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GENETIC ALGORITHMS: AN EVOLUTION FROM MONTE CARLO METHODS
FOR STRONGLY NON-LINEAR GEOPHYSICAL OPTIMIZATION PROBLEMS

Kerry Gallagher!, Malcolm Sambridge? and Guy Drijkoningen®

Abstract In providing a method for solving non-linear
optimization problems Monte Carlo techniques avoid the
need for linearization but, in practice, are often prohibitive
because of the large number of models that must be consid-
ered. A new class of methods known as Genetic Algorithms
have recently been devised in the field of Artificial Intelli-
gence. We outline the basic concept of genetic algorithms
and discuss three examples. We show that, in locating an
optimal model, the new technique is far superior in perfor-
mance to Monte Carlo techniques in all cases considered.
However, Monte Carlo integration is still regarded as an
effective method for the subsequent model appraisal.

Introduction

Techniques for multi-parameter non-linear optimiza-
tion may be conveniently classed into two groups. Methods
in the first group use an iterative approach, and rely on
local information on the gradient of some objective func-
tion to improve upon some appropriate starting model. In-
cluded in this class are the well known matrix inversion
and single gradient methods. The second class of meth-
ods require no derivative information, avoiding a lineariza-
tion of the problem, and instead use random processes to
search the model space and find models which have smaller
value of the objective function. The most well known of
these global methods is the Monte Carlo (MC) technique,
effectively a memoryless random walk. Thus, when gener-
ating a new model, MC neglects to make use of the infor-
mation gained from the sampling of previous models, and
instead relies totally on random exploration of the model
space. The local methods, in contrast, rely on exploiting
the limited information derived from a comparatively small
number of models and avoid extensive exploration of the
model space. In practice, many geophysical optimization
problems are non-linear and result in irregular objective
functions. Consequently, the local methods can depend
strongly on the starting model, are prone to entrapment in
local minima and can often become unstable. In addition
the calculation of derivative information can become dif-
ficult and costly. The global methods avoid nearly all of
the limitations of the local methods and are therefore more
attractive for problems which are not too labour intensive
in forward modelling. However, using MC to locate a near
optimal solution always involves a significant exploration
of unfavourable regions of the model space. Nevertheless
one can use this exploration to build up an estimate of
the a-posteriori covariance matrices and from these obtain
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confidence limits on the model parameters and assess the
resolving power of the data (e.g. Tarantola and Valette,
1982). Ideally, one would like a more efficient technique to
locate the solution, and then MC or another appropriate
technique must still be used for the error analysis stage.

Genetic algorithms (GA), like MC methods, are com-
pletely non-linear, use random processes and require no
derivative information, yet they have potential for signifi-
cant increases in efficiency over the random walk strategy
for the location stage of the inversion process. The origi-
nal development of GA is attributed to Holland (Holland
1975) and recent summaries of progress in this field have
been given by Grefenstette (1987), Goldberg (1989) and
Davis (1990). Genetic algorithms are related to Simulated
Annealing methods in that they are both stochastic search
techniques, employing probabilistic approaches to improve
the solution. In this paper we shall consider GA only. Com-
parisons between the two can be found in Davis (1990) and
Scales, Smith and Fischer (1991). The basis of the GA ap-
proach is that large and complex models are represented
by simple binary strings. These bit strings can then be
manipulated using simple procedures which have an anal-
ogy with the way biological systems evolve to produce more
successful organisms. The ability of GA to use the infor-
mation contained in successful models, while still exploring
the model space, suggests that they would be more effi-
cient than MC methods in solving optimization problems.
Although GA are simple to use, to date they have received
little attention from geophysicists.

In this paper we outline the basic methodology of GA,
however we restrict ourselves to considering the GA solely
as an optimization technique and, at present, do not con-
sider its potential for the error analysis stage of an inver-
sion. We assume that this would be performed about the
solution with the most appropriate technique available,

Genetic algorithms in non-linear optimization

The optimization problem to be considered is as fol-
lows: suppose we have a set of M unknowns z;, denoted
by the model vector m, and an objective function, ¢(m).
For each parameter we have a pair of hard bounds, a; and
b;, such that a; < z; < b;, and some discretization interval
d; so that all allowable models, m, represented by the set
of parameters z;, are restricted to the set z; = a; + j X d;
, where j = 0,..., N;. Usually the objective, or cost, func-
tion, ¢(m), represents the misfit between some observed
data and the corresponding predictions of the model, and
one is interested in examining the range of models that give
a value of ¢(m) less than some specified limit.

MC is implemented by randomly selecting models from
the finite model space and calculating each value of ¢(m)
in turn. In contrast, GA work with a group of Q mod-
els simultaneously, initially chosen at random, and code
each into a binary string. For example, the three param-
eter sequence (18, 28, 6) may be replaced by the binary
string (1,0,0,1,0,1,1,1,0,0,0,0,1,1,0) where each sub-string of
five elements are the binary representation of the respective
base ten values. The patterns in the binary string repre-
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sent different characteristics of the original three parameter
model. The GA exploit this feature by using the sub-strings
of the better data fitting models as building blocks in the
generation of new models. The value of the cost function
is used to control the likelihood that characteristics of indi-
vidual strings will propagate into later generations of mod-
els. As the algorithm proceeds, the more successful models
evolve and reproduce at the expense of the poorer models,
similar to the survival of the fittest, where the fitter models
produce lower data misfits.
A single iteration of GA proceeds in three stages:

i) Reproduction step: From a randomly selected initial
population of ) bit strings and their cost functions
d(my) (k=1,...,Q), which we write as ¢} for short,
an interim population of ) parents is generated by se-
lecting models from the original group, with the likeli-
hood of selection determined by the reproduction prob-
ability, P,(¢x), where 3 P, = 1. This is achieved
by dividing the unit interval (0,1) into @ segments
with lengths equal to P.(¢x). Any real number be-
tween 0 and 1 can then be assigned to a particular
model and by generating @ random numbers one pro-
duces () models whose likelihood of selection is con-
trolled by Pr(¢r). Two common forms for Pr(¢p)
are linear, P;(my) = a + b¢(my) and exponential,
Pr(my) = Aexp{B¢(my)}. Common choices for the
constants are b = —Q™(Gmax — qﬁm.g)*l,a > —b.dmes

and B = —(¢5)"1,A = [S;exp{Bg;}]”, where
Gmax, Pavg and ¢, are the maximum, mean and stan-
dard deviation of the distribution of ¢ values in the
current population, respectively.

ii) Crossover step: From the parent population we cre-
ate a new generation of offspring models, each of
which is derived from a mixing, or cross-over, of the
bit strings from two parents. Initially, all parents
are randomly paired off to produce Q/2 couples and
then each pair are selected in turn for a possible
crossover. A random number between 0 and 1 is gen-
erated to determine whether the current pair are to
be crossed over. If the value is less than the con-
stant P, (the probability of crossover) then a posi-
tion is chosen at random along the bit strings and two
new strings are created by the cutting and transpos-
ing the two segments created by the cut. For exam-
ple, when the two parents (1,0,0,1,0,1,1,1,0,0,0,0,1,1,0)
and (1,0,0,0,0,1,1,1,1,0,0,0,0,1,1) are cut between the
4th and 5th site counted from the left, the strings (1,0,0,
1,0,1,1,1,1,0,0,0,0,1,1) and (1,0,0,0,0,1,1,1,0,0,0,0,1,1,0)
are produced as offspring. If the random number is
greater than P, then the two parents are not selected
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for crossover and pass through to the offspring popula-
tion unaffected.

iii) Mutation step: A mutation probability denoted by Pp
is introduced and is defined as the probability that a
single, randomly chosen, bit is altered in parity. Py,
is usually rather small. For example if P, = 1/Np,
where Np is the number of bits per string, then one
would expect on average that only one bit would be
altered per string.

Each stage has an input of ) models and an output of Q
models. Combining all three gives a new population of Q
bit strings which may be used as input to the next itera-
tion. The three bit string processes have different roles in
the performance of the algorithms. The reproduction step
effects the survival of the fittest between generations while
the crossover step controls the degree of mixing and shar-
ing of information that occurs between the models. The
purpose of the mutation step is to keep a certain amount
of diversity or randomness in the population, which would
otherwise be gradually exhausted by the action of the pre-
vious two steps. Since mutation affects only a single model
parameter, a relatively low value perturbs the whole model
in a very restricted manner, comparable to a random local
search about the original model. As the mutation proba-
bility is increased, and therefore the degree of randomness
is increased, the algorithm becomes more like MC.

To apply the algorithm to a particular problem one
must decide on the type of bit string encoding, the nature
of the fitness function to be used, the size of the work-
ing population, Q, and the probabilities of crossover, P,,
and mutation, P,. In practice it is usual to tune these
parameters somewhat according to the problem being ad-
dressed. Grefenstette (1987), Davis and Steenstrup (1990)
and Booker (1990) illustrate a variety of adaptations for
different problems. However all of these modifications have
at their core the basic algorithm described above.

To demonstrate the general mechanism consider the
trivial problem of finding the maximum of the function
# = z°, in the range 0 < 2 < 127. Table 1 summarises
the performance of a genetic algorithm with the parame-
ters @ = 4, P, = 1.0, P, = 0.0 and using a binary string
of length seven. In this maximization problem we simply
use the relative cost functions to control the reproduction
likelihood, i.e. Pr(mg) = ¢(mi)/ 2 ¢(my). Note that dur-
ing the reproduction step a model with the average fitness
¢avg would have an expectation value of 1 and so mod-
els with less than average fitness will tend to die off while
those with above average fitness will survive. This prop-
erty also holds for the linear probability function and is
approximately valid for the exponential function, both de-

Table 1. Details of a simple genetic algorithm

It @ a;  Bitstring  ¢(x) P.(x) iparent Cross point  Offspring @
1 1 15 0001111 225  0.012 1 000—1111 0000101 5
2 70 1000110 4900 0.265 3 110—0101 1101111 111
3 101 1100101 10201 0.553 2 1—000110 1111000 120
4 56 0111000 3136 0.170 4 0—111000 0000110 6
Pavg 4616 6696
2 1 5 0000101 25 0.001 2 110111—1 1101110 110
20 111 1101111 12321 0.460 3 111100—0 1111001 121
3 120 1111000 14400 0.538 s 1101—111 1101000 68
4 6 0000110 36 0.001 3 1111—000 111111t 127
Pavg 6696 11874
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scribed above. In this particular example we actually reach
the optimal solution after generating two new populations.
The likelihood of the same performance being achieved by
MC is less than 1/10. Generally, however, we do not ex-
pect to reach an optimal solution so easily, and the real
power of GA is their ability to generate near optimal solu-
tions rapidly. In this simple example one can observe the
rapid movement towards regions of good solutions by the
progressive increase in the average fitness at each iteration.

Examples of Genetic Algorithm versus MC optimization

Although the multi-parameter minimization of a
quadratic function is straightforward to perform using a
local method, it provides a convenient test problem to com-
pare the relative efficiencies of GA and MC in locating an
optimal solution. Figure 1 shows the results of a minimiza-
tion problem of the form ¢(z;,j = 1,N) = ¥; a;(z} - z;)?
where a; is a constant and z] is the solution, for N = 3 and
10. In both cases the performances have been averaged over
500 separate trials with different random sequences. The
total length of the bit strings were 23, and 72 in the N = 3
and 10 problems respectively. A population size (Q) of 32
was used together with a linear probability function, and
parameters in the range 0.8 < P, < 1.0 and P, = 0.001.
These choices were made with little exploration of alterna-
tives and may be far from optimal. Nevertheless, it is clear
that the GA show a dramatic improvement in performance
relative to MC as the size of the problem increases. By
calculating the ratio of the number of models sampled by
GA and MC, that are required to achieve the same reduc-
tion in cost function, one may get a measure of the relative
speeds of the two algorithms. This calculation shows that
the speed of the GA increases exponentially relative to MC
as the number of models sampled is increased in both cases.
Lower bounds on the speed ratio can be gained by linear
extrapolation of the speed curves. For the N = 10 case a
speed ratio of 200 was found after 1920 sampled models.
In this simple example the speed of GA over MC increases
non-linearly as the dimension of the problem increases.

Although this example illustrates some of the differ-
ences in performance of GA and MC, the shape of the cost
function is regular and varies smoothly in model space. An
application to a geophysical problem involving real data
provides a more convincing test. We take an example from
the work of Sambridge and Drijkoningen (1991) who have
compared the performance of GA to MC in non-linear seis-
mic waveform inversion for 1-D marine velocity profiles.
The data set used is the FF2 marine seismic refraction data
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Fig 1. Decrease in N dimensional quadratic cost function
against the number of models sampled averaged over 500
trials. MC (dashed) line and GA (solid line), (a) N=3,
T=8.4 x10%, (b) N=10, T=6.0 x 10%*, where T = total
number of possible models.
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from the 1959 Fanfare cruise of the Scripps Institution of
Oceanography which consists of a suite of 25 seismograms.
The waveform data is a high quality data set that has pre-
viously been interpreted by several authors, including Cary
and Chapman (1988). They used 10 parameters to repre-
sent a 1-D seismic model down to a depth of 11.5 km below
sea level, MC was used to identify the correct ‘valley’ in pa-
rameter space where the global minimum lay and linearized
waveform inversion was used to refine the best model using
21 parameters.

Figure 2 shows the results of two different GA against
an MC search. The same form of misfit function used
by Cary and Chapman was used here (their best 21 pa-
rameter model was re-calculated using our misfit and gave
¢ws = 0.79). Comparison of synthetics show that good
waveform fits correspond to misfit values less than 0.8. In
both cases the two GA use a linear mapping from wave-
form misfit to probability function and have bit strings of
length 74. The first GA (solid line) has parameters @ =
26, P. = 1.0, P, = 0.025, while the second one (dotted
line) has @ = 100, P. = 0.6, P, = 0.01. The total num-
ber of models in the discrete model space is 1.7 x 10'7.
Clearly, the MC search results in an inferior misfit reduc-
tion than both GA, even after sampling more than 50 times
as many models. Interestingly, the character of the two sets
of curves are distinctly different. The GA show a cascade
of small improvements to the best model (especially in the
solid curve), while the memoryless MC shows only 4 or 5
improvements over the entire range of the curve. Curiously
both solid line GA show periods of little improvement fol-
lowed by an accelerated reduction in waveform misfit (seen
at = 2500 and 7000 models in the first case and 6000 in the
second case). A possible explanation for this is that during
the quiet periods, the population has effectively exhausted
most of the information contained in the genetic patterns
of its strings. The onset of improved performance is due to
the introduction of extra information, through mutation,
which is quickly incorporated into the new population. The
best waveform misfit achieved by the GA for an 11 param-
eter model is ¢,y = 0.73, slightly lower than that of the
final 21 parameter model obtained by Cary & Chapman us-
ing linearized inversion. Although the differences between
the two solutions is not thought to be very significant, the
GA approach avoids the need for large scale matrix inver-
sion. Both lie in the same region of model space and con-
sequently one would expect that non-linear error analysis
would yield similar results about either model. The impor-
tant point here is that the GA have been able to identify
this region of model space more efficiently than the more
complex techniques used in previous studies.

Discussion

The major advantage of GA seems to lie in their abil-
ity to generate near optimal solutions rapidly. Their supe-
rior performance in the waveform inversion problem would
suggest that they provide an efficient alternative for the
location stage of a non-linear inverse problem. However it
is important to follow the location stage with a non-linear
error analysis and we have not explored the possibilities of
GA in this area. At present MC integration seems to be
the most comprehensive approach to this problem. Never-
theless it is worthwhile noting that in GA each successive
population of models is derived using information obtained
from previous populations. Therefore, one may monitor the
refinements to the optimal solution, or the entire popula-
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Fig 2. Performance of two different GA against MC. The solid and dotted lines are the GA with different
values of @, P., P, and the dashed line is MC. The two panels are for different random sequences. The
triangles show the waveform misfits obtained by MC after 4.4 x 10° sampled models.

tion, to examine the structural changes in the ‘best’ model
or even to detect competing classes of solutions.

Although GA have worked successfully in these exam-
ples we must, however, add a note of caution as this is still a
relatively young field. There are some practical difficulties
which should be highlighted and two problems are com-
mon. The first arises when a relatively good model makes
multiple copies of itself early on in the evolution of the al-
gorithm. Even if this model is not very close to the optimal
model it may still reproduce itsell at a fast enough rate to
overwhelm the rest of the population, a problem known as
premature convergence. Usually this occurs if the popula-
tion size @ is too small and is easily avoided by increasing
Q. The second problem arises when no model in the pop-
ulation is particularly good compared to any other model
and so the cost functions are all about equal and driving
force of the algorithm is lost. This is essentially the oppo-
site case to the first problem and the usual way to cure it
is to adjust, or re-scale, the cost function so that the repro-
duction probabilities of the models have a greater range.
Other more sophisticated mechanisms for these problems
are discussed in Davis (1990).

The tuning of the GA’s free parameters @, P, and Py,
is also rather ad hoe. Indeed, most of the research into GA
seems to be centred on providing minor improvements to
efficiency without much theoretical justification. It seems
that a clearer theoretical framework is needed for a more
thorough understanding of the subject. It is conceivable
that a quantitative statistical basis for GA may be found
in Bayesian Inference (see, for example, Backus 1988), and
this is an area worthy of future study. In our opinion it
is the underlying concepts of the GA (i.e. the use of the
model fitness to control the likelihood of model survival,
and the manipulation of the model at a binary level) that
are its most important aspects, rather than the particular
mechanism described here. There may be other formula-
tions which are equally suited to geophysical problems but
lend themselves more easily to theoretical analysis. The
present formulation is nevertheless a very useful optimiza-
tion tool and we expect that it will find many applications
in geophysical problems.
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