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ABSTRACT

Kennett, B.L.N. and Sambridge, M.S., 1992. Earthquake location — genetic algorithms for teleseisms. Phys. Earth Planet.
Inter., 75: 103-110.

The location of earthquakes requires the estimation of the spatial and temporal components of the hypocentre. This can
be achieved by a direct minimisation of a measure of the misfit between observed and calculated travel times, and also
slownesses and azimuths if array data are available. An efficient means of carrying out this optimisation procedure is to
make use of genetic algorithms. This technique is based on the use of many estimates of the hypocentre location at once and
the properties of the cluster of estimated locations in four dimensions are exploited in the course of the optimisation
process. Each estimate of the hypocentral location is represented on a local discrete grid by a bit-string and successive
iterations generate new bit-strings (and hence location estimates) by operations based on biological analogues. These
operations are the replication of the best-fitting bit-strings, the cross-over of information between pairs of bit-strings and the
mutation of individual bits in a string. The non-local character of the information on the misfit function carried in the cloud
of hypocentral estimates is usually sufficient to prevent the location being trapped in local minima of the misfit surface.
Convergence to the global misfit minimum can be achieved with a very limited sampling of the original spatial and temporal
grid. No derivatives of the seismic phase information are required and so the technique is easily generalised 1o
three-dimensional velocity models, and can be used with any suitable measure of the quality of an earthquake location by
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the choice of the misfit criterion between observed and calculated quantities.

1. Introduction

The process of estimating the hypocentre of an
earthquake involves a number of stages. Firstly,
the picking of the arrival times of different seis-
mic phases and an association with a particular
type of propagation process. Secondly, the choice
of the measure of misfit between observed and
computed arrival times (for three-dimensional (3-
D) models this should include an allowance for
modelling error). Thirdly, the application of the
algorithm by which the measure of misfit is re-
duced to an acceptable level.

Correspondence to: B.L.N. Kennett, Research School of Earth
Sciences, Australian National University, G.P.O. Box 4, Can-
berra, A.C.T. 2601, Australia.

The majority of existing algorithms require the
construction of the partial derivatives of the travel
time for a particular phase with respect to the
spatial location. This is not too difficult for 1-D
models in which the seismic velocities vary only
with depth for a limited number of phases, but is
much less convenient where the wavespeeds vary
in three dimensions.

There is considerable merit in developing
earthquake location schemes that are not depen-
dent on the differentiation of the measure of the
misfit between observed and calculated times,
and hence on the partial derivatives of travel
times. Such methods can be used with any conve-
nient method of calculating travel times, e.g. the
Buland and Chapman (1983) algorithm for radial
Earth models, or for 3-D varying situations the
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finite-difference method of Vidale (1990) or the
graph theoretic approach of Moser (1991). Such
non-linear algorithms also allow the choice of a
measure of the quality of an estimated location
that can be based on realistic statistics, and which
is not constrained to be some variant of weighted
sum of squared residuals.

Sambridge and Kennett (1986) have intro-
duced a method for the location of regional events
based on a directed grid search in 4-D hypocen-
tre space in which progressively tightening bounds
on the origin time are used to constrain the
spatial components of the hypocentre.

For teleseisms, Kennett (1992) has described
one class of non-linear optimisation scheme for
earthquake location based on the use of a nested
grid search in 4-D space. This approach works
well even when the initial constraints in the solu-
tion are quite weak, e.g. 2° in latitude and longi-
tude, 60 km in depth and 6 s in origin time.
However, this procedure requires a large number
of travel-time evaluations, particularly in the ini-
tial exploration of the model space. With a robust
estimate of location misfit based, for example, on
an L1 norm, good results can be obtained but it is
difficult to be sure that a global minimum of the
misfit function is reached. In many location prob-
lems the behaviour of the misfit function in 4-D
space is rather complex with many local minima.

An alternative approach which is very effective
in finding the global minimum of the misfit func-
tion with a modest number of travel-time evalua-
tions is based on the use of genetic algorithm
techniques. Such genetic algorithms were devel-
oped in work on decision making in artificial
intelligence research and have been recently ap-
plied to a range of geophysical problems by Scales
et al. (1991), Sen and Stoffa (1992) and Gallagher
et al. (1991). The novel feature of such an algo-
rithm is that it works with many estimates of the
hypocentre location at once and uses the proper-
ties of the cluster of estimates to drive the opti-
misation process. Because the information con-
tent of the cluster of hypocentre estimates is not
confined to the immediate locality of a particular
combination of hypocentre parameters, it is pos-
sible to escape from local minima of the misfit
function on the way to the global minimum.
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2. The genetic algorithm

The genetic algorithm is based on working
with a group of Q hypocentral estimates simulta-
neously. Each hypocenter is represented by a
bit-string: the initial search domain for each
hypocentral parameter is divided into 2" parts so
a location can be described by n bits, and the
combination of the representations for each of
the parameters gives the requisite bit string. For
the example below we used the same initial search
domain as in the nested grid search, with 256
points in latitude and longitude (i.e. eight bits
each) with a grid spacing of 0.008°, and 128 points
in depth and time (seven bits each) with a grid of
0.469 km in depth and 0.0469 s in time. The
bit-string for each hypocentre estimate, denoted
as h, is therefore 8+ 8+ 7+ 7 =230 bits long,
and we have used a set of 24 hypocentre esti-
mates. The initial population of Q hypocentres is
created using a Monte-Carlo procedure.

We need to specify a misfit function C(h)
which provides a measure of the difference be-
tween the observed quantities (arrival times, az-
imuths and slownesses) and those calculated for
the suggested hypocentre k. A single iteration of
a genetic algorithm is based on three stages,
these are discussed in some detail in Sambridge
and Drijkoningen (1992) and we have attempted
to summarise the behaviour in Fig. 1. On the left
we have a set of bit-strings representing the cur-
rent estimates of hypocentre location; on the
right the new generation of estimates produced
by the action of three basic processes, ‘repli-
cation’, ‘cross-over’ and ‘mutation’.

Replication. From the initial population of Q
bit-strings an interim population of Q parents is
generated by selecting models from the original
group with the likelihood of selection determined
by a probability depending on misfit, for the kth
model

P(h;)=A exp[—BC(h,)].

The net result is that those hypocentral estimates
with the smallest current level of misfit can be
passed unscathed to the new set. Based on the
biological analogue this process is termed ‘repli-
cation’.
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Cross-over. From the parent population of Q
bit-strings a new generation of Q strings are
derived each of which is derived from a mixing of
the bit-strings from two parents. All the Q par-
ents are randomly paired to produce Q/2 cou-
ples. A cross-over probability P. is assigned and if
a random number between 0 and 1 is less than P,
parts of the two strings are interchanged. If such
a ‘cross-over’ is seclected, the location at which
the strings are cut is determined randomly, other-

TABLE 1

Marianas event — hypocentre solutions and data

105

wise the two parent strings are passed unscathed
to the next generation.

Mutation. The final process is ‘mutation’ in
which (with a rather low probability P, ) any bit
in an individual string is allowed to flip between (
and 1 so that some degree of local diversity is
introduced into the inversion process.

The action of the three types of process is to
produce a new generation of Q bit-strings, each

Location GA ISC
Latitude (N) 14.473 14.500
Longitude (E) 146.755 146.900
Depth (km) 62.055 33.000
Origin time (s) 53.988 49.400
L1 misfit 0.684 1.363
L2 misfit 0.735 2.766
Station Phase Residual Delta Back azimuth
(deg) (deg)

Arrival times

Min s
GUA Pn 18 24.20 0.06 2.02 242.8
GUMO Pn 18 24.20 -0.17 2.03 244.6
WB2 P 24 52.20 =0.11 36.31 200.0
BII P 24 57.00 —0.43 36.93 3195
PKI P 27 43.60 1.03 58.22 293.6
KKN P 27 44.50 1.14 58.33 293.9
DMN B 27 45.80 1.35 58.49 293.6
COL P 28 38.20 =0.02 66.65 25.0
INK P 29 17.00 0.70 72.86 225
YKA P 30 4.40 1.00 81.23 217
SOD P 30 35.00 —0.69 87.66 3404
KIF P 30 41.00 - 1.05 89.00 3375
SUF P 30 48.00 —(.59 90.39 336.6
NUR P 30 56.00 -1.14 92.23 335.2
HFS P 31 17.30 -0.05 96.66 338.4
Azimuth at array

Degrees
WB2 P 200.000 0.569 36.31 200.0
YKA P 104.250 0.054 81.23 217
Slowness at array

s deg ™!
WB2 P 8.880 0.334 36.31 200.0
YKA P 5.550 0.222 81.23 217
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Fig. 1. Schematic representation of the action of the genetic
algorithms in modifying one generation of hypocentral esti-
mates represented by bit-strings into a new generation of
estimates. The three basic operations are replication, cross-
over between pairs of bit-strings and mutation of a single bit.
Each of these processes is controlled by a separate probability
distribution.

of which corresponds to a new hypocentre esti-
mate within the prescribed representation. Each
new estimate is then tested for its level of misfit
and then the cycle of the genetic algorithm is
repeated and a new generation of hypocentre
estimates are created. We have found it advanta-
geous to ensure that the best hypocentre in any
generation is automatically passed to the next,
since this enhances the rate of convergence of the
procedure.

Because a number of different probability dis-
tributions enter into the genetic algorithm, opti-
mum performance requires a certain amount of
tuning. From a range of empirical tests for many
carthquakes with different geographic station dis-
tribution, we have found that good performance
can be achieved for teleseismic location with a
cluster of 24 hypocentral estimates, a probability
of 0.9 for cross-over between bit-strings and a
probability of 0.04 for mutation of any bit.

3. Application of the genetic algorithm

Sambridge and Gallagher (1992) describe the
application of the genetic algorithm in the con-
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text of regional events. We will here discuss the
application of this approach to teleseismic events,
using the recent set of global travel times pre-
sented by Kennett and Engdahl (1991).

An advantage of the non-linear approach to
location is that we can readily include different
types of information. For the example we have
used 15 travel-time readings for P taken from the
ISC Bulletin for an event in the Marianas for
which the azimuthal distribution of station cover-
age is limited. We have supplemented this
travel-time information with simulated azimuth
and slowness data for two arrays (WRA in Aus-
tralia, YKA in Canada) in order to demonstrate
that all the possible information for teleseismic
location can be readily combined in a single oper-
ation. The misfit criterion employed was based on
a sum of L1 contributions for each of the travel-
time, azimuth and slowness residuals, with nor-
malization by estimated errors. The azimuth and
slowness data are assigned the same weight as the
individual travel times. The data set used for this
example is presented in Table 1, together with
the residuals for the final location determined
used the genetic algorithm. We also display the
ISC solution for the event using only travel-time
data, which has a constrained depth of 33 km.
Note that the ISC calculation is based on the
Jeffreys and Bullen (1940) travel-time tables
rather than the iasp91 travel times (Kennett and
Engdahl, 1991) used for the genetic algorithm.

The example was run using the genetic algo-
rithm procedure for 54 generations and a total of
1320 hypocentres were tested in the progress to
the global minimum of the misfit function out of
approximately 10” grid locations in the region
specified at the outset. Further generations gave
no significant improvement and the achievement
of the global minimum can be judged by the
contour slices through the 4-D misfit function
displayed in Fig. 4. For each trial location the
travel times and slowness were calculated using
the tau-spline representation of the iasp9l1 travel
times, with corrections for ellipticity. The fast
access to the travel-time information provided by
the tau-spline representation (Buland and Chap-
man, 1983) facilitates the application of the ge-
netic algorithm.
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TABLE 2

Marianas event — location of successive hypocentral estimates
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Latitude N Longitude E Depth Time L1 misfit

(deg) (deg) (km) (s)
1SC solution 14.500 146.900 33.000 49.400 1.363
Reference point for plotting 14.475 146.800 60.000 53.000 -
Monte-Carlo 14.739 146.473 33.236 53.605 1.532
2 14.535 146.818 57.803 52.943 0.808
3 14.535 146.818 57.803 53510 0.776
4 14.394 146.825 58.276 53.510 0.761
5 14.410 146.810 57.803 53.510 0.752
6 14.425 146.818 57.803 53.510 0.726
7 14.488 146.771 59.693 53.510 0.715
8 14.488 146.755 62.055 53.888 0.694
9 14.473 146.755 62.055 53.888 0.687
Without array azimuth

or slowness 14.472 146.747 60.638 53.888 0.654

The genetic algorithm has been able to achieve
rapid convergence to a global minimum in this
non-linear optimisation problem without exten-
sive sampling of the model space. This arises
from the range of information on the character of
the misfit function carried within the cluster of Q
hypocentral estimates as it traverses the 4-D loca-
tion space. Both local information derived from
the effects of perturbations of low order bits and

Successive GA location estimates
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Fig. 2. The convergence pattern of the genetic algorithm using
an L1 misfit function for a teleseismic location for an event in
the Marianas arc using both travel-time and array data. The
figures associated with each plateau in the misfit measure as a
function of iteration number refer to the hypocentral esti-
mates plotted in Fig. 3. The plot is terminated once the global
minimum is reached.

global information from the sampling of the many
different location estimates are exploited in the
progress to a minimum. The application of a fully
Monte-Carlo procedure to the same data set led
to slow convergence (at least 50 times as many

M
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N Jatitude [km]

Marianas - array

relative location of
iterates
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Fig. 3. Four-dimensional representation of the progress of the
genetic algorithm in generating the estimate of the location of
a teleseismic event in the Marianas arc using both travel-time
and array data using an L1 misfit function. The reference
location has been chosen to allow the various stages of the
location procedure to be conveniently displayed and does not
represent the centre of the original grid. The solid symbols
indicate the spatial and temporal locations and are marked
with key numbers which refer to the misfit behaviour in Fig. 2.
The best hypocentral estimate is indicated by ‘9",
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hypocentral estimates were needed to achieve the
same level of misfit).

Figures 2 and 3 show the progress of the
location algorithm for the Marianas example by
tracking the misfit and the 4-D representation of
the current best hypocentral estimate. In Fig. 2,
cach of the plateaux in the misfit function repre-
sent the best fit currently available until the string
manipulation induced by the genetic algorithm
creates an improved hypocentre. These plateaux
in the misfit function represent the locations of
local minima in the 4-D behaviour, and we have
found that it is necessary to allow relatively high
probabilities of mutation of individual bits in
order that an escape can be made from such local
depressions in the misfit surface. It is unfortu-
nately rather difficult to develop an adequate 4-D
display of the properties of the misfit function to
show the nature of the local minima.

However, the mapping of the movement of the
best hypocentral estimate in four dimensions in

14.500 |- 14.500
2 | 3
£ g
= =
14.45( 14.450
146.750 146.800
longitude
60.000 60.000
S =
& 5
o 1
65.000 65.000
146.750 146.800 53.500
longitude time
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Fig. 3 indicates the way in which the algorithm is
working. The reference location used for the cen-
tre of the display in Fig. 3 has been chosen to
allow a convenient representation of the various
hypocentral estimates in a single diagram. The
reference point is displaced from the ISC loca-
tion, which was used as the centre of the 4-D
grid, by 2.75 km in latitude, 10.75 km in longi-
tude, 27 km in depth and 3.6 s in time. The
sequential estimates for the hypocentral locations
for this example are compared in Fig. 3 and
Table 2. We find there is a tendency for these
estimates to come in clusters, connected by the
effect of a mutation step, separated by larger
jumps in position induced by the action of the
bit-string exchange in the cross-over step.

The successful global minimisation achieved
for this example is illustrated by Fig. 4 which
shows four contoured slices through the misfit
function passing through the solution determined
by the genetic algorithm process. The slices show

54.000

Fig. 4. Representation of the behaviour of the L1 misfit function in the neighbourhood of the hypocentral location determined by
the genetic algorithm. Slices through the proposed solution (9 in Fig. 3) are shown in latitude/longitude, latitude /depth,
longitude /depth and depth /origin-time. Progressively darker grey tones indicate increasing misfit.
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the cross-section in latitude / longitude, latitude /
depth, longitude /depth and depth/origin-time.
In each case the minimum is centred on the
solution determined by the genetic algorithm pro-
cedure. As the misfit increases the toning em-
ployed becomes darker. The contours of the mis-
fit function can be interpreted in terms of the
appropriate probability function as discussed by
Sambridge and Kennett (1986). For the L1 mea-
sure of misfit used in this example, this would be
the exponential distribution. We note that the
central region is quite irregular in shape and
occupies a zone which is approximately 5 km in
each linear dimension and 0.5 s in time. This is a
realistic estimate of the likely precision of a
hypocentral estimate. However, by making a dif-
ferent choice of location criterion it is often pos-
sible to move the position of the estimated
hypocentre by rather more than the formal error
limits (see, e.g. Kennett, 1992).

In this example it was possible to escape from
all the local minima of the misfit function and to
reach the global minimum and hence the best
attainable location for the given data and choice
of misfit function. This does not always occur,
and it is certainly possible for the genetic algo-
rithm to get trapped by a deep local minimum.
Indeed we have found it necessary to raise the
probability of the mutation of an individual bit to
a level which leads to the preservation of diversity
in the set of hypocentral estimates as the genera-
tions progress, rather than the convergence of the
cluster of estimators with successive generations
demonstrated in the work of Sen and Stoffa (1992)
on the application of similar techniques to wave-
form inversion.

4. Discussion

With this example we have demonstrated that
practical non-linear inversion can be achieved for
teleseismic problems without the need for any
calculation of partial derivatives of travel times.
The genetic algorithm procedure exploits the
properties of a cluster of many simultaneous esti-
mates for the hypocentral location and is able to
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extricate itself from local minima in the misfit
function. The procedure is particularly useful
when many different types of information are
employed because each type of information is
treated in the same way. It is thus easy to com-
bine the travel times from different types of seis-
mic phases and array data (azimuth and slowness),
which is very helpful for initial determinations of
hypocentres using a limited teleseismic network.
Further, since there is no need to calculate any
derivatives of travel times, the genetic algorithm
approach can be readily extended to any three-di-
mensionally varying velocity model for which two
point ray tracing can be performed.

An attractive feature of the genetic algorithms
is the ease with which different types of seismic
information can be incorporated into the location
procedure. In the example we have used only
P-wave data but there is no difficulty to include
later phase information for which the iasp91
travel-time tables are particularly useful. When
later phases are used, there is an additional prob-
lem of ensuring that the correct phase identifica-
tion is applied to individual arrivals. The problem
of assigning phase types without knowing the
correct location poses a further class of inverse
problem for which the genetic algorithms appear
to be well suited, and we are currently investigat-
ing ways of incorporating phase association into
the location procedure.
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