condition at z = z, is given by the heat flow Q(t) (defined to
be positive upwards) into the sedimentary pile from below
at time ¢, and the upper boundary condition at z =0 is the
surface temperature, T,(¢) at time . The temperature profile
is given by the integral equation

T )= 10+ [ K—(lz—) (1) dz". @

Some forms of K(z) allow an analytical solution to be
obtained for the temperature (e.g. McKenzie 1981) but for
more complicated reationships, equation (2) may be solved
numerically by discretizing the depth variable into a series of
N grid points z, (n=1,...,N) and assuming that the
physical properties between successive grid points z,_, and
z,, are constant. Equation (2) then becomes

Az

T(znl f) = T(zn—ll 1) + K" Q(I) (33)
or
T(z )= T, + 2 (1) (30)

with T(0, t) = T, z) = z,, and where

Az;
1 Ki

VN

=i

i

and Az, =z, — z,,_,. Clearly, if we specify the burial history
for a particular layer, and also the thermal conductivity as a
function of depth, we can calculate the temperature history
of that layer for any heat flow history, Q(t), from equations
(3a) and (3b). The results of thermal history calculations can
then be combined with predictive models of thermal
indicators to determine the set of observations that would
result from a given heat flow model.

2.2 Predicting thermal indicators: vitrinite reflectance and
organic reations

As mentioned above, a variety of thermal indicators are
used in sedimentary basin studies. An extensive discussion
of the methodology is not relevant here and Naeser &
McCulloh (1989) provide a recent overview of techniques
and applications. In this paper we restrict our study to
vitrinite reflectance and three individual organic reactions;
sterane and hopane isomerization and sterane
aromatization.

The reflectance of the solid organic matter is simply the
ratio of reflected light intensity to normal incident light
intensity. This property is determined under a reflected light
microscope using a photomultiplier and is defined for
monochromatic light according to the Fresnel-Beer formula
as (Stach et al. 1975, p. 263)

2 2.2
vr =B t) 10, @

(rs+rm) +r5a5
where r, and a, are the appropriate refractive and
absorption indices of the sample or standard respectively
and r,, is the refractive index of the medium in which the
sample is immersed. Liptinite, vitrinite and inertinite are
types of kerogen which correspond to different types of
organic material in the same sediment and have reflectances
which increase in this order. Ideally about 50-100
measurements should be made on a given sample and the
results are usually displayed as a frequency histogram. The
measurements are cited as a percentage of reflected light,
and vitrinite reflectance (VR) values of approximately 0.6 to
1.3 per cent are considered to correspond to the oil
generation window and the upper limit for dry gas
generation is about 5 per cent (Gretener & Curtis 1982).
There are numerous potential problems associated with
reflectance measurements and their interpretation (Dow &
O‘Connor 1982; Castano 1985; Price & Barker 1985). These
include contamination of the sample by cave-ins or
reworked material, incorrect identification of the type of
organic material, impregnation of the sample by liquid
hydrocarbons, inhomogeneities and optical anisotropy.
Some of these problems are apparent when histograms are
drawn and it may then be desirable to define maximum and
minimum reflectances. Dembicki (1984) has shown that
there can be inconsistency between the measurements of
different laboratories of up to 100 per cent as a result of
sample preparation and method, although for a given
laboratory the results appear to be repeatable. Underwood
(1990) quotes a variability of 0.1 per cent reflectance units
between three laboratories and states that his own
laboratory has an internal consistency to within 0.02 per
cent. Therefore, provided that the same laboratory has
made all the measurements, a data set from a given base
should be internally consistent.

It is accepted that temperature, or thermal energy, is a
major factor and reflectance will increase on heating. The
other factor which is often assumed to have first-order
significance is time, suggesting an Arrhenius type relation.
Kinetic, or similarly based, models have been proposed by
Lopatin (1971), Waples (1980), Royden et al. (1980), Antia
(1986), Larter (1989), Wood (1988), and Burnham &



Sweeney (1989). These models assume a time—temperature
relationship in which the reaction rate is linear in time and
has an exponential or power-law dependence on tempera-
ture. Some favour little or no time dependence and interpret
the data in terms of the maximum temperature experienced
by the sample (Price 1983, 1985; Barker 1983) or the
duration of time spent at or near the maximum temperature
(Hood, Gutjahr & Heacock 1975; Shiboaka & Bennet
1977).

In order to maximize the potential for recovering heat
flow history, we adopt a function with a time dependence.
Lopatin (1971) proposed that the reaction rate approxim-
ately doubles for a 10°C rise in temperature over the ranges
relevant to oil generation (~50°-150°C). A variety of
integrals forms have been proposed (e.g. Royden et al.
1980; Waples 1980; McKenzie 1981; Ritter 1984) and a
general maturation function for vitrinite reflectance may be
written as

-
Mt = f[ ) gleTer gy (5)

where a, @, and f are empirically derived constants.
Vitrinite reflectance can generally be calibrated against the
maturation function with a relationship of the form

Ln(VR)=p + g Ln (M) (6)
(Waples 1980; Middleton 1982; De Bremaecker 1983; Issler
1984; Ritter 1984). To make such correlations, it is
necessary to assume the thermal hstory of an area for which
data are available. Waples (1980) and Ritter (1984), for
example, both incorporate geographically diverse data and
in most cases assume that the geothermal gradients have
been constant through time. Ritter (1984) proposed that
a =1.35 in equation (5). He stated that this value reduces
the scatter of a plot of Mt with respect to observed
reflectance, compared to the value of 2 favoured by Waples
(1980). Issler (1984) also used a value of a=2 and
extrapolated the present-day gradient to calibrate reflec-
tance data independently from eastern Canada and Western
Australia. His correlations of Mt to observed reflectance
(equation 6) differed from that of Waples and he
recommended not combining vitrinite reflectance data from
different areas as uncertainties in temperature histories are
compounded. This is a reasonable proposal especially when
taken in conjunction with the comments earlier regarding
the inconsistencies between measurements made by
different laboratories.

Motivated in part by the somewhat ad hoc nature of
vitrinite reflectance as a thermal indicator, Mackenzie &
McKenzie (1983) examined three individual organic
reactions; sterane and hopane isomerization and sterane
aromatization. Essentially, the isomerization reactions
represent reorganization of the geometry of a hydrogen
atom around a particular carbon atom (C-20 for sterane and
C-22 for hopane), while the aromatization reactions involves
the loss of hydrogen atoms and a methyl group in the
conversion from a monoaromatic to a triaromatic steroid
hydrocarbon. MacKenzie & McKenzie (1983) and Sajgé &
Lefler (1986) give extensive accounts of these reactions. The
basic assumptions in this methodology are that only one
biologically inherited isomer occurs in the near-surface
environment and, as a sediment is buried and experiences

Heat flow inversion 81

higher temperatures, this isomer is progressively converted
to another form having different stability and chemical
properties. By measuring the relative abundances of the
reactant and product isomers (usually by gas
chromatography/mass spectrometry), the progress of this
conversion can be examined. However, the validity of the
assumptions have been questioned recently by Peakman et
al. (1989) and Abbott et al. (1990) who have presented
experimental evidence that multiple sources of the isomers
exist and that the interpretation of downhole data may be
more complex than has been previously considered.
However, for the purposes of this paper where we are
dealing with synthetic examples, we follow the approach of
Mackenzie & McKenzie (1983), outlined briefly below.

The isomer conversions are considered to be temperature
dependent according to the Arrhenius law, so that the
reaction rate constant (k) is given by

k=Aexp(—E/RT) (7)

where A is the pre-exponential, or frequency, factor, E is
the activation energy, R is the gas constant and T is absolute
temperature. The pre-exponential factor may also be
expressed as a function of temperature,

a="Lexp (as/R) ®)

where b is Boltzmann’s constant, 4 is Planck’s constant and
AS is the entropy change associated with the reaction.
Generally, however, the exponential term involving the
absolute temperature is believed to be more significant and
so the temperature dependence of A is neglected. The
reactions are considered to follow unimolecular first-order
kinetics so that, for an irreversible reaction, such as sterane
aromatization, the rate of change of the concentration of the
reactant, C, is given by

dc

i kC 9)
and for reversible reactions, such as the two isomerization
reactions, the concentrations of the reactant (C,) and
product (C,) are found by solving

dcC

—=—k,C, + k,Cs, (10a)
dt

dc

sz= —kyCy+ k,Cy, (10b)

where k, and k, are the rates of the forward and reverse
reactions, respectively. MacKenzie & McKenzie (1983) give
the solutions of equations (9) and (10) in terms of the ratio
of the concentrations of the product to the product+
reactants. For a constant temperature, the ratio of
triaromatic to triaromatic + monoaromatic steroids is given
by

Cr

T CutCr

=1—exp(—kal) (11)
where k, is the rate constant of aromatization and x varies
from 0 initially to 1 on complete conversion and subscripts
have been used to indicate the particular steroid in an
obvious fashion. For the isomerization reactions, the ratio of
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S to § + R isomers is given by

y=-—CS—=(L){1—ex [—(1 + y)k, 2]} (12)
Cr+C, \1+y e Lo

where y=k,/k, and k,(=k,) is the rate constant of
isomerization and it is implicitly assumed that y is
independent of temperature over the range of interest. The
value of y ranges from zero to an equilibrium value of about
0.54 for sterane isomerization, and 0.61 for hopane
isomerization. When the temperature is a function of time,
then equations (11) and (12) are rewritten using equation

(?):

x=1 -cxp{—AAL.exp[—EAfRT(:')] dt’} (13)

and

y= (ﬁ)l[l —exp{—(l + y)A,J:exp[—EIIRT(r’)] df’}]l
(14)

where A, and A, are the pre-exponential factors in the two
cases. Since the temperature history is related to the heat
flow history through equations (3a) and (3b), then the above
expressions could also be written directly in terms of heat
flow Q(t). This constitutes the solution of the forward
problem. From a known heat flow history Q(f) one may use
equations (3a, b), (5), (13) and (14) to predict the values of
the three types of observables x, y and VR, and make a
direct comparison with the data. To simplify the inverse
problem somewhat we perform a transformation of data
types x, y, and VR to x', y' and Mt where

x'=—In(1-x), (15)

e —(1-;1-;)1“[1—@], (16)

and Mt is given by (5). The forward modelling equations
(13) and (14) may now be replaced with the simpler
expressions

x'=AArexp[—EAfRT(t’)] dr', (17)

y' =4[ exp [E/RT@)]dr (1)

This completes the description of the forward modelling. In
the next section we formulate the inverse problem, i.e. that
of determining the heat flow history from a set of
observations. We then present the inversion algorithm and
apply it to a variety of synthetic data sets.

3 FORMULATION OF THE INVERSE
PROBLEM

Given a discrete set of observed data, d;, (i=1,..., D) we
want to find the best set of model parameters, m;,
(j=1,..., M) to represent the heat flow as a function of

time such that the original data can be adequately predicted.
The predictive equations (equations 5, 17 and 18) can be
written in a general vector form as

d = g(m) (19)

where d is the data vector with components d, (e.g. vitrinite
reflectance as a function of depth), m is the heat flow model
vector of length M with components m;, and g represents
the non-linear relationship between the two [i.e. through
equation (3a, b) and (5), (17) or (18)]. In order to estimate
the goodness of fit between the observed and predicted
values, we define a misfit function, ®, which is a function of
the data residual (d,,, — d.,.). It is the aim of the inversion
procedure to minimize this misfit function to an acceptable
level, given our knowledge of the errors in the data, while
only introducing the minimum amount of structure
necessary into the model m [in this case heat flow history,
Q(1)]. In other words we are seeking to place a lower bound
on a particular model property, i.e. the roughness. The
standard least-squares method minimizes the L, norm, or
more simply, the length of the misfit vector, so that

1
P(m) =3 [dov, - g(m)]" Cod[d,p, — g(m)] (20)

where C3} is the inverse data covariance matrix of size
(D x D). If the data errors are uncorrelated then Cj, is
diagonal with elements equal to the inverse variance of each
observation, o;2 The first consideration is how to
parametrize the model. A discrete inversion approach for
the model parameters suggests two alternative forms for the
heat flow function. The first is in terms of block functions

where the heat flow is constant over discrete time intervals,

OM)=m; L=t<t_,, j=1,..., M,

: (21a)
0, otherwise

where t, is the present day, and ¢, is the beginning of
deposition. The second parametrization is a polynomial in
time,

Q) =my+myt 4+ -+ mpt™ ", (21b)

The linear function used by Lerche et al. (1984) is a special
case of the second form and Lerche (1988a, b, 1990) has
suggested other functions to represent Q over time. In this
work we wish to use a parametrization which imposes the
least constraint possible on the form of the final model and
allows it to be as flexible as required. In this way we
encourage the heat flow model to be underdetermined,
which more closely represents the real situation. All
influence on the character of the model which is not due to
the data can then be controlled directly by some explicit
smoothness constraint and is not forced upon us by the
parametrization. The block function representation given by
(21a) is most suitable for this purpose. In all cases
considered here the blocks had a width of =2 Myr which
gives reasonable confidence that variations in the heat flow
of time-scales greater than this were sufficiently overpara-
metrized. Gallagher (1988) examined the inversion problem
using a form of the Marquardt method (Fletcher 1971) and
found that as a result of the non-linear nature of the model
formulation, it was necessary to impose severe damping on
the movement of the parameters in model space to obtain
stability and reach feasible solutions (e.g. non-negative heat
flow, or values less than 500 mW m™?). Consequently, it was
observed that, although the data could be adequately
predicted, the solutions depended on the initial guess for the
solution and the number of iterations, indiating that the



problem is highly non-linear. In order to stabilize the
procedure and impose our condition of seeing the simplest
model we need to regularize the problem. To do this we
follow Constable er al. (1987) and Sambridge (1990), by
introducing a roughness function, 1(m) which is minimized
jointly with the data misfit function @, i.e. we seek the
minimum of U(m), where

U(m) = pyp(m) + ®(m). (22)

The scalar p controls the relative importance of smoothing
the model and fitting the data. A large value of u leads to a
greater amount of smoothing and as u is reduced, the model
can become rougher if necessary in order to decrease the
data misfit. As outlined in Constable er al. (1987), we
choose a large value of u initially and attempt to keep it as
large as possible while obtained a satisfactory fit to the data
(as determined from the observed or assumed errors).
Therefore, we are trying to find the smoothest (least rough)
heat flow model that can explain the observed data. The
inference is that any structure produced in the model is the
minimum required to satisfy the data, but more complexity
is not warranted by the data. Therefore, although the final
model may not in fact be the true solution, the data alone
cannot allow us to distinguish betwen the two. This
approach not only has the advantage of stabilizing the
inversion procedure but allows us to address the ability to
resolve past heat flow from thermal indicator data.

We use two discrete roughness functions which are similar
in form to the finite difference first and second derivatives of
the heat flow with a constant time interval, i.e.

R,= 2 (m;- —m;_ |)2 (23a)
J=2

and
M—1

Ry= 2 (mye—2m+m;_,) (23b)
j=2

so in vector form, we can write
P(m)=m"'D"Dm (24)

and the elements of the matrix D are given by the
coefficients of the m; in (23a, b) (see Constable et al. 1987
for more details). The procedure to minimize the objective
function (22) follows to some extent that described by
Sambridge (1990) where we adopt an iterative approach,
using a locally linearized form of the problem and solve for
model perturbations ém. The algorithm is derived in
Sambridge (1990) and the reader is referred to that paper
for the details. For the kth iteration, the model update is
given by

omy ., =(uD"D + G"CLG)™
x {G"Cg4[d — g(m,)] — uD"Dm, } (25)

where G is the matrix of partial derivatives of d with respect
to m, so that G;; = 3d,/dm;. Because of the non-linearity of
the problem these deriatives also depend on the model
parameters m; and are recalculated after each model update.
These derivatives may be determined for the thermal
indicator functions considered in this paper using the
formulae in the Appendix. After evaluating (24) the new
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model is given by
my ., =my +admy . (26)

Here, the vector ém, , is the direction in model space in
which the model m, is perturbed, while the scalar a controls
how far we move in that direction. In most cases, « is equal
to 1 and we use the full model step. However, if the model
step is such that it causes a new model parameter to become
unfeasible (i.e. negative), we choose a so that the update to
this parameter results in the new value being equal to 0, and
all other parameter values =0. The solution of equation (24)
involves the inversion of an M X M matrix where M is 60 for
our examples and this presents no great difficulties
computationally. As a practical consideration, we found it
useful to be able to constrain the heat flow value at the
present day (model parameter m,,) to a given value. This is
a reasonable approach given that there is usually some
information on the present-day thermal state of a
exploration well, notwithstanding the problems associated
with downhole temperature measurements (Hermanrud,
Cao & Lerche 1990). We choose to use the Lagrange
multiplier approach (e.g. Menke 1984) and fix the Mth
model parameter to a prescribed value (i.e. calculated
present-day heat flow). A more flexible approach would
perhaps be to use the method proposed by Tarantola &
Valette (1982) where an a priori probability distribution is
determined for each model parameter. Thus the most recent
heat flow value could be prescribed a relatively small
uncertainty, reflecting the information we may have on that
model parameter, while the other model parameters would
have large uncertainties.

In implementing the algorithm given by equation (25), we
need to specify a value for u. As a consequence of the
relative ease of the forward modelling and calculation of
partial derivatives, we can use the 1-D line search scheme of
Constable et al. (1987). Therefore, we specify a large value
of u initially and sweep through progressively lower values
until we find a minimum with line search, in which case we
use this solution in the next iteration, or the inversion
converges to an acceptable solution given by a specified
misfit level, @, determined by the uncertainties in the data.
In our synthetic inversions this misfit level is chosen to be
equal to D, the number of data and in practice we search for
the largest value of u that predicts ®, = D. This is the
expectation value for a data set whose errors are
independent and follow a Gaussian distribution with zero
mean.

4 RESULTS
4.1 Modelling procedure

To illustrate the application of the inversion technique to
heat flow history modelling, we generated a series of
synthetic data sets. Unless otherwise stated, these were
calculated as follows: a subsidence history was specified for
120 Myr, consistent with the model of McKenzie (1978) with
a stretching factor () of 1.4 although the period of initial
subsidence occurred over 20Myr at a constant rate.
Sediment was assumed to have infilled the basin at all times
with porosity reduction occurring by compaction and
Gallagher & Lambeck (1989) detail the necessary



84 K. Gallagher and M. Sambridge

Table 1. Parameters used for modelling. The vitrinite reflectance
parameters are from Royden er al. (1980) and De Bremaecker
(1983) and the parameters for the three organic reactions are from

MacKenzie & McKenzie (1983).

Model function parameter values
Porosity (¢) Hz)=¢ge = P =65%
c=1.2x10° m-1
Thermal K = 0.5%(Kg + Kp)
conductivity (K) K, = Kot K;=25 Wm1K-!
B K¢= 0.61WmK-1
K =Ko G
r=K, /K¢
Density (p) p=(1-0) p; +p; Ps = 2900 kgm-3
pg=1000 kgm3
Vitrinite see eqs. 5,6 a=2,a=01p=0
reflectance (VR) p=0.173,q=-2.242
Sterane seeeq. 13 E, =200 kjmol!
aromatisation (SI) A, =568x107/m.y.
Sterane seeeq. 14 E; =91 kJmol"!
isomerisation (SI) Ap=1.89x10"/m.y.
y=1174
Hopane see eq. 14 E; =91 kjmol!
isomerisation (HI) A;=505x10"/m.y.
¥=1.564

formulations for this problem. The thermal conductivity in
the sediment was calculated as the average of the Maxwell
and geometric means for a two-phase medium, a model
appropriate for sediments in the Eromanga Basin, Australia
(Gallagher 1987) and the thermal conductivity was
considered to be independent of temperature. Internal heat
production was not included. The relevant values for
parameters used in these calculations are given in Table 1. It
should be stated at this point that the results discussed
subsequently are independent of the values chosen for these
parameters as identical values were used in the forward and
inverse model runs. After specifying a particular heat flow
history, the thermal history of any stratigraphic horizon was
calculated for 20 horizons at 6 Myr intervals, commencing at
120 Ma and maturation integrals for these 20 horizons were
calculated for vitrinite reflectance using the maturation
function proposed by Royden et al. (1980) and De
Bremaecker (1983) (equations 5; model VR) and also for
sterane aromatization (equation 17; model SA) and both
sterane and hopane isomerization (equation 18; models SI
and HI). The constants used in these integrals are given in
Table 1. In using these models we are not implying that
these are necessarily the correct formulations or parameters
to use for predicting vitrinite reflectance or the organic
reactions, rather they provide a convenient framework in
which to test the inversion procedure. Subsequently, we
shall investigate the consequences of using inappropriate
predictive functions for reconstructing heat flow histories,
such as different maturation integrals for vitrinite reflectance
and differing kinetic parameters for the organic reactions.
Fig. 1(a) shows the burial history for 20 horizons and Fig.
1(b) shows the porosity—depth and thermal conductivity—
depth functions. The thermal histories for the 20 horizons
with a constant heat flow of 50 mW m~? are shown in Fig.
1(c) and the predicted thermal indicator levels are given in
Fig. 1(d).

The inverse modelling procedure was as follows: a heat
flow history was specified and a synthetic data set generated.
This data was then used as input to test the inversion
algorithm with the heat flow parametrized as a series of
block functions (M = 60). The initial model guess was set
equal to the present-day heat heat flow (as might be
calculated from downhole temperature measurements and
assumptions or observations regarding the thermal conduc-
tivities of the lithologies) and the final parameter was
constrained to that wvalue. All values used in the
reconstruction of the burial history were exactly those used
in the forward model, so no uncertainty is introduced
through an incorrect burial history or thermal parameters.
The a priori errors were specified as 0.004 units for all data
types prior to the transformations performed to simplify the
forward modelling (equations 6, 17, 18). The errors on the
transformed values were calculated by taking average of the
spread of the raw values after the same transformation. The
error value of 0.004 is intentionally an order of magnitude
less than would commonly be adopted for the aromatization
and isomerization measurements (MacKenzie & McKenzie
1983) and vitrinite reflectance measurements (Underwood
1990). Therefore, we are being overoptimistic with the
quality of both the thermal indicator data and our
knowledge of the burial history and thermal conductivities.
Consequently, when the inversion algorithm converges to a
solution (i.e. predicts the data to within these errors), the
heat flow model can be regarded as providing a near-perfect
fit to perfect data and we can directly address the ability of
such data to resolve past heat flow. If larger errors are
considered it then becomes more important to add in the
noise to the synthetic data to avoid significantly biasing the
solution (Constable 1991). At this stage, we need to point
out that because the progress of the individual organic
reactions tends to limiting values, we only use the data down
to the most shallow depth where the relevant equilibrium
value occurs. This is because the thermal history of all
points below this depth will necessarily have been hotter
[which follows from using equation (3a)], but we cannot
constrain how much hotter.

4.2 Resolving heat flow variations with a perfect forward
model

We shall initially consider a few different forms of heat flow
history, while always using the same burial history. In
general, the heat flow histories used are not considered to
represent any particular tectonic mechanism; rather we wish
to test the ability of our algorithm to resolve heat flow
variations and examine how well we can reconstruct the
original form. However, the first model we consider is a
reasonable representation of the heat flow expected from an
extensional basin with an extension factor () of 1.4. In this
model, an initially high heat flow decays back to the initial
steady state value (McKenzie 1978; Jarvis & McKenzie
1980; Cochran 1983). The inversion results are summarized
in Fig. 2. The solutions obtained by minimizing the first
derivative of the heat flow history [i.e. using the roughness
function in equation (23a)] are shown in Fig. 2(a). In this
case the inversion algorithm keeps the heat flow flat unless
the data demands otherwise, and one can see that although
there is a hint of an increase in heat flow back to about



Time (Ma)

120 60 30 0

) ="

o _—
£ v - &

w0 - =

~- — ~J

-] @

(a)

Time (Ma)

120 60 30 0

[=] ] 3

o™ %
S & &
5
§ % E
g —

[=] -
5 E
(=

[=] -

0 - - o

» o

(c)

Heat flow inversion 85

Porosity (%)
0 10 20 30 4ID 50 60 70
E
ﬁ \
£ }
n_ ]
@ '
a i
~ !
@ 1 L 1 1 1
0 0.5 1.0 15 2.0 25 3.0
(b) Thermal conductivity (W/m/K)
T.L
0 05 1.0 1.5
o 1 1 1
E ..
=
£ v
o
[T
o
0~
-
< Sl HI SA VR
(d)

Figure 1. (a) Burial history calculated for 20 horizons at intervals of 6 Myr with the McKenzie model (8 = 1.4) and continuous sediment infill,
The initial subsidence is assumed to have occurred over 20 Myr, rather than instantaneously. (b) Porosity (solid line) and thermal conductivity
(dashed line) depth functions used for the calculations. (¢) Thermal histories for the 20 layers calculated with O =50 mW m 2 and T.=20°C.
(d) Predicted levels of thermal indicators (T.I.) as a function of depth. VR = vitrinite reflectance, SI = sterane isomerization, SA = sterane

oramatization, HI = hopane isomerization.

25-30 Ma, the data are generally consistent with a relatively
constant value. The solutions obtained by minimizing the
second derivative [i.e. using the roughness function in
equation (23b) are shown in Fig. 2(b). In this case the
algorithm tries to keep the gradient of the heat flow constant
and is able to maintain the increasing heat flow back
through time, although the gradient flattens off slightly at
about 60 Ma. In this particular model we are dealing with
small variations in heat flow as result of the low value of
and it is perhaps not unexpected that we cannot resolve the
early heat flow high of the original model shown as the
dotted line in Figs 2(a) and (b). However, similar results are
obtained when larger extension factors are used, suggesting
that it is unlikely that rift-related heat flow variations could
be resolved from thermal indicator data within a basin of
this age. This is essentially because the sediments are
currently at their maximum temperatures and the power or
exponential dependence of the thermal indicator integrals
on temperature reduces the signficance of the earlier, lower
temperature part of the sediments’ thermal history. This
conclusion is in broad agreement with the results of
McKenzie (1981) who showed that rocks in rift basins will
be at their maximum temperatures, unless they were at
depths of more than about 4km when the heat flow
maximum occurs.

We stress that an interpretation of such data in terms of
rift induced heat flow variations is not ruled out (indeed, in
this case, it is the true answer). However, we have shown
that the data are also consistent with a relatively invariant
heat flow history and therefore additional evidence would
need to be obtained before invoking a more complex model.
It is interesting to note at this stage that where the two
different smoothing models most closely agree with each
other, they agree with the true answer. This is more clearly
seen in subsequent models and suggests that it may be useful
to some extent to use both types of smoothing in order to
address the ability to resolve the heat flow back through
time.

The next two heat flow models we consider are smooth
single wavelength sine functions with a mean value of
S50mWm ™ and a variation about this mean of +
20mW m~? (see Figs 3a and 4a). The models both have
wavelengths of 120 Myr, one with decreasing heat flow up to
the present day and the other with increasing heat flow. The
results for the former case are shown in Fig. 3 and clearly
the statement above regarding the lack of resolution of heat
flow past the time of maximum temperature (<30 Ma) is
supported. The shallowest samples reach their maximum
temperatures at the present and it is clearly the timing of the
deeper samples’ maximum temperature that is important.
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Figure 2. (a) True heat flow (dashed) and inversion results for the four thermal indicator types with first derivative smoothing. (b) As in (a)
but with second derivative smoothing. (c) Thermal histories for the 20 layers when the heat flow increases linearly for the first 20 Myr then
decays according to the McKenzie (1978) model with f = 1.4. (d) Predicted levels of the thermal indicators as a function of depth. The x mark
the input (observed) data and the solid lines join up the predicted values. Note that the input data for the three organic reactions is truncated

at the depth of the first value to reach the equilibrium level.

Also, the deviation between the first and second derivative
results again occurs at about the same time as the deeper
samples’ maximum temperature. The situation in the latter
case where the heat flow increases to the present day (Fig.
4) is slightly more complicated in that temperature values
near the actual maximum (occurring at the present day)
were experienced by the deeper samples at around the time
that the heat flow was at its maximum value (~90 Ma). This
illustrates the influence of the type of thermal indicator on
the resolution of the heat flow history. The vitrinite
reflectance model can resolve the heat flow reasonably well
back to about 90Ma, whereas the sterane and hopane
isomerization models can only go back to about 60 Ma at
best and the sterane isomerization model can only
adequately resolve the heat flow back to about 20 Ma. This
observation is partly attributable to the differing effective
kinetic parameters [E and A in equation (7)] controlling the
reaction rate for each function. The results with second
derivative smoothing show that, of the organic reactions, the
lowest activation energy and frequency factor reaction (SI)
potentially has the best resolution back in time, while the
reaction with the largest values (SA) has the worst. The first
derivative smoothing results show a similar trend but the
heat flow models actually differ less. Higher activation
energies and pre-exponential factors result in rapid reaction
rates but the reaction effectively commences only after a

critical temperature has been reached, whereas lower values
of these values tend to distribute the reaction progress over
a wider temperature range and the reaction effectively starts
at lower temperatures. The rate of increase of the rate
constant, k, for the organic reactions decreases with
increasing temperature, but is greater than 2 for every 10°C
increase over values less than 120°C, by which time
equilibrium is reached. The doubling of reaction rate for
10 °C increase in temperature for the vitrinite model leads to
a temperature-dependent activation energy, but an effective
value for 50°C is ~62 kJ mol ™", and this increases by about
5kJ mol™" for every 10°C increase in temperature up to
200 °C. Therefore the organic reactions tend to show greater
non-linearity to temperature than the vitrinite reflectance.
The resolution is also influenced by the fact that the three
organic reactions all tend to a finite value. As explained
earlier, this means that thermal history can only be resolved
back as far as the age of the shallowest data point at this
equilibrium value, at least in a well where only vertical
movement of sediment has occurred (i.e. no repetition of
strata or overthrusting). In contrast, the vitrinite model
potentially allows the full thermal history to be re-
constructed because the predicted values keep increasing
with higher temperatures. Another probably influence is
that the present-day maximum temperature of the three
deepest samples is less than 25 °C greater than the maximum
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Figure 5. Results for @ =50 mW m™? except for = 50-70 Ma when Q =20 mW m™2. Other details as for Fig. 2.

experienced at ~85 Ma. All the more shallow samples have
differences of at least 30°C between the present-day
temperature and any previous localized maximum. This
tends to support the proposition that a model based on the
amount of time spent near to the maximum temperature is
adequate to predict maturation levels (Hood et al. 1975;
Shiboaka & Bennett 1977; Beaumont et al. 1985). If heat
flow models with two wavelengths in the 120 Myr time span
are considered, we again can only really resolve the heat
flow back to about the timing of maximum temperature
experienced by the deeper layers, again supporting that
conclusion.

As a final pair of examples in this section we consider a
situation where a heat flow pulse occurs over a limited time,
while burial is continuous. In these cases we have a constant
heat flow of S0 mW m ™2 and a perturbation of +30 mW m ™2
occurs between 70 and 50 Ma. We can see that the data tells
us very little about the case where the heat flow decreased
(Fig. 5) and we cannot use the agreement between the first
and second derivative smoothing solutions as a guide to the
validity of our answer, as both give a near constant heat flow
value. In the case where the heat flow increases (Fig. 6), the
data allow us to resolve the fact that heat flow has increased
in the past. The departure between the first and second
derivative cases occurs at about the time of maximum
temperature which, in this case, coincides approximately
with the time of maximum heat flow. However, we have
little confidence regarding the true magnitude of the

maximum or the heat flow regime prior to this time. In these
last two cases, the algorithm has performed as expected,
leading to smooth solutions which are lower bounds on the
roughness of the true model. However, the smooth models
are not necessarily good representations of the true answer.
In Fig. 6 for example, the data are only sensitive to the later
decreasing half of the pulse and so the increasing half does
not appear in the smooth models. This highlights the care
that must be taken in interpreting the results of the smooth
inversion. They provide the user with a bound on the
roughness of the heat flow model and must not be treated
too literally as direct estimates of the true model, else one
may be misled in cases where the true heat flow functions
have discontinuities. These two examples, however, do
demonstrate the lack of resolution of past heat flow and the
fact that the solutions are non-unique. We have examined
the resolution of a similar heat flow pulse occurring closer to
the present day (occurring between 10 and 30 Ma). These
results are not shown here, but we found that when the heat
flow increases, the results are similar to those shown in Fig.
6, i.e. we cannot resolve structure past the timing of the
maximum temperature. When the heat flow decreases, the
broad structure of the inversion models reflects the true
answer in that the heat flow initially decreases when
increases back in time. However, the overall wavelength of
the heat flow variation is broader than the true answer,
reflecting the influence of our smoothing constraints and the
lack of resolving power in the data.
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Figure 6. Results for Q =50 mW m ™ except for ¢t = 50-70 Ma when Q = 80 mW m~2. Other details as for Fig. 2.

4.3 The influence of erroneous assumptions in the
forward modelling

In this section we consider a few examples where our
forward modelling is not as precise as we might wish.
Specifically, we look at situations where the present-day
heat flow is constrained to an incorrect value, where a
period of erosion occurs but is modelled as a period of
non-deposition and where the parameters values in the
maturation functions differ between the forward modelling
and inversion.

4.3.1 Errors in the bottom hole temperature

Firstly, we examine the case where present-day heat flow is
incorrectly estimated, as may occur when downhole
temperature measurements are inaccurate. In the absence of
a specifically designed temperature survey, it is common
practice to use temperatures measured during downhole
logging as constraints in thermal history modelling for
exploration purposes. In these situations it is well known
that the observed temperatures need to be corrected to
account for cooling due to the circulation of drilling fluid
and, to this end, a variety of methods are in use (see
Hermanrud ef al. 1990). Under the assumption of steady
state conditions, heat flow may be easily estimated from
corrected downhole temperature values, provided measure-
ments or assumptions are made regarding the thermal

conductivity of the rock types encountered in the drill hole
and also a value is chosen for the mean near-surface
temperature. This method is known as the Bullard or
thermal resistance method and has been used in regional
studies to estimate heat flow from the bottom hole
temperature in wells (Chapman er al. 1984; Andrews-Speed
et al. 1984; Majorwicz et al. 1985). As an example, we look
at the case where only the bottom hole temperature is used
to calculate the present-day heat flow, and the value of this
temperature is 10°C less than the correct value. This
represents an error of about 5 per cent and is within
commonly assumed uncertainties (Andrews-Speed et al.
1984; Hermanrud et al. 1990). The calculated present-day
heat flow is about 3mW m™2 less than the true value. The
results are given in Fig. 7 and show what one might expect,
that the heat flow functions initially increase relatively
rapidly by about 25-30 Ma to a value slightly higher than
the true heat flow to compensate for the low present-day
heat flow. The first derivative models then flatten off back in
time while the second derivative models diverge. Over the
time where the final heat flow models are reasonably
consistent, they are within 5 per cent of the true value and
the maximum temperatures experienced by the deeper
layers are close to their true maximum temperatures,
although they occur at earlier times. Broadly similar results
are obtained for the case where the bottom hole
temperature is overestimated, except the heat flow models
compensate by decreasing back in time before they flatten
off or diverge.
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Figure 7. Results when the bottom hole temperature is 10°C too low. The input data were calculated with Q =50 mW m™2 and for the
inversion the present-day heat flow was constrained to be 47 mW m™2. Other details as for Fig. 2.

4.3.2 Errors in the burial history due to erosion

Next we consider the case where a period of erosion
occurred, removing part of the sedimentary section. In this
case, we use a different burial history to the previous models
such that our well encounters 3000 m of sediment where the
bottom hole temperature in the well is 120 °C, equivalent to
a heat flow of ~65 mW m~?. The age at the top of the well
is 0 Ma, with an age increase of 10 Myr for every 300 m of
sediment. An unconformity occurs at 1500 m and spans
50-80 Ma so that the age at the base of the well is 130 Ma.
The original thermal indicator data was calculated with
deposition of 2000 m of sediment between 80 and 65 Ma and
then this was removed linearly between 65 and 50 Ma.
However, the resulting unconformity was modelled as a
period of non-deposition in the burial history used in the
inversion. In this and the following example, the errors were
set to 0.01, to allow a greater uncertainty in predicting the
data. These values are still lower than would be routinely
used. The results are shown in Fig. 8 and clearly neglecting
the period of deposition/erosion has a significant effect on
introducing false structure into the solution. If we were to
use the criterion that we accept as reasonable the heat flow
up to the point where the first and second derivative
solutions diverge, we would not want to go back much
further than 10 Ma. In this run, the algorithm did not
actually converge to the desired level of misfit and the
iterative process was terminated when no further reduction
of the misfit function occured. It is not surprising we had

difficulty, considering of the magnitudes of discontinuities in
the observed data across the unconformity. In order to
achieve required misfit level for convergence, the error on
each datum would need to be increased by a factor of about
2 for models VR and SI, a factor of 4 for HI and 8 for SL.
Of course, if less erosion had occurred, the discontinuities
would be reduced but it is obviously advisable to closely
sample either side of suspected unconformable surfaces to
ensure that discontinuities in thermal indicator data and
significant loss of section could potentially be resolved. By
modelling the unconformity as a period of non-deposition,
we have really considered the worst case by not allowing for
any removal of section. Lerche (1988b) has also examined
the problem of estimating the thickness of missing section
and showed that it is straightforward to try and optimize the
estimate with a search method. In related studies to the
problem of unconformities, Katz, Pheifer & Schunk (1988)
and Majorwicz et al. (1990) concluded that, in practice,
noise in vitrinite reflectance data would often reduce the
accuracy of such estimates considerably and Middleton
(1982) has shown that it is difficult to constrain the timing
and duration of periods of erosion.

4.3.3 Errors in the maturation functions

The maturation functions used for the example calculations
in the preceding sections are not considered unique. As
mentioned in section 2.2, a variety of different functions
have been proposed to predict vitrinite reflectance. Also
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Figure 8. Results when the burial history includes an unconformity between 80 and 50 Ma in which 2 km of material was deposited, then
eroded, as described in the text. The unconformity was modelled as a period of non-deposition for the inversion runs. The input data was
calculated with Q = 50 mW m ™ and the present-day depth of the unconformity is 1.5 km. Other details as for Fig. 2.

various estimates have been published for the kinetic
parameters used for the individual organic reactions. Here
we examine the solutions obtained when the parameters in
the maturation function used for the forward modelling step
in the inversion procedure differ from those used to
generate the synthetic data. For vitrinite reflectance we
incorporate the maturation function proposed by Ritter
(1984), which is similar to that of Royden et al. (1980),
except a=1.35 (see equation 5), which reduces the
non-linear dependence on temperature. The Royden model
predicts overall lower values than the Ritter model for a
constant heat flow of S0 mW m~2, In the inversion, we use
the Royden model on data generated from the Ritter model
and vice versa. The kinetic parameters used for the organic
reactions are not particularly well constrained, partly as a
result of the difficulty of extrapolating laboratory results to
geological time-scales and because of the errors inherent in
the observations, a range of kinetic parameters exist that
will predict the data (Gallagher & Evans 1991). We only
consider the role of inappropriate kinetic parameters for the
two isomerization reactions and the values we use in the
inversion are those suggested by Rullkotter & Marzi (1988).
These are somewhat higher than those proposed by
MacKenzie & McKenzie (1983), which were the values used
in the forward model. The relevant values for these
maturation functions are summarized in Table 2. The results
of these inversion runs are given in Fig. 9 and it should be
noted that none of the models reached their specific misfit

Table 2. Parameters used in the example with erroncous matura-
tion functions (see Section 4.3.3). The vitrinite reflectance model is
derived from Ritter (1984) and the kinetic parameters for the two
organic reactions are from Rullkétter & Marzi (1988).

Model function parameter values

Vitrinite see egs. 5,6 a=135,a=01p=0

reflectance (Ritter p=0.16,q=-1.72, Mt <1839

model) p =030, q=-245, 1839 < Mt <6217
p=049,q=-3.64, Mt 6217

Sterane see eq. 14 E; = 169 kJmol!

isomerisation (SI) Ap =158 x102/m.y.

Hopane see eq. 14 E; =168 kJmol!

isomerisation (HI) A;=2.55x102/m.y.

targets. The errors were specified as 0.004 units and to
achieve convergence, the errors would have to be increased
by an order of magnitude. The two vitrinite models behave
as would be expected, VR1 (Ritter forward model, Royden
inversion model) leads to an elevated heat flow to predict
the deeper, but still under predicts the relatively high
vitrinite reflectance values in the shallow section. VR2
(Royden forward model, Ritter inversion model) leads to a
low overall heat flow history, but still over predicts the
shallow data. The first and second derivative models give
reasonably similar results which demonstrates that the data
fitting dominates over the smoothness criterion. However,
the heat flow histories obtained from the isomerization data
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Figure 9. Results when incorrect maturation functions were used for the inversion. VR1 represents an inversion using the Royden model on
data calculated with the Ritter model, and VR2 is the opposite. SI and HI represent the isomerization reactions where higher kinetic
parameters were used in the inversion than for the forward model. The input data were calculated with Q = 50 mW m~ 2. Other details as for

Fig. 2.

sets show more variation between the first and second
derivative values, especially the hopane model. The models
show consistent trends in over predicting the deeper data
and under predicting the more shallow data, reflecting the
increased reaction rate and higher critical temperature for
higher kinetic parameters, as discussed in Section 4.2. The
heat flow histories generally attempt to compensate for this
by having relatively elevated heat flow in recent times and
then decreasing below the true value of S0mWm™? by
about 30 Ma. The second derivative model for the hopane
isomerization shows an extreme case of this compensation
having a peak value of about 170 mW m 2 at 90 Ma, a value
of zero at about 30 Ma, while the most recent 10 Ma of the
model agrees with the first derivative case.

5 CONCLUSION

The synthetic examples presented in this paper show that
even with perfect data and the correct predictive model
(including the burial history, thermal parameters and
maturation functions), it will prove difficult to uniquely
resolve variations of heat flow much beyond the time of
maximum palaeotemperature. This conclusion could, to
some extent, be deduced intuitively given the non-linear
temperature dependence of the functions used to predict
thermal indicators. Forward modelling may be used where
the heat flow history is prescribed, thermal indicator levels

predicted and compared to observations (e.g. MacKenzie &
McKenzie 1983; Beaumont et al. 1985; Issler & Beaumont
1989; Deming & Chapman 1989; Burrus & Audebert 1990).
While the forward models may predict the observed data
adequately, we have demonstrated that there is an inherent
non-uniqueness to such solutions. In other words, additional
evidence would be required to constrain the appropriate
geophysical model because the thermal indicator data would
only be conclusive in disproving a particular model. We
recommend that in seeking a single model (as nearly all
authors tend to do) one should demand that the model be as
simple as possible. In this work we have considered two
types of simple model, i.e. those with minimal first and
second derivatives. This approach has the advantage in that
it does not depend on using a restrictive parametrization in
order to achieve numerical stability and thereby avoids the
implicit constraints that would be placed on the heat flow
model. More importantly, it allows the user to gain insight
into the degree of non-uniqueness of the problem and
produces heat flow models which are free of unwarranted
complexities which helps avoid the temptation for
overinterpreting the data.

However, it is clear from the results of Section 4.2 that
false structure can be introduced into the heat flow history.
The apparent failure of our algorithm in these cases is due
to the errors in the forward model, which are implicitly
assumed to be negligible in this and nearly all inversion



studies. The complexity in the resulting models are not
surprising and, in reality, if a variety of thermal indicators
were available from a particular well, then such
discrepancies between the individual heat flow different
models would provide strong evidence that there is some
inconsistency in the maturation functions. In this context,
Lerche (1988a, b, 1990) has suggested that it is desirable to
incorporate as many different thermal indicators as possible
and find the heat flow that satisfies all data sets. Certainly
any model should be able to adequately predict all data, but
we would also recommend that inversion should be
performed on individual data sets using an algorithm of the
kind employed here as these can provide some insight into
the reliability of a particular data set and its predictive
function. Although we have considered seeking heat flow
histories with minimal first and second derivatives, models
with different properties may be sought. Any model
property that can be written in the form of equation (24) can
be handled by the algorithm (equation 25). An investigation
of possible alternatives and their potential for retrieving
information in the data may be a useful progression from
this work.
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APPENDIX

Partial derivatives of thermal indicators with respect to
heat flow

When the heat flow is parametrized as block functions
(equation 21a), the contribution to the maturation function
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for ith vitrinite reflectance value from the jth heat flow
parameter is

t -
Mf‘:f gt~ T Om)=Hl gy (A1)
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where
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K= e
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and z,(t) is the depth of the ith value at time .

Similarly the contribution from the jth heat flow
parameter to the ith value for the transformed aromatiza-
tion and isomerization reactions may be written as
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respectively, where T is the surface temperature in degrees
Celsius. The partial derivatives of the thermal indicators x;,
y; and Mt with respect to the jth heat flow parameter Q; are
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