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Tomographic systems of equations with irregular cells
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Abstract. How to implement seismic or any other type of ray-based tomography
in a new class of cellular parameterization built from any chosen distribution of
nodes in two or three dimensions is shown. The complete flexibility of this novel
approach allows one to introduce detail in a tomographic model only where desired,
thereby reducing memory and computation time, or to impose complex a priori
constraints on the inversion. Full details of powerful new algorithms are given
to generate unequally sized tetrahedral or polyhedral cells and to calculate the
necessary Frechet derivatives required in linearized tomography. These algorithms
are efficient enough in three dimensions, to allow the parameterization to be refined
during an inversion. The methods are illustrated with numerical examples. It is
concluded that in linear or nonlinear inversion the computational cost of the new
algorithms will not be significantly higher than that incurred by using a regular

Cartesian grid.

1. Introduction

Many aspects of seismic tomography influence the
quality and quantity of information that can be re-
trieved on Earth structure. One area that is receiving
increasing attention is the nature of the parameteriza-
tion used. Local parameterizations, such as cubic cells,
are popular because they are simple to generate and
only require trivial bookkeeping tasks to be solved, i.e.,
locating the cell containing any given point. However,
in three dimensions, regular meshes often lead to a very
large number of unknowns. For example, in mantle to-
mography, 10°-108 cells are common [Zhou and Clayton,
1990; Spakman, 1991], a large proportion of which are
often poorly constrained.

Recently, Sambridge et al. [1995] presented a new
class of parameterization based on unevenly sized tetra-
hedra. The computational tools developed for that
work allow “well shaped” tetrahedra to be automati-
cally built around any set of nodes (points). The com-
plete flexibility allowed in positioning the nodes has con-
siderable potential for use in seismic tomography. For
example, one might choose to concentratenodesin areas
of high ray density, thereby improving spatial resolution
in well-constrained parts of the model or reducing it in
ill-constrained regions. Other possibilities are parame-
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terizations which vary during an inversion (i.e., nodes
added or removed) or ones which impose a priori con-
straint on the inversion through a particular choice of
nodal positions.

With an irregular parameterization the bookkeeping
tasks are no longer trivial and require sophisticated al-
gorithms for an efficient implementation. The purpose
of this paper is to give full details of all algorithms re-
quired to make use of these parameterizations in to-
mographic problems. Furthermore, we extend the class
of parameterization from the Delaunay tetrahedra (de-

“scribed previously) to include convex Voronoi polyhedra

of arbitrary size or combinations of the two.

The irregular parameterization used in this paper is
not built upon an underlying regular grid, as, for exam-
ple, in the approach developed by Abers and Roecker
[1991]. In their work the entire region under consid-
eration is divided into a “fine scale” regular Cartesian
grid. Variably sized “metablocks” are then constructed
by defining a cross-reference table which associates each
small block with its metablock. The metablocks can
therefore be of any shape defined by grouping the small
blocks together. This type of approach has the advan-
tage that it is conceptually simpler than the one we
present here, and in effect, the usual cubic block to-
mography can be used; however, it has two distinct
disadvantages. The first is that in many cases it will
only be possible to construct the cross-reference table
by hand (for example, by visual inspection) rather than
in any automatic fashion, which can, in general, be a
very tedious and labor-intensive process. The second is
that the underlying regular grid places an a priori lower
bound on the scale length of allowed structures, which
cannot be changed later without complete reconstruc-
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tion of a new cross-reference table. Since Delaunay and
Voronoi cells can be calculated about any set of points,
there is no a priori limit to the range of cell sizes, and
it is trivial to refine the parameterization at any stage
by simply adding extra nodes locally. This might be
advantageous, for example, during an inversion where
the parameterization was updated or refined dynami-
cally [e.g., Michelini, 1995]. With the metablock ap-
proach one must recalculate the cross-reference table or
define a very large one in the first place. In general,
however, one may well wish to combine these two ideas
and build nonconvex metaelements by joining Delaunay
or Voronoi cells together. This is the approach taken
by Gudmundsson and Sambridge [1998] in constructing
a set of three-dimensional models of subduction zones,
which are also used in the numerical example in section
4. (In this case, however, it was possible to design a
set of criteria to semiautomatically generate the cross-
reference table.)

In this paper we only deal with part of the tomo-
graphic problem, i.e., the building of the linearized
system of equations, the solution of the resulting sys-
tem may be carried out with standard techniques. In
particular, we show how to efficiently calculate the
Frechet derivatives required in linearized tomography
using these irregular cells. The algorithms are illus-
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2. Building an Irregular
Parameterization

The geometrical constructs known as Delaunay trian-
gulations (in 2-D) and tetrahedralizations (in 3-D) have
received much attention, mainly in the field of compu-
tational geometry [see Aurenhammer, 1991; Okabe et
al., 1992]. Recently, they have found a number of ap-
plications in geophysics [Parker et al., 1987; Sambridge
et al., 1995; Braun and Sambridge, 1995, 1997]. Delau-
nay triangles, or tetrahedra, may be built around any
desired set of nodes in two or three dimensions. These
nodes define the vertices of the tetrahedra (see Figures
la and 2a). Alternatively, one may define Voronoi poly-
hedra about each node as the region which is closest
to that node (see Figures 1b and 2b). (From here on
we use the generic term “cell” to refer to both types.)
Because of the special properties of these cells [see Au-
renhammer, 1991], their volume will reflect the local
nodal density regardless of the distribution of nodes. In
our experience the Delaunay cells are more convenient
when one wishes to build parameterizations containing

.particular interfaces, for example, the surface of a sub-
ducting plate, because the nodes can be distributed on
the surface. In contrast, Voronoi cells are more useful
when areal or volumetric coverage is of concern, for ex-
ample, representing tectonic regions on the surface of
the Earth (see below).

A number of methods are available for calculating
either the Delaunay or Voronoi cells in two and three

SAMBRIDGE AND GUDMUNDSSON: TOMOGRAPHY WITH IRREGULAR CELLS

dimensions (see Sambridge et al. [1995] for a discus-
sion). The approach of Barber et al. [1993] is used
throughout this paper. Public domain software is avail-
able for its implementation (B. Barber and H. Huhdan-
paa, Qhull computer program, available via ftp from
geom.umn.edu, 1994). The data structure used to rep-
resent either parameterization is a list of node indices
at the vertices of each Delaunay triangle, or tetrahe-
dron, i.e., V;;(t = 1,...,Ni;5 = 1,...,D + 1), where
D is the number of dimensions and N; is the number of
triangles, or tetrahedra (determined by the generation
algorithm). This list is calculated from the set of nodal
coordinates. In two dimensions, IV; is approximately
twice the number of nodes, N, (although it can not be
greater than 2N,). In three dimensions Ny can be much
higher.

9 alaslodio o T 1. i ) YRS S . S
o. Caiculating rFrechet Derivatives

The main computational task in linearized tomogra-
phy is to calculate the coefficients of the linear system.

A local linearization of the travel time equation leads
to the well-known relation,

ds(r) di (1)

where r is a position vector and §t; is the travel time
perturbation for the ith ray due to a perturbation in
the slowness field ds. The integral is along the ith ray
path L, where the suffix o indicates evaluation in the
reference medium. If we expand the slowness pertur-
bation in terms of orthogonal basis functions ¢y (r), we
have

N
ds(r) =) sin(r) (2)
k=1

where s are the coefficients to be determined. Combin-
ing (2) with (1), we get the linear system of equations

0t; = ZAi*ksk (3)
k

where the elements of the Frechet derivative matrix A,
are given by,

Air= [ ¢r(r)d (4)

i.e., the integral of the kth basis function along the ith
ray path. If, instead, we choose to expand the velocity
perturbation in terms of orthogonal basis functions, i.e.,

N
du(r) = ka¢k(r) (5)
k=1

then sy, is replaced with the velocity coefficients v in
(3), and we get

_ [ )y, (6)

A=
' Le v3(r)
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Figure 1. (a) The exterior faces of Delaunay tetrahedra formed around 4274 nodes on the surface
of the Earth. The nodal positions were chosen to define boundaries of tectonic regions. (b) The
exterior faces of Voronoi polyhedra built around the same set of nodes used in Figure la. Note
that each node lies at the vertex of a Delaunay tetrahedron and inside a Voronoi polyhedron.

In either case, numerical integrations are required along
each ray. The simplest way to proceed is to step down
each ray and evaluate the integrands in (4) and (6). If
we denote the position of the /th point along the ith
ray as r;j,.then the numerical approximation of both
integrals (4) and (6) can be written as

A= Z hi(rig) Ay (7)
1

where hy, represents either integrand in (4) or (6) and
A;,1 is the length of the ray segment with midpoint r; ;.
This is a general expression which covers a range of pos-
sible parameterizations, depending on the choice of the
basis function. The two simplest cases are for the kth
basis function to be constant inside the kth Delaunay
or Voronoi cell. In this case we solve for a single co-
efficient representing the slowness perturbation inside
each cell. Using (4), this leads to hg(r;;) = 1, and so
A; 1 is just the length of the ith ray in the kth cell.

This choice is.adequate if smoothness is not required
in the resulting slowness field. If ray tracing is to be
performed in a heterogeneous model (e.g., in nonlinear
tomography), then it is more convenient to choose a ba-
sis function with continuity in the slowness field. This
can be achieved using Delaunay cells and specifying the
slowness (or velocity) at the vertices of the tetrahedra
(i.e., the nodes), rather than inside the tetrahedra. In
this case we have one coefficient per node, and the basis
functions depend linearly on position, that is we get

(r—r){(rs —711) x (r3 —11)} (8)

(xr —r1){(r2 —r1) x (r3 —11)}

where rj, is the position vector of node k¥ and rj,rs,
and r3 are the position vectors of the other three nodes
in the tetrahedron containing r and ry. In this case
the slowness field in any tetrahedron only depends on
the values of the slowness coefficients at its four ver-
tices, and its gradients are discontinuous across the

Pr(r) =
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Figure 2. (a) Stepping along a ray path in a Delaunay triangulation and (b) same as Figure
2a but in the corresponding Voronoi cells. The ray path length in either type of cell can be
determined by simple numerical integration. The point marked A will be influenced by different
nodes, or cells, depending on the type of parameterization used. .

faces. If higher-order smoothness is required, then nat-
ural neighbor basis functions can be used about each
node [see Sibson 1980; Watson, 1992; Sambridge et al.,
1995].

Regardless of the choice of basis function, the same
bookkeeping problem needs to be solved in order to cal-
culate Frechet derivatives, i.e. to find the cell containing
a given point r;; along the ray. The only difference is
in the number of basis functions that are nonzero at
any point and the value of the integrand in (7). There-
fore it is only necessary to consider the two simplest
cases of constant perturbations per Delaunay or Voronoi
cell. The extension to more complex basis functions is
straightforward.

3.1. Ray Lengths in Irregular Cells

The ray lengths in each Delaunay tetrahedron or
Voronoi polyhedron can be found in the usual way by
sampling along each ray at a predetermined step length
and finding the cell containing the midpoint of the cur-
rent ray segment. This is illustrated in Figure 2. Since
mantle tomography can involve thousands of teleseis-
mic rays and thousands of steps down each ray, the cell
location will usually need to be found millions of times,
and therefore an efficient location algorithm is essential
in both types of mesh.

3.2. Delaunay Tetrahedra

An algorithm has been developed for point location in
Delaunay tetrahedra which is a generalization of the 2-
D method described by Sloan [1987] and also discussed
by Sambridge et al. [1995]. The algorithm requires
a preprocessing step to be carried out only once, re-
gardless of the number of locations performed. The
object of this stage is to calculate an adjacency matrix
Qj(t=1,...,Ng;j =1,...,4) containing the index of
the tetrahedron which shares the jth face of tetrahedron

t. The jth face of tetrahedron ¢ is defined as the one
(of the four) which does not contain the node V; ;. The
adjacency matrix indicates which four tetrahedra are
neighbors to any given tetrahedron ¢, i.e., those which
share a face with t. A zero entry in the adjacency matrix
indicates that the corresponding face of tlie tetrahedron
lies on the boundary of the model (the convex hull) and
hence has no neighbor attached to that face.

A straightforward method of calculating the adja-
cency matrix is simply to use the vertices list to check
all pairs of tetrahedra for possible neighbors. The com-
putational cost of this approach scales with the square
of the number of tetrahedra, and so it can be expen-
sive as Ny becomes large. More efficient methods are
available which scale linearly with N;. For the 2-D case
a method of this type was presented by Sambridge et
al. [1995]. Also, many 2-D Delaunay algorithms calcu-
late the adjacency matrix as a by-product [e.g., Sloan,
1987]. For the 3-D case we present a new algorithm in
the appendix which also scales linearly with Ny.

Once the adjacency matrix has been calculated, the
tetrahedron location algorithm is straightforward. To
find the tetrahedron containing the point r , we start
with any initial guess tetrahedron ¢. For each face iG=
1,...,4) of tetrahedron t, we test if r is on the same side
of the face as node V4,;. This is true if

n;-(r —ry)
n;(r; — ry) 20 ®)

where n; is the normal to face j, r; is the position vector
for node 7, and ry is the position vector of any node in
the face j. If this condition is true, then the next face
of ¢ is tested (i.e., j is set to 5 + 1). If (9) is not true,
then ¢ is set to the neighboring tetrahedron attached to
this face (i.e., t is set equal to €y, ;), and the four faces
of the new tetrahedron are tested in the same way. If



r passes the test for all four faces, then it must be inside
the current tetrahedron. If (9) is not satisfied for a face
and the corresponding adjacency matrix entry (£;,;) is
zero, then r must be outside of all tetrahedra, and the
procedure is stopped.

Using this approach, the algorithm is guaranteed to
locate the tetrahedron containing r by “walking” in a
nearly direct path from the starting guess. (For a 2-
D example, see Sambridge et al. [1995]) If the start-
ing guess is close to the solution, then it will be found
rapidly. Fortunately, for a sequence of points along a
ray the tetrahedron containing the previous point is
an excellent starting guess for the next point. If two
neighbor points are not located in the same or neigh-
boring cells, then we can simply reduce the step size
to ensure that no cell intersected by the ray is missed.
In most tomographic problems, there are usually many
rays per receiver, and so it is worthwhile to locate each
receiver in advance and start stepping from the known
receiver each time, thereby avoiding many relocations
of the same endpoint.

3.3. Voronoi Polyhedra

The algorithm for locating the Voronoi polyhedron
containing a given point has a similar structure to the
one above. Again a preprocessing stage is required to
generate a natural neighbor matrix, which contains the
natural neighbors of each Voronoi cell; these are the
ones which share a face. For example, in Figure 2b, cells
3 and 4 are neighbors, but 4 and 5 are not neighbors.
Since polyhedra can have any number of faces, they can
also have any number of neighboring cells (not just 4 as
in the tetrahedra case). The natural neighbor list is
therefore written as O j(k=1,...,Np;j =1,..., N),
where Np, is the number of Voronoi cells (or nodes) and
Nj, is the number of cells sharing a face with cell k. A
defining feature of Voronoi cells is that their neighbors
are also the ones to which their node is connected in the
Delaunay mesh (see Figure 2). As before, it is possible
to calculate © using a “brute force” (order N?) method,
but this will become impractical for large Ny. A new
more efficient (order N,) method is described in the
appendix. _

Once O is known, the procedure to locate the Voronoi
cell containing any point r, is similar to the tetrahedra
case. Again, we start with a first guess cell k and test
whether r is inside cell k. This is only true if all of the
following inequalities hold,

j=1,..., Ny
(10)

where r;; and r;, ; are the position vectors of node k& and
its 7th neighbor, respectively. These conditions simply
state that the point r is closer to node k than any of
its neighbors, which is the definition of being inside a
Voronoi cell. We therefore test each condition in turn,
and as soon as one of them fails, we move into the cell

(r —rg)(r —ri) < (v —Tgj)(r =Tk )
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whose node is closer to r and start again; that is we set
k equal to the new cell Oy j,..,. Again, the algorithm is
guaranteed to find the cell containing r no matter where
it starts from. All comments regarding the efficiency of
the method carry over from the Delaunay case.

4. Numerical Examples of Calculating
Frechet Derivatives in Delaunay and

Voronoi Cells

m 1 1 R m YOS IS BT I

To demonstrate the efficiency of these algorithms for
calculating Frechet derivatives, we use a whole Earth
parameterization devised by Gudmundsson and Sam-
Loidro [100Q]1 0 d avarnina Antrn;is tatianal +irmac in a
vriayc lLUUO] allu CTAALLLILIC CULLIPULALIULIAL LLILITS 111 UT
tail. Figures la and 1b show the outside faces of 3-D

Delaunay and Voronoi cells, respectively, from nodes
The nodes on the sur-

dictributed in the upper mantle
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face (Figure la) were chosen to lie on the boundaries
between tectonic provinces. (Notice how the outline of
the continents and subprovinces can be seen within the
Delaunay mesh.) This layer of 4274 nodes is repeated
at a depth of 700 km, forming a 3-D upper mantle
mesh. In addition to these “tectonic” nodes a much
larger number were added to represent the 3-D shape
of 24 subducted slabs. The morphology of the slabs
was determined by the contouring of the Engdahl, van
der Hilst and Bullen (EHB) relocated earthquake cat-
alogue Engdahl et al. [1998]. Nodes were positioned
along upper and lower faces of each slab with a spac-
ing of between 10 and 50 km. This resulted in a total
of 68,173 nodes in the upper mantle. Gu dmundsson
and Sambridge [1998] used this 3-D model to impose a
priori constraints on an inversion of teleseismic arrival
time data for regionalized upper mantle structure.
The model is an example of the type of complex pa-
rameterization that can be easily built with a Delau-
nay mesh. A total of 410,220 Delaunay tetrahedra were
calculated using the quickhull method of Barber et al.
[1993]. The volumes of the tetrahedra varied by 3 or
4 orders of magnitude within the model. To demon-
strate the efficiency of the Frechet derivative calcula-
tion, we traced rays in a 1-D Earth model from 105
events to 3033 receivers and calculated the ray length
in each Voronoi cell encountered by each ray. The ref-
erence velocity model was divided into 2 km layers,
and rays were traced using standard analytical expres-
sions based on the Mohorovici¢ velocity distribution,
v(r) = ar® [Bullen and Bolt, 1985]. Every ray had an
upgoing and downgoing leg within the upper mantle,
and ~350 points along each leg were used to perform
the numerical integration in (7). For the 30,638 P rays
this corresponds to 10.7 million repeated cell locations.
In this type of calculation, there is always a trade-off
between the accuracy of the ray length calculation (im-
proved by increasing the number of nodes placed along
the ray) and the computational cost of the calculation
(reduced by decreasing the number of nodes along the
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ray). In these examples we sample the ray quite finely
(2 km vertical separation) to ensure accuracy in the
computed ray lengths rather than speed of calculation.

In Table 1a we compare the computation time taken
up by the Voronoi location algorithm relative to the “1-
D ray tracing” time. The latter includes stepping along
the rays in a depth-varying velocity model and adding
ray segment lengths together. (Note that this would
effectively be equal to the time for calculating Frechet
derivatives in a cubic cell model, assuming that the cost
of locating a point in the cubic grid were zero.) One can
see immediately that in this example the cost of the lo-
cation algorithm is < 25% of the ray tracing/Frechet
derivative calculation in a 1-D Earth model (AK135 of
Kennett et al. [1995]). In most real tomographic prob-
lems, additional work is required to solve the resulting
linear system of equations (possibly several times), and
so the relative cost of the location algorithm to the to-
tal computation will be minor and certainly not much
greater than in a regular Cartesian grid. The “prepro-
cessing” tasks of calculating the Delaunay vertices and
building the natural neighbor matrices (using the algo-
rithm in the appendix) add little to the overall cost.
These steps are independent of the number of rays and
took 152 and 6 s, respectively (on a Sun Sparc 10/40
workstation), which corresponds to 6% and 0.01%, re-
spectively, of the P phase ray tracing.

Table 1b shows results of a second example, which
uses both the Voronoi and Delaunay location algorithm.
In this case the model is more complex and consists of
two independent meshes. The Delaunay tetrahedra are
used to represent the 3-D subduction zones, and the
Voronoi polyhedra are used in the remainder of the up-
per mantle. The Voronoi cells are built about the sur-
face and 700 km deep nodes, shown in Figure 1. This is
the same as in the first model. The Delaunay tetrahedra
were built from the subduction zone nodes only (after
some refinement). In the Delaunay mesh, tetrahedra
occur both within each subduction zone and between
zones. We therefore label each tetrahedron as either
type A, indicating that they are inside a slab, or type

SAMBRIDGE AND GUDMUNDSSON: TOMOGRAPHY WITH IRREGULAR CELLS

B, indicating that they are outside a slab. The Voronoi
and Delaunay meshes are then combined by assigning
a point r to be inside the Delaunay mesh only if it is
inside a type A tetrahedron. If it is inside a type B
tetrahedron, then the Delaunay mesh is ignored and the
Voronoi cell is found which contains the point. There-
fore, in this combined parameterization a “cell location”
consists of alocation in the Delaunay mesh, possibly fol-
lowed by a location in the Voronoi mesh. By combining
the two meshes in this way we are able to control more
easily the position of cell boundaries (because the tetra-
hedra directly connect nodes, whereas the Voronoi cell
boundaries always lie between nodes). For example, this
feature makes it easier to represent the morphology of
the slabs. In this case the time taken to perform the cell
location is dominated by the Delaunay location, rather
than the Voronoi cell location in the first example.

The combined slab mesh consists of 27,970 nodes and
results in 126,472 tetrahedra. The Voronoi mesh is as
before with 8548 polyhedra. Table 1b shows timing re-
sults of Frechet derivative calculations and cell location.
In this case the cell location algorithm is more expen-
sive but still adds only ~40% extra cost to the combined
ray tracing/Frechet derivative calculation. From Table
1b one can see that for the P phase the total number
of locations performed over all rays is close to 30 mil-
lion, and this requires only 1436 s of CPU. As with the
previous example, we step down each ray from the re-
ceivers, which were located in advance. These results
show that it is possible to construct very complex ir-
regular parameterizations with Delaunay and Voronoi
cells, and by using the algorithms presented here, there
is no significant increase in the computational burden
relative to using simple cubic cells.

5. Choosing Nodes in Tomographic
Problems
The algorithms described here allow tomography to

be performed in any parameterization based on Delau-
nay or Voronoi polyhedra. One of the advantages of

Table la. Relative Times for Computing Ray Lengths in the
Voronoi Polyhedra and Ray Tracing in a 1-D Reference Model.

Phase No. of Rays Ray Tracing Cell Location Mesh* List*

P 30638 71.3 23.1 5.4 0.2
PP 1941 76.1 23.9
PcP 857 76.5 23.5

All values are expressed as percentages. Cell location, Mesh and List
refer to relative times taken by the cell location algorithm, Delaunay
mesh generator; and neighbor list calculation, respectively.

2Preprocessing step, independent of the number of data.
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Table 1b. Time Taken for Ray Tracing in Seconds Per 1000 Rays Compared to the Joint Voronoi/Delaunay

Cell Location Algorithm in the Second 3-D Model.

Phase No. of Rays Ray Tracing Cell Location No. of Locations.* Average Walk® Maximum Walk®
P 44973 84.0 38.0 645429 1.011 10
PP 4352 171.1 40.7 1301822 1.039 53
PcP 638 80.6 36.4 645169 1.007 8

The cell location time is expressed as a percentage of the ray tracing time. The average length of the walk is
close to unity, indicating nearly optimal efficiency. The time taken for mesh generation and list calculation was
64 s. All calculations were performed on a Sun Sparcstation 10/40 with 96 Mb of memory.

aNumber of cell locations performed per 1000 rays.

b Average number of cells encountered during all locations.
°Maximum number of cells encountered during a single location.

these tools is that complete freedom is allowed in choos-
ing the positions of the nodes. Inevitably, the most suit-
able choice will be problem dependent. Here we discuss
some possibilities.

The first is to use the mesh design to impose a priori
constraints on the inversion (as in the examples above).
In this way one might incorporate information from
other geological or geophysical studies on the expected
character of the region. A priori information can be
a useful aid in retrieving information from underdeter-
mined problems (i.e., most real problems). This is the
approach taken by Gud mundsson and Sambridge [1998).
Alternatively, one could use the flexibility of the param-
eterization to test a particular hypothesis, for example,
whether the existence of certain structures in the model
(perhaps suggested by independent evidence) is neces-
sary to fit the data. This could be done by distributing
the nodes so that the outline of the particular type of
structure is represented by a subset of cells or nodal
connections. The inversion would then be geared to
testing out models within that class of structures.

Another strategy is to gear the density of nodes di-
rectly to the data density. In many tomographic stud-
ies, especially in three dimensions, the data density can
vary greatly across a model, with some areas obviously
undersampled. By gearing the nodal density to the ray
density we can improve resolution in well-constrained
parts of the model and reduce the number of model pa-
rameters in poorly constrained regions. It is conceivable
that this could be extended to include densities based
on ray “tubes” whose widths are estimated from Fres-
nel volumes [e.g., Stark and Nikolayev, 1993; Vasco and
Mayer, 1993; Gudmundsson, 1996].

The choice of parameterization is only one way of
regularizing an inverse problem; explicit tools of regu-
larization, for example, damping of the resulting linear
systems of equations, will still be important. Neverthe-
less, the freedom to place nodes anywhere in the volume
of interest is powerful. One possibility, currently under
investigation, is to create a self-adaptive parameteri-
zation. An example would be where one solves an ini-

tial tomographic system based on a sparsely distributed
set of nodes and then places new nodes in the parts of
the model where structural features where resolved in
the first solution. A second tomographic system would
then be more responsive to parts of the model where
structure was required to fit the data. Of course, this
procedure could be repeated more than once and could
lead to a parameterization which is geared to both the
density and the signal in the original data.

6. Conclusions

Our objective in this paper is to describe how to
perform seismic or any other “ray based” tomography
in the class of irregular mesh built from Delaunay or
Voronoi cells. We have attempted to include enough
detail to enable the reader to develop the necessary com-
putational tools themselves. This is necessary because
much of the work is based on concepts from the field
of computational geometry and will be unfamiliar to
many geophysicists. (The software used in this paper is
available from the web site http://rses.anu.edu.au/
seismology/projects/tireg/tomo.html).

We have considered several types of basis functions
built around the irregular parameterizations and given
details of efficient algorithms for Frechet derivative cal-
culation. This paper deals only with linearized tomog-
raphy. All ray tracing is performed in simple depth-
varying velocity models. To extend the approach to
nonlinear tomography would require two-point ray trac-
ing to be performed in laterally heterogeneous velocity
models represented by these irregular cellular parame-
terizations. This is the subject of ongoing work [Davies
and Sambridge, 1996].

The numerical examples demonstrate that the new al-
gorithms are efficient and will add only a small overhead
to the computational cost of building a tomographic
system of equations, compared to a regular Cartesian
mesh. We have also offered some suggestions on strate-
gies for choosing the positions of nodes and how this
may be exploited in tomography. It is now possible to
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take advantage of this highly flexible class of parame-
terization in tomographic problems.

Appendix: Adjacency and Natural
Neighbor Matrices in Three Dimensions

Al. The Adjacency Matrix

The adjacency matrix gives the neighbors of each
tetrahedron. Q;(t = 1,...,Nyj = 1,...,4) is the
index of the tetrahedron attached to the face opposite
the jth vertex of tetrahedron ¢. It can be calculated
efficiently using a single loop over tetrahedra (rather
than a double loop). The structure of the algorithm is
to consider each tetrahedron in turn and store its index,
say t1, at each of its four faces, which must be uniquely
identified in some way. If for tetrahedron ¢ an index
is already stored at one of its faces, say t;, then ¢t; and
t2 must be neighbors through this face. In this way
all pairs of neighboring tetrahedra can be found with a
single pass. Since the data structures used here are ar-
ranged in terms of nodes (through the vertices list V; ;)
and not faces, the “storing of a ¢t index at a face” is not
straightforward. It is done by associating each face of
a tetrahedron, ¢, with a node in the face, say node vy,
and storing the triplet of indices (vz,vs, and t) at that
node, where v and v3 are the other two nodes in that
face. Provided each face is stored at only one node,
then through the complete loop all interior faces will be
sampled twice, and so all neighboring pairs of tetrahe-

dra will be found. More precisely, for ¢t; = 1,...,N;
and for 73 = 1,...,4 we set

Jr = mod(jr—1,4) +1 k=23,and4 (Ala)

ik = Vt1,jk k= 1,2, and 3 (Alb)

If the triplet of indices (41,735 and t1) is not stored at
node i then we add the triplet (41,23, and ¢;) to the
triplets already stored at node i;. Otherwise set

te = S, (Alc)
Qiy,5, = t2 (Ald)
Q5. =t (Ale)

where mod(3, 7) is the modulus function and j, is the in-
dex of the face of tetrahedron ¢, containing nodes 41,5,
and 73. After this loop has been completed the adja-
cency matrix € ; will have been determined.

A2. The Natural Neighbor Matrix

The algorithm for calculating the list of natural neigh-
bors of each node is straightforward. The first stage
is to calculate the list of tetrahedra attached to each
node, which is represented as L} ;, i.e., the index of
the jth tetrahedron (j = 1,...,n!) attached to node i
(¢ =1,...,Np). This can also be found with a single
loop over the tetrahedra, i.e., for t = 1,..., N; and for

j=1,...,6 we set
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1=V, (A2a)
nt=nl+1 (A2b)
LE:""% =t (A2C)

At the end of this loop, n} is the number of tetrahedra
which have node i at a vertex. In the next stage the nat-
ural neighbor list of each node can be built by simply
recording those nodes with which it shares a tetrahe-
dron. This is done by performing a loop over the tetra-
hedra attached to each node; that is, for ¢ = 1,..., N,
and for j = 1,...,n! we set
t= Lz,j (A3a)

and for each node Vi (k = 1,...,4) which is not
equal to ¢ and not already recorded in the list ©;;

(I=1,...,n7) we set
nf =nl+1 (A3Db)
@i,n:‘ = I/t,lc (A3C)

After this loop is completed, ©;; contains the index of
the Ith node, which is attached to node ¢ as required.
Note that this approach requires only one loop over the
tetrahedra and one loop over the nodes. Its computa-
tional cost therefore scales linearly with the number of
nodes and tetrahedra.
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