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SUMMARY

Most nonlinear inverse problems can be cast into the form of determining the minimum of a
misfit functional of model parameters. This functional determines the misfit between
observations and the corresponding theoretical predictions, subject to some regularization
conditions on the form of the model. When there is only one type of parameter in the model,
methods based on gradient techniques work well, especially when information on rate of
change of gradients is included.

In the case of problems depending on multiparameter classes, simple gradient methods mix
parameters of different character and physical dimensionality. This may lead to rather poor
convergence and strong dependence on the scaling of the different parameter types. These
difficulties can be overcome by replacing a gradient step by a local minimization in a subspace
spanned by a limited number of vectors in model space. The basis vectors for the subspace
should be chosen in the directions determined by the variation of the misfit functional with
respect to each of the parameter types, with supplementation if required by additional vectors
representing the rate of change of the gradient partitions. The construction of the
perturbation requires the inversion of a matrix with the dimensions of the subspace which is
easily accomplished.

Such a subspace scheme takes into account the different functional dependences on the
various parameter types in a balanced way. The update to the current model does not depend
on the scaling of the individual parameter classes. The subspace method is flexible and can be
adapted to a wide range of choices of misfit criterion and modes of representation of the
parameter classes. This style of iterative subspace procedure is well adapted to nonlinear
problems with dependence on many parameters and can be successfully applied in a variety of
problems, e.g. seismic reflection tomography, the simultaneous nonlinear determination of
earthquake locations and velocity fields and in the inversion of full seismic waveforms.
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1 INTRODUCTION

In many geophysical problems the observable data depend
on parameters of different types with varying character or
physical dimensions. For example, the free oscillation
frequencies for the Earth depend on the density and the P,
S wavespeed distributions in an isotropic representation and
even more parameters are introduced in an anisotropic
model.

However, when an attempt is made to invert for a
physical model comprising such a suite of parameter types,
most inversion algorithms do not take the differences in the
characters of the parameters into account. This is generally
unimportant for small linear problems where generalized
inverse methods are applicable. Poor conditioning of the
matrices can usually be improved by numerical manipula-
tion, e.g. column normalization. However, inappropriate
relative scaling of different parameter types may adversely

affect the inversion path in model space for problems which
are large enough, or sufficiently non-linear, to require
iterative schemes. This can retard convergence and may well
result in a biased answer. A more severe problem arises
with gradient methods in nonlinear inversion schemes.
Commonly, where data are not abundant, only those
parameters which are expected to be most significant (or
achievable) are determined in the inversion and the
remainder are assumed known. Such a procedure has the
disadvantage that a bias can be introduced into the inversion
by imperfections in the representations of the fixed
parameter types. An alternative strategy is to adopt a
hierarchical approach to inversion and to determine
parameter distributions sequentially in order of assumed
importance. This procedure requires the different types of
parameter to be essentially independent in their contribu-
tions to the observed data, and has the disadvantage of
allowing build up of error in the successive inversions.
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Unfortunately, there is frequently cross-dependence be-
tween two parameter types with consequent trade-offs in the
character of the inversion depending on the precise
sequence of operations. Such sequential inversions can be
useful in the initial exploration of the character of a problem
and where computational capacity is limited. The worst
features can be avoided if the whole process is iterated, with
only a partial inversion for each parameter type attempted
at each step.

In this paper we present an approach which resolves the
question of the weighting of the changes in different
parameters in what seems to us to be a natural fashion. We
formulate the inversion procedure as an optimisation
problem requiring the minimum of a functional of the model
parameters which assesses the concordance between
observed and computed data values, and includes some
regularization term, incorporating available a priori
information, to prevent extravagant behaviour. The
procedure is iterative and represents a hybrid between
descent and matrix methods.

At each current model, we evaluate the gradient vector
for the misfit functional and split it up into components,
each involving a different parameter type. We then obtain
an updated estimate of the model by minimizing the misfit
functional within the subspace defined by the corresponding
‘descent’ vectors. Thus the weighting between parameters is
determined solely by the misfit functional and corresponds
in that sense to the best possible relative scaling. The
computation required additional to that of a basic descents
algorithm is small as it requires only the establishment and
solution of a system of equations of the dimensionality of
the subspace. At each step we need to solve a linearized
problem involving the projection of the full Hessian onto
the subspace. This approach is a particular application of a
Subspace method in model space, such techniques have
recently been found to be very effective in solving
large-scale nonlinear inverse problems (Kennett & William-
son 1987).

We illustrate the method by showing how it can be
adapted to a number of geophysical inversion problems
involving a number of parameter types, specifically seismic
reflection tomography, the simultaneous estimation of
hypocentre parameters and the velocity distribution from
earthquake travel times, and the problem of the inversion of
full seismic waveforms. In seismic reflection tomography,
both the shape of a reflector and the velocity field above it
are to be estimated from the travel times of waves reflected
from the interface. For the earthquake location and velocity
estimation problem there are dimensional differences
between the origin times and the spatial hypocentre
coordinates and also differences in character between the P
and S wavespeed distributions. These can be all be taken
into account by a suitable choice of subspace. For full
waveform inversion both the P and S wavespeed
distributions as well as the density need to be found so that
at least three parameter classes have to be found during the
inversion.

2 INVERSION SCHEME

For simplicity and clarity we will confine our attention to
discrete inverse problems, but the procedures we will

describe can be readily adapted to the case of continuous
parameter distributions (Sambridge et al. 1988).

We suppose that we are presented with a set of
observations dg{d,,, r=1,..., M} and wish to use those
observations to determine a discrete set of parameters m
{my, k=1,..., N}. Since we are interested in the situation
where the model is built up from a number of parameter
types, we assume that we can partition the model into a
number of subsets of parameters, with one for each type, so
that we will set

m=[m,, mg, m,...], 2.1

with a total of P parameter classes. The dimensionality of
the subsets m,, my etc. will vary according to the nature of
the problem. Within each subset, the parameters may
describe the model directly or may be the coefficients in an
expansion in terms of orthonormal functions (Nolet 1987a)

Na
mA = Zl mArhr(x)a

where the basis functions k4, satisfy

I dPx h,(x)h;(x) = &,

over a region R of dimensionality D.

Corresponding to each of the observed data values d,,, we
have to calculate the predicted value g.(m) which will be
some functional of the model parameters. We will use a data
misfit function @(d,, g(m)) to assess the level of
disagreement between observed and calculated data values,
the choice of the function depends on the nature of the
problem and the error statistics of the data. If it is
reasonable to assume Gaussian statistics then we can adopt

P(dg, d) = (dy — )" C5'(do — d), (22)

where the data uncertainties are introduced by the data
covariance matrix C,;. We will assume that any precon-
ditioning to reduce the nonlinearity of the problem has been
absorbed into the definitions of d and g(m) (see, e.g.
Chapman & Orcutt 1985). In order to constrain the
behaviour of the model parameters, we introduce a
regularisation function ¥(m, m,) in terms of some starting
model m,; commonly this would be related to a norm on the
model. For example, we may choose the quadratic form

¥(m, m,) = (m—-m,)"C,'(m—m,), 2.3)

where C,, is the model covariance matrix whose properties
should be chosen to fit what is known about the situation.
For the case with a number of parameter types

CAA CAB 0
CBA CBB

Crn= 0 Cec

, (2.4)

where we may need to introduce off-diagonal blocks to
allow for trade-offs between different types of parameters.
For example, in seismic model estimation we may expect
correlation between the P- and S-wave velocities, and also
with the density. The individual parameter covariance
matrices C,, etc. may also need off-diagonal contributions,



e.g. in tomographic work there are advantages in allowing
some degree of nearest neighbour interaction between cells
(Williamson 1986).

We now seek to minimise the discrepancy between
observed and calculated data values whilst maintaining
constraints on the character of the parameter distribution.
We can do this by minimizing

F(m) = &(do, g(m)) + ¥(m, m,), @.5)

with respect to the model m: explicitly we have with
quadratic forms for ¢, ¥

F(m) = (g(m) — d,)" C;'(g(m) — d,)
+(m-m,)"C; (m—-m,). (2.6)

For perfect data we would aim for the global minimum of F,
but with observed data one practical termination criterion is
to stop once the data misfit term @ is reduced below a
preassigned threshold. Other possible termination criteria
are discussed in Kennett (1988).

With many model parameters a direct search for the
minimum is out of the question and so we aim to exploit the
local behaviour of F to guide us to the desired minimum. If
F is a smooth function of the model parameters we can
make a locally quadratic approximation about some current
model m, by truncating the Taylors series for F

F2(m, + ém) = F(m,)
+V, Fm)-ém+1/26m-V,V, F(m,) - ém,
=F(m.) + 9 - dm+1/2 émHém, (2.7)
in terms of the gradient ¥ and the Hessian matrix H. The
gradient lies in a dual of the model space defined by our
choice of the norm on the model space. If we adopt the
quadratic norm ¥'?, the equivalent vector in model space

(the direction of steepest ascent y) is related by the action
of the model covariance matrix (Tarantola 1987)

y=0C.¥ (2.8)
With our assumed form for F, the gradient
7 =G"C7'(g(m) - dy) + C,'(m — m,), (2.9)

where G;; = 3g;/3m;, and the Hessian matrix

H=G7C;'G+ V,G'C; (g(m) - d,) + C_. (2.10)

The Frechet derivative G; can often be found in an
analytical form. However, in many circumstances, the
second derivative term V,G=V,V_ g is difficult to
calculate, but since it appears with the data misfit its
significance should diminish as minimization proceeds and it
is often neglected at the outset.

2.1 Subspace methods

A class of very effective algorithms can be developed by
restricting the local minimization of the quadratic
approximation to the misfit functional F€ to a relatively
small n-dimensional subspace of model parameter space
(Kennett & Williamson 1987).

We introduce n basis vectors {a’’} and a projection
matrix A composed of the components of these vectors

A;=a? i=1,...,N, j=1,...,n (2.11)
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We now construct a perturbation to the current model in
space spanned by the {a®’},

dm= Y ua'h. (2.12)
j=1

The coefficients u are to be determined by minimizing F<

for this class of perturbation for which

FO=Fm)+ 3 ug a4 123 3 i,
=1 j=1k=
(2.13)
and minimizing with respect to u; we require 3F Qf ou; =0,
so that
g2+ Y pa® Ha? =0. (2.14)
k=1

We may now rewrite (2.14) in terms of the projection matrix
A as

ATy + ATHAp = 0.

The perturbation coefficients can thus be determined from
the projection of the gradient and the Hessian matrix onto
the subspace in the form

p=—(ATHA)'ATY. (2.15)
The projected Hessian is a small # X n matrix, which is
generally well conditioned with sensible choices for the basis
vectors {al"},

The model perturbation édm can be recovered by
projecting back into the full model space, and for the choice
of misfit functional F (2.6) can be represented as

dm= — A[AT(H, + C,)A] 'AT9, (2.16)

where H, is the Hessian of the data-fit term (V,,V,,®). The
structure of (2.16) is reminiscent of a projected Marquardt
algorithm though C;,! need not be diagonal.

The basis vectors a? will normally be related to the
ascent vector y and its rate of change and so (2.16) normally
combines to some extent gradient and matrix techniques for
minimizing F€. Once the local model update estimate ém is
constructed from (2.16), a new current model is created and
used to generate a further local quadratic approximation to
the behaviour of F. The cycle of estimating 6m and model
construction is then iterated until a suitable termination
criterion for the minimization of F is activated.

2.2 Subspace techniques for many parameter types

The subspace method we have just introduced is quite
general and can be applied to a set of parameters of the
same type, or to parameters of a number of different types,
by appropriate choice of the basis vectors {a”}.

When we have different types of parameters, model space
becomes a product space M=M_ X Mg XM X ..., and
we are faced with a scaling problem; as we change the
relative sizes of the units for the different parameter classes
the direction of gradient vector changes. A similar effect
arises when working with dimensionless parameters under
change of the choice of reference values. Further, to derive
the ascent vectors in model space we need to invoke the
action of the covariance matrix C,, on the gradients, and so
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this matrix also has considerable significance. Often, our
quantitative knowledge of a suitable choice for C,, is
inadequate and a poor set of estimates for the entries may
well slow convergence or introduce bias if an early
termination is forced.

The subspace method provides a natural way in which to
exploit the dependence of the objective function F on each
parameter class. We partition the gradient vector ¥ into the
contributions for each parameter type, so that

? = [?A: ?B’ ?cr . ']r (217)

where, e.g. #, = 9F/3m,, and it should be recalled that the
partitions are not necessarily of equal dimensionality. In the
interests of brevity we will write column vectors in a
horizontal format as in (2.17).

Now, by the choice (2.12) of the form of possible model
perturbations we have assumed that the basis vectors {a'”}
lie in model space, but the gradient # lies in the dual
(gradient) space. If we concentrate on one class of model
parameter at a time, we can construct the corresponding
ascent vector in model space by the action of the model
covariance matrix on just the gradient components
corresponding to the particular parameter type. Thus we
define for parameter type I

v1=C,[...,0,9,0,...] (2.18)

With the form of model covariance matrix introduced above
in (2.4)

Ya=[Caa¥u, Cpa¥a,0,...],
vs =[Cus?s Cpa¥5,0,...],
Ye=1[0,0,Ccc¥e, 0, .. 1],

(2.19)

and the off-diagonal blocks in the model covariance allow
for specific cross-coupling between parameter classes when
this is a desirable feature of the problem. We now adopt the
set of P ascent vectors as the directions of the set of basis
vectors so that

a® = ||'YA||_17A, a® = ”YB”_IYB’ cee (2.20)

where we have normalized the basis vectors using the
assumed quadratic norm (2.3) in model space. Thus

I7l>=yC,'y = #C,.%,

and so

lyall = (f’gCAAYA)UZ-

Where cross-coupling exists between parameter sets—as in
(2.19)—it is desirable to avoid linear dependence between
the different a). This can be achieved by orthogonalizing
the basis vectors, and so we should modify the second vector
to

(a(l)c;la(Z)) .

PP =g = __Tm = g
(a(l)C;,la(l))

(2.21)

which will then need to be normalized. By this means we are
able to build a P dimensional set of basis vectors, with each
one corresponding to the variation of the data-misfit
functional F with a particular parameter type.

The benefits of this adaptation of the subspace method

are shown in Fig. 1. The plane defined by ¥, and y, in a
problem with two parameter types (a, b) is shown, under the
assumption of no off-diagonal blocks in C,,. The contours of
F2, the quadratic approximation to the objective functional
at the current model m, are superimposed. The dashed
arrow denotes a typical descents direction so that the vector
is perpendicular to a contour, the minimum value of F<
along this path is reached at A;. The solid arrow indicates
the step prescribed by the subspace method using y, and y,
as basis vectors which arrives at A,,. The improvement
over the descent step is readily apparent.

If the number of parameter classes P is greater than 4, the
descent vectors derived from the gradients of the objective
functional F will normally be a sufficient basis set. However,
for a small number of parameter classes it is feasible to
incorporate a further P? basis vectors representing the rate
of change of the ascent vectors. We will illustrate the
process by the example of two parameter classes. We
partition the Hessian matrix into blocks by the dependence
on parameter type
fi= <l;lAA I:\‘AB))

HBA HBB

(2.22)

and then look at the rate of change of y, and yp with
respect to both parameters. This generates four new vectors

H,, H,, 0 0
(e B (6 b

0 0 H,, H,,
A, ﬁAB) (0 0 )
A . , (2.23
<0 0 s H,, H,, v ( )

in the dual (gradient) space, which then have to be
transfered back to model space by the action of the
covariance matrix C,,. They also have to be orthonormal-
ized before addition to the basis set.

-
>

%

Figure 1. Elliptical contours of the local quadratic approximation to
the objective functional F< projected onto the two dimensional
subspace formed by partition of the gradient components. Note that
the steepest descent direction is non-optimal within the subspace
defined by its components: a step in the steepest descent direction
arrives at A, whereas the 2-D subspace scheme arrives at A,,.




Once we have set up the basis vectors {a¥’}, we have
established the framework for using the subspace approach.
With the local quadratic approximation for the mifist
functional F, the perturbation to the current model should
be estimated from (2.16)

dm= — A[AT(H, + C;)A]'AT%, (2.16)

where A, is the projection matrix {a¢’}. If the second
derivative term in the Hessian (V,,V,,g) can be neglected we
need to evaluate terms like

K=a®7[G"C;'G + C./]a?, (2.24)

where the derivative G is evaluated at the current model.
There is no need to construct the matrix C'C;'G since we
can recast K into the form

K=b"7C;'p" +a?7C; "a?, (2.25)

where b®) = Ga®, so only a single vector multiplication is
required. When the basis vectors are just the P ascent
vectors associated with the variations of the individual
parameter classes, the vector b can be found directly from
the action of a small change in the Ith parameter class on F.

If the model perturbation derived from (2.16) is so large
as to move outside the likely range of the quadratic
approximation for F, it is possible to regard (2.16) as
defining a search direction and then only move partway
towards the quadratic minimum by taking the update as
m, + vom with v <1. However a preferable procedure is to
modify the definition of F by adding a term &2 |jm —m,_|?,
where m, is the current model. This does not affect the
gradient but adds €I to the Hessian and so decreases the
step length in a way which will follow the true descents path
as accurately as possible.

The subspace method essentially performs a least-squares
inversion within the subspace, spanned by vectors which
reflect the dependence on all the parameter classes. The
model step generated is independent of the scaling of the
particular parameter types (Williamson 1986). The weight-
ing accorded to the different model types is determined
solely by the behaviour of the objective functional. As a
result we remove any bias that might be introduced by
combining disparate parameter types in a single descent
vector and achieve a effective balance between the
information in the data (through ®) and the a priori
constraints imposed through ¥.

Where information additional to the ascent directions for
the individual parameter classes is desired it is preferable to
generate this directly within the step, rather than to rely on
information from previous iterations which may well not be
relevant to the neighbourhood of the current model.

2.3 Comparison with gradient methods

From a current model m,, the simplest approach to
updating the model in order to minimize the misfit
functional F is to look for a model perturbation related to
the descent vector in model space, so that

(5]]] = :u¢(mc) Wlth ¢ = SOY(mC)

The use of a matrix S, differing from the unit matrix is
termed ‘pre-conditioning’ by Tarantola (1987); he advocates

(2.26)
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an approximation to the initial curvature
SO = [l + CmGT(m:)Cr;lG(ms)]—l‘

The parameter u is to be chosen so that F(m,+ ém) is a
minimum along the step direction. Within a local quadratic
approximation, this is essentially a 1-D subspace approach
and so

u=-¢"p(y"He). (2.27)

The disadvantage of such a scheme with many parameter
classes is clearly demonstrated by recalling that y =Y, y,,
with summation over all the P parameter types. All the
parameters are being treated the same way with differences
in character ignored. The resulting direction and step will be
affected by any rescaling of individual parameter classes.

The convergence of the steepest descents type of
algorithm is comparatively slow and can be improved by
using a conjugate gradient technique as employed by Mora
(1987). In this case the search vector is built up from the
gradient and the previous search directions. At the rth
iteration

¢r = SOY’ + ar¢r—1
Where o, = (Yr - }’r—l)TC;lISOYr/(YrT—IC;ISOYr—l)’

and so there are contributions from the previous r descent
directions. This should give an improved choice of direction
in which to look for a minimum. The actual minimization is
however, once again, 1-D with comparable disadvantages to
the steepest descent approach in terms of dependence on
different parameter classes.

An alternative approach is to build up the total model
perturbation as a sum of contributions corresponding to
variations of one parameter at a time (cf. Tarantola 1986).
We take

ém= 2 HiYn (2.28)
4

with summation over parameter class. The weighting factors

determined by minimization along the descent vector for

each parameter class are

w=—yri9/(yTly). (2.29)

Such an approach does begin to take account of the
dependence of the misfit functional F on the different
parameter classes and allows the update to each parameter
type to be determined by its own gradient. However, this
representation cannot take into account interactions
between parameters and involves nearly as much computa-
tion as the subspace method.

The subspace method, on the other hand, makes full use
of the information on the local dependence of F on the
different parameter types and can allow for interdependence
of parameter classes. The subspace method thus offers an
effective and affordable means of handling inversion for
multiple parameter types.

3 EXAMPLES OF THE USE OF SUBSPACE
METHODS

We will describe three cases where the subspace method we
have introduced in section 2.2 provides an effective
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approach to the solution of an inverse problem. All of the
examples are for seismological problems because these
commonly involve parameters of different types; but the
approach can certainly be used for a wide range of other
geophysical inverse problems.

3.1 Simultaneous estimation of hypocentral parameters
and velocity distributions from arrival times of earthquake
phases

With a network of seismic stations, the times of arrival of
various seismic phases can be estimated for an individual
earthquake. But, before this information can be exploited to
define the velocity structure in the neighbourhood of the
network, the earthquake has to be located in space and
time. Ideally, we should aim to locate earthquakes and
determine the velocity structure simultaneously by making
use of the data coverage from many events. The parameters
required from the inversion clearly divide into two groups:
the first consisting of the hypocentral parameters for all the
events and the second consisting of those parameters needed
to define the velocity distribution. This separation has been
exploited in slightly different ways by Pavlis & Booker
(1980) and Spencer & Gubbins (1980) in methods for
linearized simultaneous inversion.

Within the context of the subspace approach, we could
therefore envisage setting up two major parameter classes: h
including all the hypocentral parameters and v for the
velocity field. We can then partition the model as

m = [h, v] (3.1

and exploit the 2-D subspace approach described in section
2.2. Such an approach can be made to work, but requires
careful manipulation of the model covariance matrix to try
to equalise the sensitivity of the misfit functional F to the
parameters within each of the major groupings.

By treating the hypocentral parameters as a unit, we have
implicitly mixed parameter dimensions by combining the
spatial coordinates of the events with their origin times. The
net result is that the shifts in the spatial coordinates are
dominated by the adjustments to the origin times, since
these have the largest gradient components. For a local
velocity model for southeastern Australia, an upweighting of
the spatial shifts by a factor of ten or more is needed to get
flexibility in the inversion. A preferable solution is to
recognize the distinction between the two types of
hypocentral parameters and partition h into spatial and
temporal parts,

h=[h,,h] (3.2)

h, then contains the spatial coordinates of all the events and
h, their origin times.

A similar problem arises for the velocity distribution
parameters. The basic recorded times include both P- and
S-wave phases and so the model representation must include
both velocity fields. In addition, the position of a major
interface, such as the Moho in regional work, can affect the
travel times. It is therefore appropriate to split up the
parameter set v into parts v,, vg associated with the P- and
S-wave distributions and v, arising from interfaces. Thus we

should take
v=[v,, vg, v/]. (3.3)

With the partitions of h and v as in (3.2), (3.3) the total
model in the terminology of section 2 is

m= [hx’ hta vaz) vﬁ) v1]~ (34)

The corresponding subspace development wouid then be at
least S5-D. Such a subspace development avoids the
complications of having to worry about the relative sizes of
the contributions from the different parameter types. It also
means that at each iterative step, the dependance of the
misfit functional F on all the different types of parameters
have been treated in the same way in the estimate of the
changes which have to be made to the current values. One
may also wish to further subdivide v, and vg to segregate
different parts of the model, e.g. crustal and mantle
velocities, and this would further increase the dimensionality
of the subspace.

We will illustrate the merits of the subspace techniques by
application to a study of the 3-D velocity structure of the
southeastern corner of Australia, using earthquake and
explosive sources (Fig. 2). Over 4200 travel times from 312
earthquakes were combined with 700 travel times from
well-timed quarry blasts and refraction shots. The region
was divided into cells of size one half a degree by one half a
degree over the zone with adequate data coverage indicated
by the heavy outline in Fig. 2. Separate P-wave distributions
were taken for the crust and mantie, but the character of the
S-wave readings precluded estimating S-wave mantle
velocities, the depth of the crust/mantle interface was also
allowed to vary. This leads to a total of 512 structural
parameters of four different types and 1248 hypocentral
parameters and the present analysis was based on a
linearized treatment using a fixed set of ray paths based on a
simple 1-D model for the region, as a preliminary study for
a full nonlinear inversion with 3-D ray tracing.

In Fig. 3 we summarize the convergence behaviour of
three different algorithms for this simultaneous hypocentre
and structural inversion. In each case we attempt to
minimize a data misfit functional of the form (2.2). The
chain dotted curve (SD) shows the result of a steepest
descent algorithm, i.e. a 1-D minimization along the
steepest descent direction at each iteration. Such an
approach makes no distinction between the different
parameter types. The dashed curve (2D) is the result of
using the 2-D subspace scheme described above, where the
model parameters and split into hypocentral and structural
sets. The basis vectors for the subspace are derived from the
partitioned gradient vector as in (2.20). Convergence is both
more rapid and smoother than for the simplest case. The
solid curve (6D) shows the results of a 6-D subspace
approach where the hypocentral parameters are divided into
spatial and temporal components and the structural
parameters comprise crustal and mantle P-wave speeds,
crustal S-wave speeds and interface terms. The convergence
per iteration is much more rapid than before with only a
modest increase in computation time. Thus as the dimension
of the subspace increases, the efficiency of the inversion
algorithm per iteration is much improved. This is due to the
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Figure 2. Distribution of earthquakes and recording stations used in the 3-D inversion for the southeast Australian region. The stations are
shown by solid triangles and the earthquakes by open hexagons. The relocation vectors for the epicentres, determined from the 6-D subspace
inversion, are indicated with a exaggerated scaling ( X 15) in order to enhance the visibility of the smaller shifts.

Iteration

higher dimensional schemes choosing a more optimal step
than those of lower dimensionality.

Figure 4(a) shows the crustal S-wave velocity distribution
recovered from an inversion with the two-dimensional
subspace scheme. Outside the region containing the most
significant anomaly to the NE, the inferred velocities are
only slightly perturbed from their starting values (indicated

Figure 3. Comparison of convergence of different methods for
solving the simultaneous hypocentre and velocity estimation
problem. A simple descents scheme (SD) with no distinction
between parameter types gives very slow convergence, whereas
partitioning into a 2-D subspace scheme (2-D) with separation of
the hypocentres and structural information results in much faster
convergence. Further partitioning to separate each parameter class
and so generate a 6-D subspace scheme (6-D) improves the rate of
convergence even further.
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Figure 4. (a) Crustal S velocity pattern determined by inversion using a 2-D subspace scheme. Because the partial derivatives for § are
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S-wave variations are no longer downweighted by the dominant P information and more complex velocity structure is inferred with a much

better fit of the travel times to the original data.

by the white background). Indeed one can observe the
cellular nature of the inversion in the contoured plot. The
reason for this behaviour is that in the 2-D scheme we have
lumped together all structural information into the same
class and the contributions of the S-velocity parameters to
the structural partition of the gradient vector are swamped
by the much larger contributions from the crustal and
mantle P velocities. The problem is avoided in the 6-D
scheme, since the adjustments of the S-wave parameters are
now independent of the relative sizes of the P- and S-wave
gradient partitions. Fig. 4(b) shows the resulting crustal
S-velocity map for the 6-D scheme, the size of the variations
is much larger than before and more detail has been
recovered in an inversion which gives a significantly better
fit to the original data.

A similar downweighting effect was found to occur with
the interface parameters and the epicentral coordinates of
the earthquakes. In the 2-D subspace scheme, the origin
times dominate the hypocentral shift to such an extent that
no appreciable spatial movement was observed. Similarly

the interface parameters were dominated by P-wave
velocities and after inversion did not move far from their
initial values. Only by adjusting the relative sizes of the
entries in the model covariance matrix corresponding to
different parameter types can the situation be improved
within the 2-D subspace scheme. However, moving to the
6-D subspace scheme removes the problems and allows
variation to occur for each of the different parameter types.
The resulting epicentral shifts are illustrated in Fig. 2.

3.2 Seismic reflection tomography

Whereas the standard tomographic techniques used in
seismic work are based on transmission problems (Nolet
1987a), in seismic reflection work it is necessary to use the
times of arrival of reflected wave packets to infer the nature
of the subsurface. In particular the nature of the near
surface zone has a substantial effect on the character of the
seismic records returned from depth. The reflection
tomography problem is therefore to try to reconstruct the
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shape of the first major reflector and the velocity field above
the reflector. The seismic parameters required from the
inversion therefore divide into two classes, (i) positional
parameters describing the shape of the reflecting interface
and (ii) velocity parameters for a cellular (or similar)
partition of the velocity field.

It is very difficult in this highly nonlinear case to get
satisfactory results using steepest descent methods (see Fig.
5). However, a subspace approach using the ascent
directions for the two classes of parameters, supplemented
by four vectors representing the rate of change of those
vectors, can help to give good results with far superior
convergence (Williamson 1986). This 6-D subspace ap-
proach requires more work per iteration than a simple
descent scheme but the improvement in the data fit per step
is much greater.

The nature of this nonlinear problem is such that it is easy
for the minimization of the function F to be waylaid by the
existence of local minima with rather different character to
the true solution. Such apparent solutions may well be
regarded as within acceptable levels of data when inverting
for noisy data. These variant models are associated with a
strong trade-off between the velocity close to the reflector
and its position. Decreasing the velocity above the reflector

or making it deeper will have similar effects on the reflected
wave travel times, so that there can be a tradeoff between
these two types of parameters which will depend on the
starting model. This effect is illustrated in Fig. 5, where it
has proved possible to achieve quite a good fit to the travel
time data with a 6-D scheme but without a adequate
recovery of the original model.

A partial cure can be provided for the local problem by
modifying the scale of parametrization as the iteration
proceeds (Williamson 1986). Initially a relatively coarse
level of parameterization is employed and as the data fit
improves a finer parameterization is introduced. Fig. 5
shows a successful application of this approach. However,
even with this variable parametrization multiple inversions
from different starting models may be needed to explore the
character of acceptable solutions.

3.3 Inversion of seismic waveforms

A further class of problems in which there is a dependance
on a number of different types of parameters arises in the
inversion of seismic waveforms (Tarantola 1986; Nolet
1987b). For a complex isotropic region the complete
waveforms recorded at a number of discrete receivers will
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Figure 5. Comparisons of different inversions for the reflection tomography problem with unknown slowness ficld and reflector shape. The
descents inversion uses rescaling of the model parameters by reference values and is only moderately successful. An application of the 6-D
subspace approach with a fine parameterization gives a good fit to the data, but not a good recovery of the original model (‘a local minimum’).
The 6-D subspace method combined with variable parameterization, indicated by VP, gives very good recovery of the original model. The
figures indicate the r.m.s. misfit in milliseconds between the original travel times and those computed for the postulated models.

depend on the P- and S-wave velocity and density
distributions. In addition, the actual source character is
often unknown so that a full inversion will require the
estimation of four different aspects of the total model m. We
can write therefore

m=|[v,, vg, v, f],

(3.5)

where the partitions v,, vy, v, represent the parameters
describing the P, S and density fields and f the source
parameters. This would then establish a 4-D subspace within
which to set up the inversion procedure.

Tarantola (1986) has shown how the gradient terms can
be evaluated by cross-correlating, at each point, the
wavefield predicted for the current model with the back
projections of the discrepancy between the observed and
calculated waveforms at the receivers. For the case of
reflection seismograms in a 2-D model, Tarantola also
advocates working with P- and S-wave impedance rather
than velocity, in order to try to improve the independence
of the different sets of parameters. Such independence is
essential for the sequential inversion scheme proposed by
Tarantola (1986). For the waveform problem, a convenient

representation of the field parameters is as continuous
distributions and Sambridge, Tarantola & Kennett (1988)
describe how the subspace method can be adapted to deal
with this case.

4 DISCUSSION

The subspace method provides an algorithm for nonlinear
inverse problems, with many parameter types, that can take
into account the different functional dependencies in an
equitable way. By associating at least one basis vector of the
subspace with each parameter type, the solution for the
update to the current model is produced in a way that does
not depend on the scaling of the different parameter classes
and thus the choice of covariance matrix relating model and
dual space.

The mode of solution can be regarded as a cross between
a gradient and a matrix approach. The model perturbation is
built up from the local gradients of the nonlinear misfit
functional with respect to each parameter type by a
least-squares treatment in a subspace of small dimension.
The dimensionality will typically be of the order of the



number of parameter types, although for two or three
different classes, it may be worth bringing in additional
information associated with the rates of change of the
gradients. All the information needed is generated locally,
and so is not dependent on bringing forward information
from former models. As a result, the subspace approach is
effective in many nonlinear problems. However, as for all
nonlinear minimization routines, it cannot be guaranteed
that the global minimum of the measure of data misfit can
be found.

Throughout this paper we have illustrated the action of
the subspace method with quadratic representations for the
data misfit and regularization terms. Both of these forms are
appropriate to the assumption of Gaussian statistics. When
detailed information on the character of the error statistics
are known the appropriate probability distributions should
be employed in the construction of the data misfit or
regularization terms, and the subspace method can be
readily adapted to these new definitions.
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