Seismic wavefront tracking in 3D heterogeneous media: applications with multiple data classes

Nicholas Rawlinson 1 Marthijn de Kool 2 Malcolm Sambridge 1

Key Words: fast marching method, tomography, teleseismic, refracted wave, reflected wave, wavefront tracking.

ABSTRACT

We demonstrate the potential of a recently developed grid-based eikonal solver for tracking phases comprising reflection branches, transmission branches, or a combination of these, in 3D heterogeneous layered media. The scheme is based on a multi-stage fast marching approach that reinitialises the wavefront from each interface it encounters as either a reflection or transmission. The use of spherical coordinates allows wavefronts and traveltimes to be computed at local, regional, and semi-global scales. Traveltime datasets for a large variety of seismic experiments can be predicted, including reflection, wide-angle reflection and refraction, local earthquake, and teleseismic.

A series of examples are presented to demonstrate potential applications of the method. These include: (1) tracking active and passive source wavefronts in the presence of a complex subduction zone; (2) earthquake hypocentre relocation in a laterally heterogeneous 3D medium; (3) joint inversion of wide-angle and teleseismic datasets for P-wave velocity structure in the crust and upper mantle. Results from these numerical experiments show that the new scheme is highly flexible, robust and efficient, a combination seldom found in either grid- or ray-based traveltime solvers. The ability to track arrivals for multiple data classes such as wide-angle and teleseismic is of particular importance, given the recent momentum in the seismic imaging community towards combining active and passive source datasets in a single tomographic inversion.

INTRODUCTION

Over the last few decades, a large variety of grid- and ray-based methods have been developed to solve one of the most common and challenging problems in seismology: the prediction of the source-receiver path and traveltimes of seismic energy in heterogeneous media. Common ray-based schemes include shooting, bending, and pseudo bending (e.g., Julian and Gubbins, 1977; Pereyra et al., 1980; Um and Thurber, 1987; Sambridge and Kennett, 1990; Rawlinson et al., 2001), and common grid-based schemes include finite-difference solution of the eikonal equation (e.g., Vidale, 1988; Qin et al., 1992; Cao and Greenhalgh, 1994; Hole and Zelt, 1995; Qian and Symes, 2002) and network or shortest-path tracing approach to find reflections by requiring that the shortest path is located. Repeated application of this technique allows a reflected wavefront to be tracked by computing the traveltimes of the reflected wavefield by assuming that the impinging wavefront and reflector are sufficiently smooth and that the impinging wavefront and reflector are sufficiently smooth to validate a local planar approximation, which then allows Snell’s Law to be applied explicitly. Moser (1991) uses a network ray-tracing approach to find reflections by requiring that the shortest path visit a specified set of nodes that lie on the interface.

A limitation of most grid-based traveltime solvers is that they can only track first arrivals in continuous media; however, it is frequently the case that a majority of the seismic energy from an event arrives later in the wavetrain. In layered media, it is possible to adapt grid-based schemes to track later-arriving reflection and refraction phases. For example, wavefronts can be tracked from both source and receiver to an interface, and Fermat’s Principle of stationary time applied to locate reflection points (e.g., Podvin and Lecomte, 1991; Riahi and Juhlin, 1994). In another approach, Hole and Zelt (1995) use the 3D scheme of Vidale (1990) to compute the traveltimes of the reflected wavefield by assuming that the impinging wavefront and reflector are sufficiently smooth to validate a local planar approximation, which then allows Snell’s Law to be applied explicitly. Moser (1991) uses a network ray-tracing approach to find reflections by requiring that the shortest path visit a specified set of nodes that lie on the interface.

Although ray tracing schemes have traditionally been the method of choice in many applications, grid-based schemes have evolved rapidly in recent times and now offer an efficient and robust alternative. Their advantages include: (1) computing traveltimes at all points of a velocity medium, including diffracted arrivals in ray shadow zones; (2) stability in the presence of significant velocity heterogeneity; and (3) consistently finding the first-arrival traveltime in continuous media. Ray tracing schemes may fail to converge to the true two-point path even in mildly heterogeneous media, and provide no guarantee as to whether the located ray corresponds to a first or later arrival. On the other hand, provided a two-point path is located, ray tracing can be efficient, and often produces more accurate traveltimes than any grid-based alternative. However, for many realistic problems, grid-based schemes can be very efficient in computing traveltimes to the required accuracy, particularly when there is a large ratio between the number of sources and receivers or vice versa.

A recently developed grid-based eikonal solver, which is both computationally efficient and highly robust (unconditionally stable for the first-order case), is the so-called fast marching method or FMM (Sethian, 1996; Sethian, 1999; Sethian and Popovici, 1999). FMM implicitly tracks the evolution of first-arrival wavefronts by combining a causal narrow-band evolution scheme with an upwind entropy-satisfying finite difference solution of the eikonal equation. The speed and stability of FMM makes it well suited to problems involving large datasets such as reflection migration and 3D tomography, where it has already been successfully applied (e.g., Popovici and Sethian, 2002; Rawlinson et al., 2006).

In an attempt to develop a robust and general scheme for tracking phases comprising any number of reflection and refraction branches in layered media, Rawlinson and Sambridge (2004a, 2004b, 2005) formulate a multi-stage FMM scheme in 2D Cartesian coordinates. The multi-stage FMM propagates a wavefront through a layer until all points of a bounding interface are intersected. A reflected wavefront can then be tracked by reinitialising FMM from the interface back into the incident layer; a transmitted wavefront can be tracked by reinitialising FMM into the adjacent layer. Repeated application of this technique allows phases composed of any number of reflection and refraction interface it encounters as either a reflection or transmission. The use of spherical coordinates allows wavefronts and traveltimes to be computed at local, regional, and semi-global scales. Traveltime datasets for a large variety of seismic experiments can be predicted, including reflection, wide-angle reflection and refraction, local earthquake, and teleseismic.

A series of examples are presented to demonstrate potential applications of the method. These include: (1) tracking active and passive source wavefronts in the presence of a complex subduction zone; (2) earthquake hypocentre relocation in a laterally heterogeneous 3D medium; (3) joint inversion of wide-angle and teleseismic datasets for P-wave velocity structure in the crust and upper mantle. Results from these numerical experiments show that the new scheme is highly flexible, robust and efficient, a combination seldom found in either grid- or ray-based traveltime solvers. The ability to track arrivals for multiple data classes such as wide-angle and teleseismic is of particular importance, given the recent momentum in the seismic imaging community towards combining active and passive source datasets in a single tomographic inversion.

INTRODUCTION

Over the last few decades, a large variety of grid- and ray-based methods have been developed to solve one of the most common and challenging problems in seismology: the prediction of the source-receiver path and traveltimes of seismic energy in heterogeneous media. Common ray-based schemes include shooting, bending, and pseudo bending (e.g., Julian and Gubbins, 1977; Pereyra et al., 1980; Um and Thurber, 1987; Sambridge and Kennett, 1990; Rawlinson et al., 2001), and common grid-based schemes include finite-difference solution of the eikonal equation (e.g., Vidale, 1988; Qin et al., 1992; Cao and Greenhalgh, 1994; Hole and Zelt, 1995; Qian and Symes, 2002) and network or shortest-path methods (e.g., Nakanishi and Yamaguchi, 1986; Moser, 1991; Bai and Greenhalgh, 2005).

Although ray tracing schemes have traditionally been the method of choice in many applications, grid-based schemes have evolved rapidly in recent times and now offer an efficient and robust alternative. Their advantages include: (1) computing traveltimes at all points of a velocity medium, including diffracted arrivals in ray shadow zones; (2) stability in the presence of significant velocity heterogeneity; and (3) consistently finding the first-arrival traveltime in continuous media. Ray tracing schemes may fail to converge to the true two-point path even in mildly heterogeneous media, and provide no guarantee as to whether the located ray corresponds to a first or later arrival. On the other hand, provided a two-point path is located, ray tracing can be efficient, and often produces more accurate traveltimes than any grid-based alternative. However, for many realistic problems, grid-based schemes can be very efficient in computing traveltimes to the required accuracy, particularly when there is a large ratio between the number of sources and receivers or vice versa.

A recently developed grid-based eikonal solver, which is both computationally efficient and highly robust (unconditionally stable for the first-order case), is the so-called fast marching method or FMM (Sethian, 1996; Sethian, 1999; Sethian and Popovici, 1999). FMM implicitly tracks the evolution of first-arrival wavefronts by combining a causal narrow-band evolution scheme with an upwind entropy-satisfying finite difference solution of the eikonal equation. The speed and stability of FMM makes it well suited to problems involving large datasets such as reflection migration and 3D tomography, where it has already been successfully applied (e.g., Popovici and Sethian, 2002; Rawlinson et al., 2006).

In an attempt to develop a robust and general scheme for tracking phases comprising any number of reflection and refraction branches in layered media, Rawlinson and Sambridge (2004a, 2004b, 2005) formulate a multi-stage FMM scheme in 2D Cartesian coordinates. The multi-stage FMM propagates a wavefront through a layer until all points of a bounding interface are intersected. A reflected wavefront can then be tracked by reinitialising FMM from the interface back into the incident layer; a transmitted wavefront can be tracked by reinitialising FMM into the adjacent layer. Repeated application of this technique allows phases composed of any number of reflection and refraction
Exploration Geophysics (2006) Vol 37, No. 4

Seismic wavefront tracking in 3D

Rawlinson and Sambridge (2004a,b) to extend the multi-stage scheme to relocate earthquake hypocentres in the presence of highly heterogeneous structure show it to be both computationally efficient and extremely robust.

In a recent paper, de Kool et al. (2006) build on the ideas of Rawlinson and Sambridge (2004a,b) and de Kool et al. (2006). The eikonal equation, which governs the propagation of seismic waves in the high frequency limit, may be written

$$\nabla_i T = s(x),$$

where \(\nabla_i\) is the gradient operator, \(T\) is traveltime and \(s(x)\) is slowness as a function of position \(x\). FMM solves equation (1) using upwind entropy satisfying finite differences that naturally deal with wavefront discontinuities that arise from discarding later arriving information. In our case, we use the following scheme, which has been employed by a number of authors, including Sethian and Popovici (1999), Chopp (2001), and Popovici and Sethian (2002):

$$\max \left[D_i^+T_i - D_i^{-+}T_i, 0 \right]^2 \leqh \max \left[D_i^{++}T_i - D_i^{+-}T_i, 0 \right]^2 \leqh \max \left[D_i^{++}T_i - D_i^{++}T_i, 0 \right]^2 = s_{i,k},$$

where \((i, j, k)\) are grid increment variables in any orthogonal coordinate system \((r, \theta, \phi)\), and the integer variables \(a, b, c, d, e, f\) define the order of accuracy of the upwind finite-difference operator used in each of the six cases. If \((r, \theta, \phi)\) represent a spherical coordinate system, then the first two gradient operators in each of the three directions can be written

$$D_i^{+-}T_{i,j,k} = \frac{T_{i+1,j,k} - T_{i-1,j,k}}{2\delta r},$$

$$D_i^{++}T_{i,j,k} = \frac{3T_{i+1,j,k} - 4T_{i,j+1,k} + T_{i-1,j,k}}{2\delta r},$$

$$D_i^{+-}T_{i,j,k} = \frac{T_{i,j+1,k} - T_{i,j-1,k}}{2\delta \theta},$$

$$D_i^{++}T_{i,j,k} = \frac{3T_{i,j+1,k} - 4T_{i,j,k} + T_{i,j-1,k}}{2\delta \theta},$$

$$D_i^{+-}T_{i,j,k} = \frac{T_{i+1,j,k} - T_{i-1,j,k}}{2r\cos \theta \delta \phi},$$

$$D_i^{++}T_{i,j,k} = \frac{3T_{i+1,j,k} - 4T_{i,j+1,k} + T_{i-1,j,k}}{2r\cos \theta \delta \phi}.$$
Seismic wavefront tracking in 3D

FMM in the incident (for reflection) or adjacent (for transmission) layer. Information flow, that is, from smaller to larger values of causality, the order should be consistent with the direction of specify the order in which points are to be updated. To satisfy the traveltime associated with a particular grid point, but does not achieve this by systematically constructing traveltimes in a downwind fashion from known values upwind, using a narrow-band approach (see Figure 1). Close points have trial traveltime values which only become Alive when they are the global minimum value of all Close points. When this occurs, the narrow band is locally evolved to retain the division of the traveltime time field into Alive and Far points. Thus, the shape of the narrow band approximates the shape of the first arrival wavefront, and the idea is to propagate the band through the grid until all points become Alive. The use of a heap-sort algorithm means that FMM has an availability of upwind traveltimes and the maximum order allowed.

Equation (2) describes the finite difference scheme for updating the traveltime associated with a particular grid point, but does not specify the order in which points are to be updated. To satisfy causality, the order should be consistent with the direction of information flow, that is, from smaller to larger values of T. FMM achieves this by systematically constructing traveltimes in a downwind fashion from known values upwind, using a narrow-band approach (see Figure 1). Close points have trial traveltime values which only become Alive when they are the global minimum value of all Close points. When this occurs, the narrow band is locally evolved to retain the division of the traveltime time field into Alive and Far points. Thus, the shape of the narrow band approximates the shape of the first arrival wavefront, and the idea is to propagate the band through the grid until all points become Alive. The use of a heap-sort algorithm means that FMM has an availability of upwind traveltimes and the maximum order allowed.

$$D_{i,j,k} = \begin{cases} T_{i,j,k} & \text{if } T_{i,j,k} \text{ is available} \\ -2 & \text{otherwise} \end{cases}$$

Which operator is used in equation (2) depends on the availability of upwind traveltimes and the maximum order allowed. By default, we use a mixed order scheme which preferentially uses D_i operators but reverts to D_j if $T_{i,j,k}$, or $T_{i,j,k}$ is unavailable (e.g., near a point source). Mixed order schemes using higher order operators such as D_i may also be devised.

Equation (2) describes the finite difference scheme for updating the traveltime associated with a particular grid point, but does not specify the order in which points are to be updated. To satisfy causality, the order should be consistent with the direction of information flow, that is, from smaller to larger values of T. FMM achieves this by systematically constructing traveltimes in a downwind fashion from known values upwind, using a narrow-band approach (see Figure 1). Close points have trial traveltime values which only become Alive when they are the global minimum value of all Close points. When this occurs, the narrow band is locally evolved to retain the division of the traveltime time field into Alive and Far points. Thus, the shape of the narrow band approximates the shape of the first arrival wavefront, and the idea is to propagate the band through the grid until all points become Alive. The use of a heap-sort algorithm means that FMM has an availability of upwind traveltimes and the maximum order allowed.

Rawlinson and Sambridge (2004b) show that in most cases, the dominant error in FMM calculations is accumulated in the source neighbourhood as a result of high traveltime curvature. They show that accuracy can be greatly increased without significant computational cost by introducing a refined grid in the source vicinity, which is resampled to the global coarse grid when the narrow band reaches the refined grid boundary. This scheme is also implemented in the 3D multi-stage version; typical values for the refined grid are an increase in resolution by a factor of 5, and a refined grid extending 50 nodes away from the source in each direction.

The FMM scheme described above is for a regular grid implementation; however, when wave propagation occurs in a layered medium with undulating interfaces, the boundary of each velocity continuity may be irregular. Rawlinson and Sambridge (2004a,b) deal with this problem by using an adaptive triangular meshing scheme in the neighbourhood of each interface to connect interface nodes with adjacent velocity nodes. Interface nodes are defined by the point of intersection between the interface surface and the grid lines of the velocity mesh (see Figure 2). Wavefronts are then propagated through the irregular grid using a first-order version of equation (2) for triangular elements (equivalent to a plane wave approximation). In 3D, an adaptive tetrahedral mesh would be much harder to implement, so instead, updates to interface or surrounding velocity nodes are made by considering impinging plane waves from all possible combinations of neighbouring Alive velocity and interface nodes. The correct wavefront orientation yields the minimum arrival time (see de Kool et al., 2006, for more details).

The principle underlying the multi-stage FMM approach is shown in Figure 3; a wavefront is tracked from the source until all interface nodes become Alive. All Alive points are then reset to Close and FMM is reinitialised into the incident layer for a reflection, or into the adjacent layer for a refraction. This can be repeated any number of times to construct phases comprising any number of refraction or reflection branches. Conversions between P and S waves can be tracked simply by replacing the incident or adjacent velocity field with the appropriate P or S wavespeed model prior to reinitialisation of FMM. Ray paths for any phase type can be found a posteriori by simply integrating along the traveltime field gradient from the receiver back to the source.

A class of phase that cannot be tracked using this multi-stage FMM approach is one that involves consecutive interactions with the same interface (e.g., PP); this is because it no longer represents the interface-intersecting global minimum arrival within the layer. In our implementation of the 3D multi-stage scheme, phases such as PP can be computed by initialising FMM from both the source and receiver and tracking the resulting wavefronts to a common interface. The complete phase can then be obtained by matching the traveltime gradients from the two impinging wavefronts at the interface; where they are equal in magnitude and opposite in sign corresponds to a legitimate reflection point. This approach also allows multiple later-arriving reflections from a single interface to be found if they exist. However, a drawback in finding this class of later arriving phase is that FMM must be initiated from both source and receiver, which increases computation time.

In addition to tracking wavefronts from point sources within the model volume, the multi-stage FMM can also be initialised from a teleseismic wavefront. This is done by computing traveltimes from distant sources to the boundary of the model using, for example,
Exploration Geophysics (2006) Vol 37, No. 4

A global reference model such as ak135 (Kennett et al., 1995). Initialisation of the teleseismic wavefront from the boundary of the model is carried out in the same way as from an interface: the Alive grid points are set to Close and the narrow band evolves from the point with minimum traveltime. Using this approach, any global phase (e.g., P, PcP, PKiKP) can be tracked through the local model. This style of wavefront propagation is often employed in teleseismic tomography (e.g., Graeber et al., 2002; Rawlinson et al., 2006).

EXAMPLES

In the following series of examples, the velocity field within each layer is independently described by a regular grid of nodes in spherical coordinates. These nodes are used as the control vertices of a mosaic of cubic B-spline volume elements, which define the continuum. Layer interfaces are described by a regular mesh in latitude and longitude and use a mosaic of cubic B-spline surface patches to describe the complete interface. Cubic B-spline functions are desirable because they exhibit local control (i.e., changing the value of a single node only effects the interface or velocity field in the vicinity of the node), continuity of the second derivative, and can be rapidly evaluated. This last property is important because in order to use the multi-stage FMM, a propagation grid must be defined over which the narrow band evolves; typically, this will involve many evaluations of the spline function.

Multiple phases in a subduction zone

One of the more complex geological structures encountered at the lithospheric scale is a subduction zone, which involves the edge of one tectonic plate (usually oceanic) subducting beneath another at a convergent margin. The accurate representation of such a structure with a 3D wavespeed model would require that layer pinch-outs, a subducting slab, and strong lateral wavespeed perturbations be included. Although the presence of these complexities makes the task of tracking wavefronts and computing traveltimes a difficult one, it may well be necessary in some circumstances, for instance, in tomographic inversion of multiple datasets. With this in mind, we demonstrate the ability of the multi-stage scheme to track reflection, refraction, local earthquake, and teleseismic phases in a subduction zone setting.

Figure 4 shows a synthetic subduction zone model, comprising an oceanic slab subducting beneath a laterally discontinuous continental mass. Interface topography is relatively complex and lateral variations in wavespeed within a layer are as great as 25%. Although the velocity variations indicated in the scale bar of Figure 4 are probably larger than would be encountered in the Earth, the purpose of this example is to demonstrate the robustness of the scheme. For the sake of clarity, the subduction zone in Figure 4 is 2.5D; that is, it fills a 3D volume but only varies in longitude and depth; this allows ray paths to be meaningfully visualised. Ray paths from five sources – one teleseismic, two local earthquakes within the slab, one refraction, and one reflection – to 30 receivers in-line on the surface, are superimposed on the velocity model in Figure 4. Ray paths from the teleseismic source clearly reflect the distortion experienced by the wavefront as it propagates through the subduction zone. Of the two local earthquake sources, a direct transmission is tracked from the shallower event, while a reflection multiple is tracked from the deeper event. Rays from the easternmost surface source show that even near-critical refraction paths can be retrieved. The trade-off between accuracy and computation time is difficult to quantify in the absence of analytic solutions, but convergence tests involving the progressive increase in density of the propagation grid suggest that all 150 traveltimes can be computed with an RMS error of less than 100 ms in approximately 150 s on a 1.6 GHz Opteron workstation.

Figure 5 shows a second subduction zone example in which variations in structure are fully 3D. In this case, paths for both teleseismic and local earthquake sources are computed. P-S converted phases are shown for the two sources that lie in the subducting slab. The main aim of these subduction zone examples is to highlight both the flexibility and robustness of the multi-stage FMM in 3D. That the stability of the scheme is uninhibited by the complexity of the structure, and that many classes of dataset can be synthesised, means that the multi-stage FMM has the potential to form the basis of a flexible nonlinear tomographic imaging scheme.

Earthquake relocation

The accurate determination of earthquake hypocentres is important for many reasons, including seismic hazard analysis,
seismic imaging (e.g., regional tomography), and structural inference
(e.g., fault delineation). In this example (Figure 6), we apply a
gradient-based iterative non-linear inversion routine, which exploits
taveltime derivatives with respect to source location parameters,
to relocate (in space and time) a cluster of five local earthquakes
in the presence of significant 3D heterogeneity. Figure 6a shows
the true location of the earthquakes and Figure 6b shows the initial
locations used in the inversion. The synthetic dataset comprises first-
arrival traveltimes from all sources to 100 receivers located at the
surface. The corresponding raypaths for the true locations are shown
in Figure 6a. A source origin time error of 0.25 s is added to all
traveltimes in the synthetic dataset. The inversion routine involves
iterative application of the multi-stage FMM and a subspace
inversion scheme (Kennett et al., 1988; Rawlinson and Sambridge,
2003), which naturally deals with multiple parameter classes. In
the subspace scheme, minimisation is carried out simultaneously
along several search directions that together span a subspace of the
model space. The search directions used in this case are based on the
gradient vector in model space and its repeated pre-multiplication
in model space. The search directions used in this case are based on the
model space Hessian (see Rawlinson and Sambridge, 2003). For this example, a 20D subspace scheme offers a good compromise
between computing time per iteration and rate of convergence.

Figure 6c shows the result after 6 iterations of the inversion
scheme; in all five cases, the earthquake hypocentres have been
relocated very accurately. Table 1 summarises the spatial and
temporal errors associated with the initial and recovered locations.
The trade-off between interface depth and source time error is not
fully resolved for sources 4 and 5, but this is not surprising given
the ray path geometry (Figure 6a). The success of this example
in a strongly heterogeneous 3D medium shows that the multi-
stage FMM has the potential to be used in routine earthquake
relocation algorithms where there is sufficient a priori knowledge of lateral variations in structure. Although an iterative non-linear
approach to relocation is employed here, the multi-stage FMM is
also particularly well suited to fully non-linear relocation
algorithms (e.g., Kennett, 2004) that rely on relatively dense
sampling of parameter space. This is because grid-based methods
compute traveltimes from a source to all points that define the
model volume. Thus, the multi-stage FMM need only be solved
once for each receiver, with the resulting traveltimes fields stored
in look-up tables. Using the principal of traveltimes reciprocity,
source-receiver traveltimes at an arbitrary point can then be rapidly
extracted. In complex velocity models with poor initial locations,
a fully non-linear or global search algorithm is preferable to an
iterative non-linear one, which is liable to either diverge or become
trapped in a local minimum.

Joint inversion of wide-angle and teleseismic traveltimes

The traditional approach to local and regional scale body
wave tomography in 3D has been to invert traveltimes data of a
single class, such as teleseismic (Aki et al., 1977; Humphreys
and Clayton, 1999; Graeber et al., 2002; Rawlinson et al., 2006), local
earthquake (Eberhart-Phillips, 1986; Walck, 1988; Graeber and
Asch, 1999), or wide-angle (Hole et al., 1992; Zelt and Barton,
1998; Rawlinson et al., 2001). Although several efforts have been
made in the past to combine multiple datasets in a single inversion
(e.g., Ankeny et al., 1986; Sato et al., 1996; Parsons and Zoback,
1997), it is still far from a routine practice. However, with the
rapidly increasing volume of seismic data recorded in various
regions of the Earth, it is becoming clear that the opportunities for
combining multiple datasets are on the rise. The obvious benefit of
more than one dataset is the increased path coverage, which is
likely to yield more detailed and robust models. For example,
wide-angle surveys often provide good coverage of the crust, but
sample the upper mantle poorly. On the other hand, teleseismic
surveys often result in good path coverage through the upper
mantle, but sample the crust poorly.

In the next application of the multi-stage FMM (Figure 7),
synthetic wide-angle and teleseismic datasets are simultaneously
inverted for the geometry of the Moho and the P wavespeed
structure of the crust and upper mantle. The tomographic inversion
routine that is used is similar to the one previously applied for
earthquake hypocentre relocation, except that interface depth
and velocity node parameters are inverted for rather than source
parameters. The iterative application of the multi-stage FMM
and the subspace inversion scheme accounts for the non-linear
relationship between traveltimes and wavespeed/interface depth

<table>
<thead>
<tr>
<th>Source</th>
<th>Initial source error</th>
<th>Relocated source error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Latitude (°)</td>
<td>Longitude (°)</td>
</tr>
<tr>
<td>1</td>
<td>−0.200</td>
<td>−0.200</td>
</tr>
<tr>
<td>2</td>
<td>0.100</td>
<td>0.200</td>
</tr>
<tr>
<td>3</td>
<td>−0.100</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>0.200</td>
<td>−0.300</td>
</tr>
<tr>
<td>5</td>
<td>−0.200</td>
<td>0.300</td>
</tr>
</tbody>
</table>

Table 1. Summary of results from the earthquake hypocentre relocation example. The initial, recovered, and true source locations are shown in Figure 6.
perturbations. As in the previous example, a 20D subspace scheme is used. In addition to minimising the difference between observed and predicted traveltimes, the inversion also includes damping regularisation, which penalises solution models that are strongly perturbed from the initial or starting model.

Figure 7a shows a plot of the “true” model used to generate the synthetic dataset. It comprises a crustal layer and an upper mantle layer separated by an undulating Moho. Lateral perturbations in wavespeed from a 1D reference model are shown; in this case, the reference model is described by ak135 (Kennett et al., 1995) in the upper mantle, and a constant velocity gradient of 0.016 s⁻¹ in the crust, with a velocity of 5.4 km/s at the surface. The synthetic velocity structure comprises a 3D checkerboard pattern in both layers, with a finer scale checkerboard used in the crust, where more detail can be resolved. A total of 14,540 nodes describe the

![Image](image-url)
entire 3D velocity field. The synthetic interface structure varies in depth between 33 and 47 km, and is described by 196 depth nodes. Figure 7b shows the laterally invariant starting model used for the tomographic inversion and the associated ray path coverage. The starting velocity model is simply the 1D reference model, and the initial depth of the interface is 40 km. The teleseismic dataset comprises traveltime residuals from 12 distant events recorded by 100 receivers evenly distributed on a grid at the surface. The wide-angle dataset consists of crustal refraction (Pg) and reflection (PnP) traveltimes generated by nine surface sources and recorded by the same 100 receivers. In total, the synthetic dataset comprises 3000 traveltimes.

The tomographic solution model, obtained after six iterations of the non-linear scheme, is shown in Figure 7c. The checkerboard pattern in the crust is clearly recovered, with minimal smearing. The checkerboard pattern in the upper mantle is also well recovered, although there is clear evidence of vertical smearing which prevents the uppermost part of the checkerboard in the bottom layer from being recovered. This behaviour is typical of teleseismic datasets. The inclusion of significantly more teleseismic events, or refraction paths from the surface sources which penetrate the uppermost mantle (Pn), would probably improve the imaging result in this region. The structure of the Moho is generally well recovered, and shows that the trade-off between interface depth and velocity perturbation has been

Fig. 7. Imaging results from the combined inversion of synthetic wide-angle and teleseismic data for the 3D velocity and Moho structure of the lithosphere. (a) True, (b) initial, (c) recovered velocity and interface structure. From top to bottom, plots correspond to a depth slice at 20 km, an E-W slice at 40.25°S, a N-S slice at 140.25°E, and Moho depth. Ray path coverage for the initial model is shown in (b). Magenta stars denote sources and blue triangles denote receivers.
satisfactorily resolved. The complete non-linear inversion process, which constrains 14736 velocity and interface parameters using 3000 traveltime, takes approximately 25 minutes on a 1.6 GHz Opteron workstation running Linux. The RMS traveltime misfits of the initial and recovered models are 369 ms and 33 ms respectively, which show that the data are well satisfied by the solution. This could possibly be improved slightly by applying more iterations or increasing the density of the FMM propagation grid (to increase travelt ime accuracy), but in practical applications there would be little point because of the noise inherent in all observational datasets, and the assumptions imposed by the parameterisation.

The results summarised in Figure 7 show that the multi-stage FMM can be effectively used in sophisticated tomographic inversion routines that combine multiple data classes in order to image complex structures. In addition to teleseismic and wide-angle datasets, coincident reflection and local earthquake data may also be incorporated (hypocentre, velocity and interface parameters could all be inverted for simultaneously), and multi-layered structures that include features such as layer pinch-outs could be imaged provided there is sufficient data coverage. The flexibility offered by a spherical coordinate representation means that the scale of application need not be limited to small regions of the Earth; however, at this stage the scheme is not well suited to global tomography because periodicity is not accounted for, and the degeneracy of the spherical coordinate system at the poles is not recognised. This could be rectified without having to substantially change the code.

CONCLUSIONS

In this paper, a brief description of a new multi-stage FMM scheme for tracking phases in 3D heterogeneous layered media is given, along with several examples that demonstrate its flexibility and robustness in realistic problems. These include: tracking arrivals associated with local earthquake, teleseismic, reflection, and refraction sources through a complex subduction zone; accurately relocating a group of earthquake hypocentres in the presence of significant lateral heterogeneity; and imaging 3D crust and upper mantle structure (including Moho geometry) by combining wide-angle and teleseismic datasets in a single tomographic inversion. Other problems, such as seismic migration, continental-scale body wave tomography, and the imaging of mantle discontinuities using P-S phase conversions, could also be addressed using the new scheme. In many of these areas, ray tracing is still the default tool used for computing traveltimes, but this may soon change with the introduction of grid-based schemes such as the multi-stage FMM, which offer far greater robustness, and in many cases improved efficiency and flexibility.

The source code for the 3D multi-stage FMM scheme used in this paper is freely available for general use from <http://rres.anu.edu.au/seismology/fmmcode>, along with detailed instructions and examples.

ACKNOWLEDGMENTS

This work was funded by Australian Research Council (ARC) Discovery Project DP0551133. N. Rawlinson is supported by ARC Discovery Project DP0556282. All figures were created using the freeware software packages xfig and GMT. D. Brown, M. Purr and an anonymous reviewer are thanked for their constructive comments on an earlier version of the manuscript.

REFERENCES

Rawlinson and others

Seismic wavefront tracking in 3D

