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Abstract

A method is presented for detecting multiple components in a population of analytical observations for zircon
and other ages. The procedure uses an approach known as mixture modeling, in order to estimate the most likely
ages, proportions and number of distinct components in a given data set. Particular attention is paid to estimating
errors in the estimated ages and proportions. At each stage of the procedure several alternative numerical
approaches are suggested, each having their own advantages in terms of efficiency and accuracy.

The methodology is tested on synthetic data sets simulating two or more mixed populations of zircon ages. In thlS
case true ages and proportions of each population are known and compare well with the results of the new
procedure. Two examples are presented of its use with sets of SHRIMP >*U—2%Pb zircon ages from Palacozoic
rocks. A published data set for altered zircons from bentonite at Meishucun, South China, previously treated as a
single-component population after screening for gross alteration effects, can be resolved into two components by the
new procedure and their ages, proportions and standard errors estimated. The older component, at 530 + 5 Ma
(2a), is our best current estimate for the age of the bentonite.

Mixture modeling of a data set for unaltered zircons from a tonalite elsewhere defines the magmatic 2 U-2%Ph
age at high precision (2¢ £ 1.5 Ma), but one-quarter of the 41 analyses detect hidden and significantly older cores.

1. Introduction

The advent of rapid isotopic age determina-
tions, for example through the use of the
SHRIMP ion microprobe and of laser fusion gas
extraction for “Ar--*Ar dating, presents the
problem of assessment of multiple age estimates
for a single geological sample. For conventional
U-Pb age determinations on zircon, assessment
is made using comparatively few analyses per
rock sample, with the emphasis placed on whether
or not the coupled 2*U-2Pb and **U-27pb
ages are concordant. Even if just one of the few
analyses is concordant, this is usually taken as

proof that the age is correct. In contrast to this,
SHRIMP geochronology for zircons that are
younger than, say, 1000 Ma, does not often yield
SU-27Pb ages that are sufficiently precise for
comparison with 2*U-2Pb. Consequently, the
question of the validity of the age determination
must be based on finding (ideally) that all repli-
cate analyses are in agreement to within experi-
mental error.

Inevitably, there will be outliers; both zircons
that are too old, due to inheritance from the
rock’s magmatic source, and those that have not
remained chemically closed, owing to later geo-
chemical events. The identification of ‘outliers’
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has always been a troublesome area in statistics
but it can be managed by amateurs if the data set
is dominated by a single population with only a
small minority of analyses that are much older or
much younger. However, the real problem area is
resolution of two or more populations of zircons
which each comprise a sizeable proportion of the
total that are nearly equal in their ages. Geologi-
cally, this is (or should be) quite a commonplace
expectation; for example, for zircons in tuffs from
a region with a long, continuous period of volcan-
ism. It is quite likely that a given tuff sample will
be a sedimentary mixture of detrital zircons from
slightly older volcanics and those from the period
of volcanism whose age is to be found. In our
experience, detrital grains from older volcanics
need show no surface abrasion features whatever,
so that the older age of such zircons cannot be
determined reliably by visual inspection prior to
analysis.

These issues have been faced and solved by
practitioners of fission-track dating (e.g., [1]),
which has much in common with SHRIMP **U-
206ph geochronology. In both methods many indi-
vidual grains from a single rock are analysed,
there can be unequal variance per analysis (due
to highly variable U concentrations) and the age
differences to be resolved are comparable with
experimental precision. In addition, the precision
of the latter is low in comparison with the ex-
treme precision obtained for the much larger
samples used for isotope dilution analysis and
thermal ionization. Galbraith and Green [1] have
shown how mixed ages can be resolved into two
principal components and the proportions of each
estimated, by a mathematical analysis based on
probabilities and goodness-of-fit.

The need for an objective and quantitative
approach to this problem has been most felt in
SHRIMP **U-2Pb dating applied to Phanero-
zoic time-scale calibration. Here the best samples
geologically are (marine) tuffs interbedded with
sediments that carry the diagnostic fossil fauna.
However, such samples are especially susceptible
to mixing with foreign zircons from detrital grains
from ‘normal’ sedimentation and with those from
wall-rock inclusions in the explosively produced
volcanic ash. They are also susceptible to the

effects of the low temperature geochemical alter-
ation that accompanies the later alteration of
volcanic glass to clay minerals, and to the later
movement of pore fluids through the clays, which
can interact with the original zircons. As a result
outliers may be present that are younger than the
event of interest. These may be in the physical
form of either a thin rim of new zircon that
overlies the magmatic zircon, or as rims and
internal zones of altered zircon that have lost
radiogenic Pb and /or gained U.

This paper addresses the problem of estimat-
ing the number of distinct components and their
ages in a collection of zircons, although the pro-
cedure is quite general and can be used for any
problem where a histogram of data is available
and a multi-peaked distribution is sought. We
have paid particular attention to estimating the
likely errors in these parameters and several ap-
proaches are discussed. Since most numerical
methods have a limited range of applicability, we
feel it is more useful to draw conclusions based
on the results of several competing methods than
to rely on a single approach. For this reason a set
of alternative methods are presented at each
stage. One of these is closely related to that
proposed by Galbraith and Green [1] for fission-
track dating, while others represent an extension
of their approach to incorporate different types
of error statistics.

An attempt has been made to keep the paper
largely self contained (with much of the mathe-
matical detail placed in the appendices). Our
main objective is to convey the methodology and
an appreciation of the underlying theory, without
forcing the reader to study extensive algebra. An
introduction to mixture modeling appears in the
next section, followed by full details of the esti-
mation procedure in section 2.2. An efficient
method is presented for the case of Gaussian
error statistics and also non-Gaussian (more ro-
bust) statistics, together with examples. Section
2.4 deals with the estimation of errors in the
maximum likelihood set of ages and proportions
via the covariance matrix and confidence ellipsoid
about the solution. Section 2.5 is concerned with
estimating the most likely number of age compo-
nents in the data; again several approaches are
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described and all are illustrated with numerical
examples. In section 3 the methodology is applied
to the re-interpretation of the complex data set
published for zircons from the Meishucun Bed 5
horizon in South China which has been previ-
ously interpreted using traditional single-compo-
nent methods [2]. A second application to a real
(unpublished) zircon data set appears in section
4. The comparison of real and synthetic data
examples allows insight into how well the meth-
ods presented are likely to work in practice.

2. Mixture modeling for zircon ages and propor-
tions

2.1. Theory: formulation of the maximum likeli-
hood approach

The estimation of distinct age components
from a sample of zircon ages is an example of
what statisticians call a mixture modeling prob-
lem. (See [3] and the references therein for a
review of the statistical literature on mixture
modeling.) This problem can be formulated in the
foilowing way. If one has a set of n ‘measure-
ments’ (in this case estimated ages), a;,, (i=
1, -+ - ,n) and their associated standard errors, o,
(i=1,---,n), then we wish to determine the
number of true age components, n_, their values,
t;,, (j=1,---,n)), and the proportion of the n
measurements that belong to each class, ),
(=1, ,n).

By definition, the sum of the proportions is
unity:

Z‘n'j=1 (1)

and so we have a total of n data and 2n,—1)
unknowns. The value of s, is unknown but we
shall treat it as a known constant for now. In
practice, we may have to repeat the estimation of
the ages and proportions for different values of
n.. (Although we use the term ‘measurement’ for
the age estimates, the values are usually the re-
sult of a set of measurements and calculations,
which may be quite involved.)
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Fig. 1. Top panel: synthetic data set and estimated two-com-
ponent distribution. The arrows indicate the two true ages.
Middle panel: Three distributions for different values of p in
Eq. (7). Lowest panel: a single measured age a; and two
distinct age components. The relative probabilities, f, and f,
of it belonging to each age component is given by the height
of each curve.

In practice, we will be presented with a his-
togram of measured ages, such as that in Fig. 1
(top panel). The question is then, does this repre-
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sent a single population with an acceptable
spread, given some knowledge of the standard
error in the measured age, o;, or is it the result of
several overlapping populations? If the number
of data is large enough (and the component sepa-
rated enough) to resolve two or more obvious
peaks in the histogram then there is clear evi-
dence for multiple populations and no need for
mixture modeling. However, if this is not the
case, then mixture modeling provides a way of
finding the best fit (maximum likelihood) set of
ages and proportions for any number of assumed
components. To proceed it is necessary to know
(or make a good guess at) the error distribution
of the observations, because it is this distribution
that will be used for the fitting procedure. Usu-
ally this distribution is assumed to be Gaussian
but the theory presented here will hold for any
other type of distribution, for example, the more
robust distributions shown in Fig. 1 (middle
panel)—robust means less affected by outliers.

Once the error distribution associated with
each measured age is known, a way of choosing
the ‘best fitting’ set of (true) ages and propor-
tions is required. Since the distributions from
each real age component overlap, every measured
age could actually have come from any of the true
age components. For example, consider the case
when there are two components, as in Fig. 1
(lowest panel) (n,=2). The two true ages and
proportions are (z,, ), (¢,, 7,) and the mea-
sured age is a,. The height of each curve at the
measured age gives the relative likelihood of it
coming from either ¢, or t,. The proportion
parameters represent the ratio of the areas under
each curve in Fig. 1. By combining these quanti-
ties we obtain the likelihood function for the
unknown true ages and proportions given by the
single measured age, a;:

fla;0;) = 2 Trjfi(tj) (2)

j=1

where the dependence of f; on each unknown
age, 1, is shown explicitly. If all of the measured
ages are independent then we can multiply these
terms together to obtain the complete likelihood

function of the unknown parameters, which we
denote as L:

L= ljf(ai""i) 3

The term ‘likelihood function’ is used because
it gives the likelihood that the true ages and

proportions have values (¢, m;), (j=1,--,n.),
when the measured ages have values a,, (i=
1, ---,n). An important point to note is that the

exact values of the true ages and proportions are
not recoverable. The quantity L gives only the
probability density for any particular set of pa-
rameter values. However, using the procedure
described below it is possible to find the set of
ages and proportions which maximize the likeli-
hood, L, and then estimate their standard errors.
In this sense we treat these as the ‘best’ estima-
tion of the age and proportion parameters based
on the available data.

2.2. Solving for the maximum likelihood solution

We wish to find a single set of ‘best fit’ ages
and proportions which maximizes the likelihood
function given by Eq. (3). Maximizing L is equiv-
alent to maximizing the logarithm of L, where:-

InL = ilnf(al—,o',-) (4

i=1
substituting in Eq. (2) this becomes:

n ne
InL = Zln( Y mf

i=-1 j=1

(5)

where we have written f;; to represent fi(¢;). We
have to maximize In L under the constraint given
by Eq. (1); that is, the proportions add to unity.
This is a standard problem of constrained opti-
mization, which can be solved with the method of
Lagrange Multipliers (see, e.g. [4]). Using this
method we arrive at a pair of non-linear equa-
tions to solve:

L & mf;
m=—, — (6a)
om0
and
nooar. l.'.
Y gf’=0 (6b)
i=1 9i
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where S, = X3¢ 7 fiy, and f;; = (3f;;)/(8¢;). For
a derivation of these equations see appendix A.
So far, we have not specified f; j» which describes
the distribution of errors in the age measure-
ments a;. The simplest case is when the age
measurements have Gaussian errors, and we have:

fy= (%T;_{exp{ —(a,~ 1)’ /207) (7)
In appendix A it is shown that in this case Eq.
(6b) becomes:
. P 17Tjaifij/‘7i25i
h= PE |7ijij/0'izSi

(8)

Egs. (6a) and (8) can now be used to solve for
m; and ¢; for each j, (j=1,---,n.) iteratively.
An initial trial solution (7r,¢?) is found and used
to evaluate the right-hand side of (6a) and (8) to
give an improved pair of values. This process is
then repeated until the changes in the parame-
ters m; and ¢; are smaller than some prescribed
value, for example, 0.1% of the previous value.
(Often it is simply stopped after a fixed number
of iterations.) It is important to note that, in
general, there is no guarantee that this iterative
scheme will converge. However, in our trials per-
formed on real and synthetic problems these
equations have never failed to converge.

In non-linear maximization problems the pos-
sibility always exists of multiple maxima in the
likelihood function, which means that Egs. (6)
and (8) will be satisfied by more than one set of
age and proportion parameters. The iterative
process will usually converge to the nearest set of
parameters to the starting set (7}, {), and so the
only effective way of locating the true global
maximum is to repeat the iterative process from
different starting points. In the examples pre-
sented below we always repeat the numerical
scheme starting from randomly generated ages
and proportions (7, ¢) and examine the com-
plete distribution of solutions.

The general equations (6) and those for the
special case of Gaussian errors, (8), were derived
by Galbraith [5] and used by Galbraith and Green
[1] to estimate the component ages in a finite
mixture of grains analysed by fission-track dating.

If the error distributions closely follow Gaussian
statistics, then this is the most efficient and nu-
merically stable method of finding the maximum
likelihood set of age and proportions for each age
component. If the errors in the measured ages
are far from Gaussian then, ideally, one should
find the error distribution, f;;, which most closely
describes their statistical behaviour. The new ex-
pression for f;; should then be substituted in Egs.
(6) and a new iterative scheme found. Often,
however, the true error statistics are poorly
known, in which case it can be prudent to find
the maximum likelihood solution using a range of
robust error distributions. By using robust error
statistics one ensures that the resulting set of ages
and proportions will be more representative of
the data as a whole, and less influenced by the
occasional age measurement with abnormally
large error. The well known Gaussian statistic,
Eq. (7), is notoriously non-robust, in that it can
be heavily influenced by an outlier age measure-
ment, with the result that the maximum likeli-
hood solution is biased towards the age measure-
ments with largest error.

To extend the maximum likelihood procedure
to robust error distributions we consider the-gen-
eralized Gaussian distribution:

(a,— 1))

1 2

%)

ﬁj=c|x|exp —

o

where |x| represents the absolute value of x; ¢ is
a normalizing constant; and p is a number be-
tween 1 and 2 which determines the robustness of
the distribution. For the case p =2, f;; becomes
Gaussian. For p <2 the distribution becomes
more robust because its tails become higher (see
Fig. 1). If p =1 it is equivalent to the well known
double exponential distribution. A set of equa-
tions, similar to those for the Gaussian case can
be derived for the generalized Gaussian (see ap-
pendix A) and used for all values of p between 1
and 2. Alternatively, a maximization procedure,
known as Powell’s direction set method, may be
used to improve numerical stability and effi-
ciency. See [6] for a detailed description of this
method. In the next section we present examples
using both the direct solution approach and Pow-



378 M.S. Sambridge, W. Compston / Earth and Planetary Science Letters 128 (1994) 373-390

ell’s method with non-Gaussian crror statistics on
real data.

2.3. Synthetic examples of the basic algorithm

An example of maximum likelihood estimation

As an cxample of the estimation procedure
consider Fig. 2, which summarizes the results of a
test to cstimate the maximum likelihood set of
ages and proportions using 100 synthetically gen-
erated age measurements. The true solution has
two component ages and proportions with values
t, =500 Ma, 7, =04, t, =570 Ma and 7, = 0.6.
The synthetic age data was generated by ran-
domly sclecting one of two ages, with probabili-
ties 0.4 and 0.6, and adding Gaussian noise with a
standard deviation of 30 Ma. Thec maximum like-
lihood procedure was then applied to the 100
error-contaminated ages to recover the truc ages
and proportions. To avoid any dependence on the
starting parameters the process was repeated 50
times, in each case starting from a randomly
generated set of ages betwecen 450 and 650 Ma
and proportions between 0.0 and 1.0.

(a) Starting points, solutions and

95% confidence ellipse
650 ™ T =

El B
E E

B\

450 500 550 600 650

Agel (Ma)

Fig. 2a shows the starting points, solutions and
95% confidence ellipse for the two ages after 50
iterations of Egs. (6a) and (8). (The calculation of
the confidence ellipse is discussed in section 4.)
Fig. 2b is a similar plot for the final pairs of age
and proportions values. The solid triangle repre-
sents the ‘best’ single solution of the 50; that is,
with the highest value of log-likelihood, In L, and
the outlined triangle is the true solution. In both
cases all 50 solutions are virtually identical (as the
crosses are all plotted on top of one another),
which indicates that the numerical procedure is
independent of the starting point and has located
the unique maximum likelihood solution. The
estimation method has therefore performed well
in this simple test. As one would expect, the
maximum likelihood solution is not the same as
the truc solution but lies within the 95% confi-
dence ellipse about the solution. This highlights
the importance of placing a confidence region
about the estimated solution.

To gain an understanding of the sensitivity of
the maximum likelihood procedure to factors such
as the number of data and the separation of true

(b) Starting points, solutions and
95% confidence ellipse
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Fig. 2. (a) The starting points (gray squares), final solutions (+) and 95% confidence ellipse about the best of the 50 age /age
solutions ( a) for the synthetic data problem. A = true solution; + = the standard error on the parameter, all crosses are on top of
one another. (b) As for (a) but showing both age/proportion parameter pairs. Only one of the proportion parameters is
independent and the other is given the same standard error for convenience of display.
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ages and proportions, we performed a large num-
ber of synthetic tests. Each test consisted of gen-
erating simulated age data (from two age compo-
nents) with Gaussian noise and using the estima-
tion procedure to recover the original ages and
proportions. In each test one parameter was var-
ied and the effect on the solution was examined.
Overall the number of synthetic ages was varied
from 10 to 100, the true age separation varied
from 15 to 90 Ma (the Gaussian noise had a
standard deviation of 30 Ma) and the ratio of the
number of data generated from each component
(the proportion parameters) varied from 0.3 to
0.7. For each combination of parameters the pro-
cedure was repeated 100 times and the perfor-
mance to the method analysed. The results clearly
showed that the proportion parameters were the
most difficult to resolve. A significant trade-off
was found between age and proportion parame-
ters, which appears to be non-symmetric in that
accurate proportions are dependent on having a
good age estimate, while the reverse is not true.
It is expected that the proportions parameters
will be the most difficult to estimate in practice,
and therefore it will be important to estimate the
relative errors present in a single application of
the maximum likelihood procedure.

2.4. Calculation of covariance matrix and confi-
dence ellipses

Once a set of maximum likelihood ages and
proportions are found, the next question one
usually asks is: what are the standard errors on
these values? This can be answered by finding the
covariance matrix for the parameters. The covari-
ance matrix IS a symmetric square matrix of size
equal to the number of independent parameters;
that is, 2n_— 1. It is well known that in the case
where the error statistics are Gaussian and the
unknowns are linearly related to the data then
the log-likelihood function, In L, becomes a
quadratic function of the unknowns. The errors
in the solution paramecters can then be ade-
quately described by the a posteriori covariance
matrix of the solution [7,8]. In this case, the
inverse of the covariance matrix is directly related

to the second derivatives of In L with respect to
the unknowns ¢; and 7, that is:

#*(InL)
{Cil}lmzﬁé—.i (10)
plapm

where p, and p,, represent the parameters t; and
m; using indices in the range /=1, 2n — 1.
Therefore one need only dlfferentlate the log-
likelihood expression in (5) to obtain the appro-
priate formulae. The resulting expressions are
given by Galbraith and Green [1]. Commonly,
however, analytical expressions for second deriva-
tives lead to numerical instabilities in taking the
matrix inverse to obtain the covariance matrix, C.
An alternative to these formulae is to calculate
the derivatives in (10) using finite-difference
methods. When the error distribution is not
Gaussian, or when the problem is non-linear (as
it is here) then the expression (10) is, itself, only
an approximation of the covariance matrix and, in
practice, finite-difference derivatives can be much
simpler, and often more stable, than using ex-
plicit formulae. In this case we simply estimate
the second derivatives numerically by evaluating
In L for small perturbations, + A7 and +At¢, in
each parameter about the maximum likelihood
solution. For convenience, we shall write
(mMb MYy for the set of maximum likelihood
parameters; LI for the value of In L evaluated
at (7M“,tM"), and usc superscripts +, — and 0
to 1ndlcate the type of perturbation; that is, LL*~
represents the value of In L determined at (7M"
+ At M+ Ar) and, similarly, LL"" is evalu-
ated at (MM — Ar). With this notation the
elements ot the covariance matrix can be approxi-
mated for any type of error statistics using the
formulae:

#’lnL 1
Py :(A )2(LL+0—2LL+LL7”) (11)
7Tj 7Tk Grad
8%In L
a7 0,
——(LL" "~ LL*f—LLj”rLL**)
4A7rAt

(12)



380 M.S. Sambridge, W. Compston / Earth and Planetary Science Letters 128 (1994) 373-390

3’ InL 1
adt,  (Ar)’

(LLOY=2LL+LL")  (13)

To use these formulae one need only calculate
the value of In L at the eight points about the
maximum likelihood solution for each age group,
J.

With the derivatives evaluated using either the
analytical or the finite-difference method one can
form a square matrix of size (2n.-1) and the
covariance matrix, C, is obtained by taking its
inverse. The standard errors are the square roots
of the corresponding diagonal terms in the co-
variance matrix:

—

o, = VCrs (14)
and:
o, =\Cy (15)

The off-diagonal elements in the covariance
matrix give information on how well each param-
eter is independently resolved. A simple thing to
do is to normalize the rows of the covariance
matrix by the value of each diagonal element;
that is, replace C,,, with C,,, /C,,. If the magni-
tude of the off-diagonal elements are close to 1
(or —1) then the corresponding parameters are
highly correlated (anti-correlated) and cannot be
independently resolved by the data. Ideally, one
would have a covariance matrix with its largest
values down the diagonal. Examining off-diagonal
elements can be useful in detecting whether two
age particular age components are distinctly re-
solved in the data.

Another use for the covariance matrix is in
determining confidence ellipses for any pair of
parameters about the maximum likelihood solu-
tion. The confidence ellipsoid has as many di-
mensions as there are ages and proportions. It
and represents all possible combinations of ages
and proportions surrounding the maximum likeli-
hood point within which one can have 95% confi-
dence that the true solution exists. This ellipsoid
can be found by determining the region about the
maximum likelihood solution over which the inte-
gral of L is equal to 0.95. This type of calculation
is also dependent on the assumptions regarding
the nature of the error statistics present. For the

ideal case of Gaussian errors and a linear prob-
lem the equation of the confidence ellipsoid is
given by:

A=5p’C 'sp (16)

where the vector ép is used to represent the
change in the age and proportion parameters
from the maximum likelihood solution (7M-,
tME); and A is the change in value of the L from
the maximum likelihood point to the edge of the
ellipsoid. The shape and orientation of the confi-
dence ellipsoid is determined by the covariance
matrix, C, while A controls its size, that is, which
percentage it represents. Once the covariance
matrix is determined, the only thing left to do is
find the value of A corresponding to 95%. Again,
for the Gaussian case standard statistical tables
may be used. Once A is determined the confi-
dence ellipsoid can be projected onto any chosen
pair of parameters to produce a confidence el-
lipse (details of this procedure appear in ap-
pendix B). An example of the confidence ellipses
which result can be seen in Fig. 2 for the syn-
thetic data problem discussed in section 3. When
Gaussian statistics are not appropriate the same
procedure is often used to obtain an approxima-
tion of the confidence ellipse. In general, the only
exact procedure is to perform the multi-dimen-
sional integration numerically, which can be com-
putationally very expensive (see [6]).

The covariance matrix and confidence ellipse
are useful because they provide information on
the likely errors in the final age and proportion
parameters. In addition, they can be used to help
estimate the number of distinct age components
resolved by the data, which is discussed further in
the next section. One must be careful, however,
in placing too strong an emphasis on these error
estimates, because they are often sensitive to the
underlying statistical assumptions on the mea-
surement errors. The effect of changing the likeli-
hood function to something more robust (e.g., the
generalized Gaussian, Eq. (9), with p=1.25) is
often to move the maximum likelihood solution
by more than the original standard errors would
allow. Therefore, in cases where the error statis-
tics are not well known it is prudent to find the
maximum likelihood solution and corresponding
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standard errors for different types of error statis-
tic, and examine the spread in solutions as well.

2.5. Estimating the number of age components

Once a mechanism is available to estimate
‘best fit” ages and proportions, the next objective
is to determine the number of distinct compo-
nents resolvable by the data, n_. There is always
the possibility that real components will remain
undetectable with a limited amount of data, and
therefore we should always attempt to estimate
the minimum number of components necessary to
explain the distribution of age measurements. In
this way the temptation to over-interpret the data
is limited. Here we describe a series of simple
tests that can be applied, and illustrate these with
both synthetic and real data examples. Again, the
general philosophy is not to rely heavily on any
single method but rather to build up information
on the likely number of components using a se-
ries of complimentary approaches.

(a) Starting points, solutions and
95% confidence ellipse
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The first procedure is to determine the confi-
dence level at which the ellipse about two ages
does not intersect the equal age line. When this
condition is satisfied the two ages are distinct at
the corresponding confidence level. For example,
in Fig. 2a the 95% confidence ellipse does not
intersect the diagonal equal age line and so the
two estimated ages are distinct at the 95% confi-
dence level. If the equal age line is intersected by
the ellipse then the confidence level should be
reduced until the ellipse shrinks to a point where
it just touches the equal age line. The reduced
confidence value gives the new level of confi-
dence in the ages being distinct. Again, this pro-
cess Is dependent on the assumptions made about
the type of the error statistics (i.e., whether they
are Gaussian or not) and the accuracy of the
confidence ellipse but it can be a useful indicator
of when two or more ages are present in the data.

Another approach is to repeat the maximum
likelihood estimation with different numbers of
assumed age components. Fig. 3 shows the results

(o) Starting points, solutions and
95% confidence ellipse
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o
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Fig. 3. (a) Details as for Fig. 2a but with three age components assumed (only two exist in the synthetic data). Two 95% confidence
ellipses are plotted. For one pair the ages are distinct and the ellipse does not intersect the equal age line, for the other the ellipse
is centred on the line and the ages are not distinct. Squares = randomly generated starting points; + = age /age and age /propor-
tion solutions; A = true solution; a = the two calculated ages. (b) Same as in (a) but showing the two (of the three) most
significant age /proportion solutions. Note the error in proportions can be large.
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of assuming three age components in the syn-
thetic data set, when only two actually exist. The
maximum likclihood estimation was performed
from 50 randomly generated starting points and
all pairs of the age /age and age /proportion solu-
tions are plotted. One can see that the standard
errors are larger and the scatter in the solutions
is much greater than when assuming the correct
number of components (compare Fig. 2). In Fig.
3a, two 95% confidence ellipses are shown and
one of these is centred on the equal age line. This
strongly indicates that the two ages are not distin-
guishable. In addition, the final solutions clearly
fall into three groups, two of which lie on the
equal age line, which means that in nearly all of
the 50 repeats two of the three age parameters
have converged to the same value. Interestingly,
the corresponding proportion parameters are not
equal; usually one is much greater than the other.
The best of the solutions, labelled S3 in Table 1,
is a typical example. Again, the true (two-compo-
nent) solution is given by the outlined triangle
and this matches very well with the two distinct
ages.

Another simple test is to examine the value of
the negative log-likelihood of the best solution as
a function of the number of assumed age compo-
nents, n.. This has been done in Fig. 4, the misfit
of the best solution (i.e., value of —In L) as a
percentage of the one component case, is plotted
against n.. The ‘best misfit’ curve, represented by
the black squares, shows how the relative im-
provement in data fit trades off with the number
of components. As the number of assumed com-
ponents increases there are more parameters with
which to fit the data and so we would expect the

Table 1
Summary of results for synthetic data set
Best solution from 50 trials (100 synthetic data) T
fkbvrimvnt p | Component | Age | Stn Err | Proportion | Stn Err | Misfit
B 2.0 1 54381 3.0 | 10 123.23
s2 2.0 T 4940 65 0.36 90.08
2 5713| 46 0.64 0.1
[ S3 20 1 571.3 | 447 0.06 90.08
2 4940 | 74 0.36 0.1
3 5713 7.1 0.58 0.1
S4 20 1 57131 301 0.12 90.08 |
2 3714 | 237 0.18
3 5713 | 15.0 0.34 -
4 494.0 | 74 0.36 0.1
True Sol 20 1 500,017 04
2 570.0 0.6

o Misfit of best solution

100 Meishucun (L1)

©
o
T

Synthetic data

Relative Misfit (%)

D
o

Meishucun (L2)

1 2 3 4 5
Number of age components

Fig. 4. Misfit of the best of 50 solutions against number of
assumed age components for synthetic and Meishucun Bed 5
data sets. L1 = double-exponential statistics; 1.2 = Gaussian.
The ‘elbow’ in the curve indicates that no significant improve-
ment in fit is obtained by increasing the number of distinct
components.

misfit of the best solution to decrease. The ‘elbow’
of the curve is usually a good indicator of the
number of distinct age components. In Fig. 4
there is virtually no further reduction in misfit
when n_ is greater than 2, which again indicates
that only two distinct age components exist in the
synthetic data set.

Another test is to examine how well the final
set of ages and proportions fit the histogram of
the original data. In Fig. 5 we have assigned each
measured age to one of the two age components
found for the n, =2 case. This is done by calcu-
lating the probability density w,f; for each mea-
sured age, a4, and age component, f;, and then
assigning age a; to the component with the higher
value. The two panels in Fig. 5 show the his-
togram of the classified ages, together with the
distributions corresponding to the solution val-
ues. The total area under the curves are scaled by
the number of data but the relative areas and
positions of the distributions are equal to the
solution proportions and ages respectively (see
S2, Table 1). This classification procedure at-
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Fig. 5. Histograms of the raw (upper panel) and synthetic
(lower panel) data classified into two groups according to the
final solutions (shown as Gaussian distributions). The com-
bined histogram and two-component distribution is shown in
Fig. 1. The distribution of ages assigned to each component
can be a good indicator of the relative significance of the
individual components.

tempts to identify to which of the two age compo-
nents each original datum belongs. The simple
method employed here is subjective and can be
incorrect for some of the ages in the parts where
the two curves overlap. Nevertheless, the com-
bined distribution (shown in Fig. 1) seems to
provide a reasonable fit to the combined data
histogram. The true ages are indicated by arrows
and these are very close to the peaks in the
combined distribution.

A more formal procedure that could be used
here is the Kolmogorov-Smirnov (K-S) test (see
chapter 13 of [6]), which directly measures the

discrepancy between the original data histogram
and the estimated distribution defined by the
final ages and proportions (both shown in Fig. 1).
The K-S test gives the probability that this dis-
crepancy could have occurred by random chance
and, therefore, once the value increases to an
acceptable level (say 0.5) there is no support for
adding further components. QOur tests have shown
that plotting the K-S probability as a function of
the number of distinct age components is virtually
identical to the misfit against n. plot described
above and so no extra information is gained. A
similar situation arises with the ‘binned Chi-
square’ test [6] which performs a similar task to
the K-S test. Overall, the combination of confi-
dence ellipse, multiple component tests and his-
togram fit scems to provide a useful series of tests
to identify the number of distinct components in
the synthetic data set.

3. Application to a complex zircon data set

The first example we have chosen to illustrate
the mixture modeling methods described in this
paper are the SHRIMP zircon ages published by
Compston [2] for the Meishucun Bed 5 horizon in
South China. These data are important geologi-
cally for their bearing on the numerical calibra-
tion of the Early Cambrian. They are important
also as a challenge, as the data were recognized
from the outset as a complex age population that
was subject both to open-system behaviour, which
produced variably young ages, and to detrital
zircon inheritance. It is essential to be able to
extract all the numerical information present in
the data set from this particular sample, as it is
an example of a volcanic layer whose strati-
graphic relationship to the faunal assemblages
within the Yangtze Platform is unambiguous. It
should not be abandoned simply because the
zircon ages show complications.

The mixture modeling methods described here
were applied to the SHRIMP zircon “*U-2%Pp
ages shown in tablec 3 of Compston [2]. In the
original analysis of this data set the lowest ages
were successively deleted because they were
judged as outliers due to variable Pb loss. This
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produced a total of 41 analyses in the range
450-560 Ma and, assuming a single population, a
mean age of 525+ 7 Ma (20) was found. An
unsatisfactory aspect of this procedure was that
the standard deviation observed for the remain-
ing age measurements was 2.7%, still suspiciously
greater than the expected error, although not
provably so. In the present study two subsets of
the data were analysed. The first consisted of all
46 ages in the range 450~560 Ma and the second
of all 58 ages between 350 and 600 Ma. The first
set of 46 analyses had a lower mean of 521+ 5
Ma (20) due to some lower ages being included.
The larger set contains many analysis with lower
ages which have variable U gain or Pb loss but
are included in order to test the influence of
outliers on the results.

The maximum likelihood procedure was per-
formed using Gaussian error statistics, p = 2, and
also with a more robust double-exponential p =1
distribution (see Eq. 9). It is thought that the
measurement errors are closer to Gaussian, but
performing the procedure with the two most ex-
treme distributions allows us to assess the influ-
ence of the statistical assumptions on the results.

(a) Starting points, solutions and
95% confidence ellipse
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For each statistical distribution the estimation
procedure was repeated assuming up to four dis-
tinct age components. In each case the procedure
was repeated from 50 random starting values and
from each starting value a solution was obtained
after 50 iterations of Egs. (6a) and (8) for the
Gaussian case, and with Powell’s technique for
the p = 1.0 distribution. The solution with the
lowest misfit (of the 50) for each value of n_ and
p is summarized in Table 2 for the 46 sample
data set.

A plot of the relative misfit reduction from
Table 2 against the number of age components
appears in Fig. 4. For the two-component Gauss-
ian case, the starting points, solutions and confi-
dence ellipses about each age/age and age /pro-
portion pair are shown in Fig. 6a and b, respec-
tively. The results for the two-component case
are similar to the synthetic data in that all 50
solutions have converged to the same values and
are indistinguishable from one another in Fig. 6.
The confidence ellipse about the two ages is
small and is far from the equal age line, indicat-
ing a high probability that the two age compo-
nents are distinct. Even though the two statistical

(b) Starting points, solutions and
95% confidence ellipse
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Fig. 6. (a) Results for age—age pairs with the Meishucun Bed 5 data set. Two age components have been assumed and symbols are
the same as in Fig. 2. (b) Same as for (a) but showing both age proportion pairs.
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Table 2
Summary of results for the Meishucun zircons

Best solution from 50 trials with 46 ages) B
Experiment | p | Component | Age | Stn Err Proportion | Stn Err | Misfit

MBI 2.0 1 5195 1.6 1.0 63.81
MB2 2.0 i 500.8 | 3.6 0.33 43386
2 5206 | 25 0.67 0.1 ]
MB3 2.0 1 1973 4l 0.23 4341
2 516.4 | 10.2 0.26 0.3
3 5324 | 4.9 0.51 0.3
[ MB4 2.0 1 5324 289 0.05 43.41
2 497.3| 5.5 0.23 0.14
3 5163 | 12.3 0.26 0.27
4 5323| 5.9 0.46 0.26
MB5 1.0 1 5210 | 26 1.0 62.86
MB6 10 1 3990 2.0 0.40 54.30
2 5200 | 1.7 0.60 0.1
MRB7 1.0 1 4970 1.9 0.20 52.40
2 517.0 | 2.2 0.30 0.2
3 5350 | 34 0.50 0.2 ]
[ "™mB3 L0 1 520.0 | 2.9 018 53.46
2 5380 | 2.9 0.25 0.1
3 497.0] 2.0 0.26 0.1
4 5180 | 2.3 0.35 0.2
T MBS8 1.0 i 3730 1.9 0.03
2 417.0 | 18 0.11 0.1
3 497.0 18 0.27 0.1
4 5200 1.7 0.59 0.1 ]

MB58 represents results with 58 ages.

distributions differ in character they yield virtu-
ally identical two-component solutions: ages of
500+ 6 Ma (2¢) and 530+ 5 Ma (2o) for the
Gaussian case, and 499 + 4 Ma (2¢) and 529 + 3
Ma (2¢) in the exponential case.

When three components are assumed the ages
from the two-component case are again recov-
ered, together with a third component which ap-
pears to lie at the mean of these ages. The same
feature occurs with both statistics and, since the
third component produces only an extra 0.7%
(Gaussian) to 3% (exponential) reduction in the
misfit, it does not seem justified by the data.
When four components are assumed there is no
improvement in misfit reduction. (The misfit ac-
tually increases in the exponential case.) Again,
the solutions show that the four-component solu-
tion is virtually identical to the three-component
solution. In the Gaussian case one component (at
532 Ma) has been picked out twice. There is
therefore no evidence for a fourth component in
this data set.

All of these calculations were repeated for the
larger data set of 58 analyses in the range 350—-600
Ma. The primary purpose of this is to test whether
the two components resolved by the smaller data
set were recoverable when the variable Pb loss

zircons were included in the procedure. Interest-
ingly, the results showed that, as the number of
assumed components was increased to four the
two components around 500 and 530 Ma were
indeed recovered in both the Gaussian and expo-
nential cases. Table 2 contains a summary of
these results. Reassuringly, these two compo-
nents are the only two which appear with both
statistics. It appears that the effect of adding the
extra (lower) zircon ages to the procedure is to
introduce a large number of outliers which, as
one would expect, are poorly modeled by either
statistical distribution. The mixture modeling pro-
cess therefore has a lot more difficulty in picking
out distinct components and can only recover the
two most prominent components when enough
degrees of freedom are introduced in the four-
component case.

The most important geological conclusion from
these results is the presence of a group of zircons
within the Meishucun Bed 5 bentonite at 530 + 5
Ma (2¢), slightly older and better defined than
our previous result of 525 + 7 Ma [2] based on a
less objective statistical procedure. Interpreting
the group to be precipitates from the magma that
produced the bentonite, we infer that 530 + § Ma
is also the time of deposition for Bed 5 in the
Meishucun section, which therefore provides a
time point within the Tommotian. The revised
age estimate is now numerically greater than the
Cooper [9] result of 526 + 4 Ma for the Atdaba-
nian—-Botomian boundary and it is consistent with
the recent result by mass-spectrometric isotope
dilution of 534.6 + 0.7 Ma for the earliest Tom-
motian of the Kharaulakh section, Siberia [10].

The geological significance of the younger
group of zircons at 501 + 7 Ma is ambiguous. The
group might designate a genuine, early geochemi-
cal event, during which parts of zircons lost most
of their radiogenic Pb, or it might signify that
many areas within the grains have gained U
and/or lost Pb by a few percent in the recent
past. It is quite clear that other areas within
grains having apparent ages less than 450 Ma
have lost very large fractions of their radiogenic
Pb at times later than a possible 500 Ma event.
The question of a 500 Ma group will be ad-
dressed fully during later assessment of unpub-
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Fig. 7. A linearized cumulative probability plot of ages found

in two separate sessions. The significance of this type of plot

for detecting multiple components in geochemical data and its
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by Sinclair [11].
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lished data on zircons extracted from more al-
tered exposures of the Bed 5 bentonite.

4. An application to a ‘simple’ zircon data set

Unpublished SHRIMP “®U-2%Ppb ages for
zircons from an undeformed tonalite in northeast
China are presented in Fig. 7. The tonalite has no
useful prior age constraints. The zircons are long
(> 5:1 length /breadth), euhedral, unaltered, un-
zoned, free of obvious zircon cores and collec-
tively give the appearance of a single magmatic
population. Single analyses on twelve grains using
the SHRIMP II ion probe (analyst Li Xian-hua)
produced an extremely well-grouped set of ages
(session 1, Fig. 7). The standard deviation per age
expected from counting errors was 4 + 1 Ma (o),
as compared with 3.1 Ma as observed from the
twelve. The mixture modeling program finds only
a single age for this data set, as would be ex-
pected.

Could such a uniform sequence of SHRIMP
ages be produced by a chance sampling effect?
Suppose that 5% of the area within the LG43
zircons exposed to SHRIMP analysis is actually
composed of older zircon cores, older whole
grains and areas within grains that have lost Pb or
gained U after crystallization. The chance that a

randomly selected sequence of twelve spot analy-
ses will find only the undisturbed magmatic grains
is (0.95)'%, which equals 0.54 and is quite a high
probability. Thus, the low dispersion found in the
first analytical session does not signify that the
LG43 sample is necessarily composed solely of
undisturbed magmatic zircons.

Some of the original twelve grains and a num-
ber of new grains were re-analysed in a second
session to assess the LG43 sample more thor-
oughly (Fig. 7, session 2). It is obvious that there
is no single Gaussian population, and that analy-
ses 5.5, 5.3, 5.4 and 31.1 signify the presence of
older zircon. The results for grain 5 can be at-
tributed to a ‘hidden’ zircon core, for which there
are many precedents elsewhere. The high ages
within grains 5 and 31 show that the differences
are target-related, rather than due to uncon-
trolled instrumental effects. It is also plain that
the first twelve analyses of LG43 give a mislead-
ing impression of the uniformity in zircon age.
With one exception, the between-session repli-
cate ages were slightly older than before.

If the ages from the two sessions are com-
bined, but with the four prominently older ages
deleted, the remainder define a straight line (Fig:
8) indicative of a single Gaussian population hav-
ing a mean age of 437.7 + 1.2 Ma (o). However,
this inference has two problems: (1) the age is
distinctly older than the 432.0 + 0.9 Ma found

LG43 zircon ages combined

Ma less four core ages
460 } et ———+—+——t+—t+—}
--------- y =437.67 + 7.17norm(x) R=0.99 = _.*
e i
450 L)* .
anmy
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420 4ttt +
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Fig. 8. A linearized cumulative probability plot for the com-
bined ages shown in Fig. 7 with the four prominently older
ages removed. The best-fit straight line is also shown.
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originally, and (2) the standard deviation indi-

cated per analysis (7.2 Ma) is well in excess of the

expected standard deviation based on counting
statistics plus other error sources.

Mixture modeling of the combined ages with-
out any deletions finds a principal component at
435.2 + 0.7 Ma (69%), another at 448.4 + 1.2 Ma
(21%), and two minor components at 489 + 3 Ma
and 466 + 2 Ma. The two older components arise
from the high ‘outliers’ in Fig. 7. It is likely that
the multiple ages within grain 5 are not single
components but duc to an array of discordant
ages within a core, or to variable overlaps of the
areas analysed between the core and magmatic
zircon. The separation into two younger compo-
nents removes the excessive standard deviation of
7.2 Ma required by the single age assumption. In
addition, 435.2 + 0.7 Ma is tolerably close to the
original 432.0 + 0.9 Ma, although it remains de-
tectably older. (It is possible that this is due to a
small bias between the two analytical sessions
caused by error in the calibration lines for the
reference zircon). The program fails to find a
stable solution for five components.

The above results lead to the following inter-
pretation and conclusions:

(1) The best estimate of the true age for mag-
matic crystallization is the principal compo-
nent at 435.2 4+ 0.7 Ma (o). The initial im-
pression of extreme uniformity in age was a
sampling effect.

(2) There is an apparent age-component older
than this at 448 Ma. However, inspection of
the within-grain replicate ages does not con-
clusively indicate the presence of a single
population of earlier-crystallized zircon. Like
the variable dispersion in age within grain 5,
it could be due instead to overlap with small
patches of inherited zircon older than 448 Ma
within the magmatic grains.

(3) The precise definition of the principal age
group (+ 1.5 Ma for 2¢°) shows that SHRIMP
is fully capable of providing useful time-scale
results, given a uniform target. The dispersion
in age within altered zircons, such as those
from Meishucun, can create the erroneous
impression that the technique is faulty rather
than the zircons.

(4) The indication from the zircons from tonalite
LG43, as well as those from many other rocks
studied using SHRIMP, is that more grains
contain ‘hidden’ cores or slightly older zircon
populations than geochronologists have hoped
and expected. At least four of the 23 ‘mag-
matic’ grains examined here contain hidden
cores and 7 of the 41 analysed areas detect
inheritance. For such zircons, analysis of a
whole single grain has a significant probabil-
ity of giving an age which is too old.

5. Concluding remarks

The combination of methods presented has
produced a flexible approach for zircon (or other)
ages. Several methods have been suggested for
detecting the most likely number of distinct age
components. None of these is infallible but it is
expected that their combination will provide a
useful indicator of the minimum number of com-
ponents needed to satisfy the data.

We feel the main practical advantage of our
methodology is that it allows a more complete
analysis of the data set. Previously, in cases where
two or more components were suspected of exist-
ing in the data, little could be done to estimate
the ages of either, unless they were well sepa-
rated and a large number of data were available.
Our methodology is likely to prove most useful in
the more difficult case where two populations
have nearly equal ages and are of comparable
size. If only one age population is assumed, when
more exist, then simply taking an average will
inevitably give a poor estimate of all true ages.
The new approach allows the most likely set of
ages to be determined for any given number of
components.

Several extensions of the current approach are
possible. Probably the most important would be
to replace the calculation of the approximate
covariance matrix discussed in section 2.4 with an
exact procedure based on multi-dimensional inte-
gration using Monte Carlo methods [5]. This
would be very computationally expensive at pre-
sent; however, it would improve estimates of er-
rors, which may be crucial in cases where age
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components become difficult to resolve or when
the crror statistics are far from Gaussian.

Our methodology has performed well in syn-
thetic problems, where we can compare perfor-
mance with known true ages, and with real data
that has previously been interpreted with tradi-
tional methods. The application to both real data
sets has yielded more complex situations than in
the synthetic problem and this is expected to be
typical of most real data applications where error
statistics are not well understood. However, the
combination of methods has yielded a clear pic-
ture of the most likely number of distinct compo-
nents, their ages and proportions. We expect the
approach will prove a potentially powerful tool
for analysing multi-component data sets of this
kind.
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Appendix A: derivation of the maximum likeli-
hood equations

The method of Lagrange multipliers may be
used to find the set of ages and proportions
which maximizes the log of the likelihood func-
tion, In L, given by Eq. (5), under the constraint
that the sum of the proportions is unity (Eq. 1).
This constrained maximization problem can be
solved by the unconstrained maximization of a
new function, M:

M=InL +A

% ™= 1) (A.1)

j=1

where A is a Lagrange multiplier that should be
treated as an extra unknown. The stationary
points of M are found by differentiating with
respect to each unknown and setting the result to

zero, which gives:

oM  odlnL
+A=0 (A2)
aw, omrj
oM olnL
— = =0 (A3)
E)tj atj
oM e
K=ZWI»—1=0 (A4)

dlnL U
nhp (A5)
T i=1 %
and:
dlnL n 7iji'j

= A.6
v > R (A.6)

of,;
where §; =27, fi, and f};= Wl} Substituting

J
Eq. (A.5) into Eq. (A.2) and multiplying by m; we
get:
n 77'fl .
Z f + /\7Tj = 0

i=1 i

(A7)

By summing this equation over the j (i.e., the
n. age groups) and using the constraint Eq. (A.4)
we get:

We can swap the order of the double summa-
tion to give'

D L o

i—1j-1 S i=1

n'M:

(A.8)

i

(A.9)

Having found the value of A we can substitute
it in Eq (A.7) and solve for mj, which gives:

2_2 s.

1

(A.10)

The second equation is found by substituting
Eq. (A.6) in Eq. (A.3), which gives:

noar.f!
Y % =0 (A.11)

i= i
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Eqgs. (A.10) and (A.11) form a pair of non-lin-
ear equations for each j that can be used to solve
for the parameters (7, t,) (j =1, ,n).

For the special case of Gaussian error statistics
the p.d.f. of the jth pair of parameters (wj,tj) due
to ith measured age a; is given by (7). Eq. (A.11)
involves the first derivative of the Gaussian distri-
bution with respect to £

1
fii= 7(“1‘ =)
1

a,

£, (A.12)

The second derivative is required by analytical
formulae of the covariance matrix:

1 fii

"o__ ’ J

fi=—=(ai—1)f;— =

2
g; g;

(A.13)

In the case where the measurements are not
independent these expressions become slightly
more complicated (see [8]). Eq. (A.10) is already
in a form suitable for numerical solution. To
simplify the equations in the Gaussian case we
can substitute these expressions in Eq. (A.11) and
after simplification we obtain:

2
B L 17Tjaifij/0'i S;
i 2
! E?=17ijij/0-i S;

Egs. (A.10) and (A.14) form the basis of an
iterative solution for the parameters m; and ¢, for
the Gaussian distribution (Eq. 7)

For more robust non-Gaussian error distribu-
tions (A.10) is unchanged but the second equa-
tion (A.11) is more complicated and, for some
forms of error distribution, it may not lead to an
equation that can be solved numerically. Fortu-
nately for a generalized Gaussian distribution
(Eq. 9) the problem is tractable and the new
expression to replace (A.14) is:

(A.14)

. maifi|(a—1) "
! 0}251' g;
= — (A.15)
. mifi|(a—1)
i=1 O_iZSi g,

Egs. (A.10) and (A.15) are the new pair of
equations to be solved for the generalized Gauss-
ian distribution (for any value of p). Again, if

p = 2 then this equation reduces to the Gaussian
case and is exactly Eq. (A.14).

Appendix B: plotting the confidence ellipse

The procedure used to calculate the confi-
dence ellipse about any pair of parameters is
described in detail in [6]. To calculate the 95%
confidence ellipse about two age parameters (as
in Fig. 2) an appropriate value of A in Eq. (16)
must be found. A 95% confidence region is, by
definition, the region about the maximum likeli-
hood solution for which there is a 95% probabil-
ity that it contains the true solution. Therefore
the integral of the probability density function (L
in Eq. 3) within this region should be equal to
0.95. If the error statistics have a Gaussian distri-
bution then this integral can be evaluated analyti-
cally, and a chi-squared table can be used to find
the value of A which corresponds to any number
of parameters, v, and confidence probability, Pr.
Chi-squared tables appear in books of standard
statistical tables. However, in practice it is conve-
nient to use a numerical root-finding routine,
instead of a table, to evaluate A for given » and
Pr. An example can be found in Press ([6] chap.
14, p. 537). If the error statistics are not Gaussian
then the value of A cannot be found from tables
and the expensive numerical integration referred
to in section 2 must be performed. Usually, how-
ever, the above procedure may still be used to get
an approximate value for A but the confidence
ellipse must then be treated with caution.

When A is known the (2r_— 1)-dimensional
ellipsoid must be projected onto the two-parame-
ter axes of interest. This is done by taking the full
covariance matrix, C, and copying the intersec-
tion of v rows and columns corresponding to the
parameters of interest into a v X v matrix de-
noted C,, . The smaller matrix is then inverted
to give the required equation of the projected
confidence ellipse:

A=8tTC_ L5t

proj

(B.1)

where the vector ot = (¢, — M-, ¢+, — tM)T rep-
resents the change in the two ages from the
maximum likelihood point (:M",:)*). The same
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procedure can be applied for any number of
parameters, or any other pair of parameters.

Usually » =2 and we wish to plot the ellipse
given by (B.1) about the maximum likelihood
point (¢M“tM-). This is done by converting to
polar co-ordinates (r, 8), and finding the radius,
r, for given values of 6 about the maximum
likelihood solution. We can write the relationship
as:

t, =M\ + reost;t, = 1'% + rsing (B.2)

If we write the elements of the 2 X 2 matrix
C 1 oas

proj
c,, C
-1 11 12
Cproj Cél C’22 (B3)
then by substituting (B.3) and (B.2) into (B.1) and
re-arranging we obtain:

r= ([A]/[(c’“coszﬂ + (C1,+ Chy)cos B sin 6
+Cyysin20)] ) (B.4)

This expression is used to find r for regular
values of 8 between 0 and 2. The corresponding
values of ¢, and ¢, are found from (B.1) and (B.2)
and hence the ellipse can be plotted. In the case
where the two parameters have very different
sizes (e.g. if one is an age parameter and the
other a proportion parameter, as in Fig. 2b) regu-
lar steps in 6 around the ellipse will not produce
an evenly distributed set of points on the plot.
This is because 8 depends on the relative scales
of the two axes. To ensure a regular distribution
of points (and therefore a well-defined ellipse) 6
should be transformed to a second variable, &',
using:

tand

tanf’ = (B.5)

where s represents the relative size of the two
parameter axes. The procedure would then be to
choose regular values of 6 between 0 and 2,
find the corresponding value of 8 from (B.5) and
use this instead of 6 in (B.4). For Fig. 2b the
scale is 200:1 and so we should set s =200. An
alternative value is to set s approximately equal
to the ratio of the standard errors of the two
parameters.
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Classification of zircon ages
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Fig. 5 Histograms of synthetic data classified into two components
according to the final solutions (shown as Gaussian distributions).

The combined histogram and two-component distribution is shown in Fig. 1.
The number of ages assigned to each component can be a good indicator
of the relative significance of the individual components.

(Erratum: This figure should replace figure 5. )



