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Abstract— Statistical evaluation of radiogenic isotope data commonly makes use of the isochron method
to determine closure age and initial isotopic composition which can be related to the source region
from which the rocks or minerals were derived. Isochron regression algorithms also yield estimates of
uncertainties in age and initial isotopic composition. However, geochemists frequently require an estimate
of uncertainties associated with the calculation of initial isotopic composition and model age for single
samples. This is often the case with Re-Os isotopic data for small sample suites that may not be
isochronous. Here we describe two methods of propagating errors associated with Re-Os isotopic mea-
surements in order to estimate uncertainties associated with both of these geologically important parame-
ters; however, these methods are equally applicable to other isotopic systems. The first result is a set of
analytical formulae that provide error estimates on both variables, even for the most general case where
all dependent variables contain error, and all pairs of variables are correlated. This numerical approach
leads to equations that can be easily and efficiently evaluated. A second Monte Carlo procedure was
initially implemented to check the accuracy of the analytical formulae, although in the cases tested here
it has also proved to be efficient and may even be practical for routine use. The advantage of error analysis
of this type is that we can assign a level of confidence and thus significance to calculated initial isotopic

compositions and model ages, especially for Archean rocks.

1. INTRODUCTION

The rhenium (Re)-osmium (Os) isotopic system, based on
the beta decay of "¥'Re to "*’Os with a decay constant of
1.64 = 0.05 x 107" yr™! (Lindner et al., 1989), is a rela-
tively new and powerful tracer of global geochemical pro-
cesses (Allégre and Luck, 1980). This property stems from
the fact that Re behaves incompatibly during mantle melting
and crust formation (Morgan et al., 1981), whereas Os is
retained in olivine, sulfide, and/or metal alloy phases in
refractory mantle residues (Mitchell and Keays, 1981; Mor-
gan et al., 1981; Morgan, 1986). This geochemical differ-
ence results in terrestrial reservoirs with dramatically differ-
ent Re/Os ratios and with time, very different Os isotopic
compositions (Allégre and Luck, 1980). For reference, car-
bonaceous chondrites have '*"Re/'#*0s of 0.401 and a pres-
ent-day '®’0s/'*®0s averaging 0.1271 (Walker and Morgan,
1989), the latter value closely matching that of the asthen-
ospheric upper mantle source of midocean ridge basalts
(DMM source: Martin and Turekian, 1987; Martin, 1991;
Snow et al., 1991; Snow and Reisberg, 1995). This contrasts
with estimates of '¥"Re/™®0s and "*’Os/'®*Os in the upper
crust of 42 and 1.69, respectively (Esser and Turekian,
1993). No other radiogenic isotope system shows this ex-
treme geochemical and isotopic contrast between crustal and
mantle reservoirs.

To extend the modermn Os isotopic database and to con-
strain the temporal evolution of Os in the DMM and other
reservoirs that are isotopically distinct in Sr, Nd, and Pb
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isotope geochemistry (e.g., EM1, EM2 and HIMU; Zindler
and Hart, 1986; Hauri and Hart, 1993) requires that precise
and accurate initial Os isotopic compositions be produced
for nonzero age rocks. As in other radiogenic isotope sys-
tems, there are two ways of achieving this aim: (1) graphi-
cally using an isochron diagram of measured '*'Re/'®*Os
plotted vs. measured "*’0s/'®0s for a suite of cogenetic
rocks, or (2) calculating an initial Os isotopic composition
for a single rock or mineral analysis using measured '®"Re/
'880s and '¥’0s/'0s and independent geochronological
constraints. The isochron method is preferred because this
technique permits the geochemist to assess *‘closed-system’’
isotopic behavior and yields estimates of the closure age,
initial Os isotopic composition, and errors associated with
these two parameters via regression algorithms (e.g., Brooks
et al., 1972; Mclntyre et al., 1966; York, 1967, 1969). Using
method 2, error propagation becomes an acute problem when
assessing published Re-Os isotopic data for Precambrian
rocks that have high Re/Os ratios (e.g., most mantle- and
crustally-derived melts and sediments ), as the error in calcu-
lated initial Os isotopic composition is a combined and prop-
agated function of analytical errors in measured '®’Re/'**Os
and '®’0s/*®Qs, decay constant, and age of the rock. Walker
et al. (1994) investigated error propagation (assuming con-
stant uncertainties in '*’Re/'®*Os and '*'0s/'%*0s) applicable
to rocks with an age of 246 Ma, but no generally applicable
statistical analysis of error propagation for rocks of any age
has been attempted until now.

A second geochemical parameter that is often uncon-
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strained by rigorous error analysis is the chondritic-mantle
model age (represented in this paper as 7¢) in which mea-
sured '¥’0Os/'®0s is age corrected using measured '"*’Re/
13805 until '"0s/'®0s of the sample intersects a carbona-
ceous chondrite Os isotopic growth line (Allégre and Luck,
1980). The Os tcy model age is analogous to the Nd #,,
model age in that the Earth’s DMM reservoir has been shown
to be near-chondritic (within 3%) in Re-Os isotope geo-
chemistry (Martin and Turekian, 1987; Martin, 1991; Snow
et al., 1991; Snow and Reisberg, 1995). Thus, these model
ages approximate the time of fractionation and separation of
Os and Nd in the sample from Os and Nd in a depleted
mantle (DMM) reservoir. Using this approach, Os and Nd
model ages can yield useful estimates of mantle extraction
or ‘‘crustal residence times’’ for an igneous source, meta-
morphic protolith, or sediment provenance. However, for
tcy to have geological significance, one must assume that
measured ('"¥Re/'®0s),0c = ("*Re/™®0s)souee, Which in
many cases, is difficult to justify because Re is believed to
be less compatible than Os during mantle and crustal melting
processes (Morgan et al., 1981). Moreover, the model man-
tle parameters used in both Re-Os and Sm-Nd isotopic stud-
ies only approximate the geochemistry of the convecting
upper mantle of the Earth. Thus, Os #-; model ages are
minimum crustal residence times, as are Nd #,,, model ages.
Because of this, rigorous error estimation for these parame-
ters is not as easily justified as is the case for initial Os
and Nd isotopic compositions which are frequently used to
constrain the geochemical characteristics of the Precambrian
mantle (e.g., Bennett and Esat, 1995; Foster et al., 1996;
Shirey and Walker, 1994).

In this paper we present two approaches for estimating
how errors propagate into the initial Os isotopic composition,
('¥0s/'®¥0s);, and the chondritic-mantle model age, fcy,
through the '®"Re-'®’0Os decay equation. It is our intention
that the paper take on a ‘tutorial flavour,” enabling readers
to use the methodology presented here on their own data-
sets. The first method is entirely analytical and results in a
set of convenient formulae for calculating the standard error
in both variables, given standard errors in all other variables.
These formulae can be implemented in standard spread
sheets used in data reduction and can be applied to other
isotopic systems (e.g., Rb-Sr, Sm-Nd, Lu-Hf) with a change
in model parameters and decay constants. The second ap-
proach is entirely numerical, and allows error estimates to
be generated with any degree of precision. The primary rea-
son for using the second approach is to test the accuracy of
the first, however, it is very efficient and in many cases may
be practical for routine use.

2. DEFINITIONS AND THEORY

The error analysis is based on the following two equations:

18705) ( 1870s> ( 187Re)
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187 188 __ (187, 188,
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where ('*’0s/'®80s),,« is an atomic ratio measured via a
technique such as negative-thermal ionization mass spec-
trometry (N-TIMS) and is usually precise at the 0.1-1%
level of uncertainty (2 standard errors of the mean, in-run
statistics ). ('*’Re/'*80s),, is calculated based on measured
Re and Os abundances and isotopic composition as deter-
mined by isotope dilution N-TIMS and is usually accurate
at the 1-5% level of uncertainty, primarily because of prob-
lems associated with Os spike calibration (see Morgan et
al.,, 1995). ('¥0s/'®80s), is the initial Os isotopic composi-
tion that can be calculated for a single sample using the
crystallization age of the rock (z), the '"¥’Re decay constant
(\), and Eqn. 1. Currently, the '¥’Re decay constant is known
to only approximately +3% (Lindner et al., 1989), and the
uncertainty in age is highly variable depending on the inde-
pendent dating method used (e.g., U-Pb zircon ages can have
uncertainties of <0.5% at 2700 Ma, whereas Rb-Sr and Sm-
Nd isochron ages can have uncertainties of >1% at 2700
Ma). In this paper, ('’ Re/'*0s),une and (*¥0s/ %208 ) nanite
are carbonaceous chondrite atomic ratios from Walker and
Morgan (1989) that closely approximate these same parame-
ters in the DMM reservoir of the Earth. No uncertainties
have been included for these two parameters, as they are
representative only of a model terrestrial reservoir. In prac-
tice, readers may insert whatever model parameters they
prefer. The parameter, tcy, is the chondritic-mantle model
age that can be calculated for a single sample using Eqn. 2.
For ease of notation we will replace the five isotopic ratios
with the following symbols,

_ 1870S _ 1870S _ 187Re
T m i, "o m rock, ”T Ig—s—o_s- rock
187()S 187Re
" ( 18805 )manlle, " ( 18808 )mantle (3)

Using these we can rewrite Eqns. 1 and 2 in the simpler
form,

r=r —nr(¥-1) 4
_l (ry, —r3)
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where all variables except r; and r, on the right-hand side
of Eqns. 4 and 5 are assumed to contain error and we wish
to find the resulting standard errors in the variables r and
tey. The nature of the errors on any variable, say r;, is
provided by its probability density function (PDF). In many
cases these are assumed to be Gaussian, although they may
take other forms (see Meyer, 1965).

Note that we do not consider errors of a systematic nature,
e.g., those which might arise from the inappropriateness of
the model equations, 4 and 5. Usually these ‘‘theory errors’’
can only be taken into account if they have a well known,
and usually simple form (see Tarantola, 1987, for an exam-
ple). In this paper, we deal only with error propagation from
the input variables, i.e., those on the right-hand side of Egns.
4 and 3, (ry, r, 13, 14, N, t), to the output variables, i.e.,
those on the left-hand side of 4 and S, (r, 1cy), assuming
that the model equations are ‘‘error free.”” We will assume
that all six input variables have known measured values
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(denoted by 71y, 172, 73, M4, M, M) and standard errors (de-
noted by o,, 0,1, 03, 04, 0y, 0,). The object is then to find
the means (7, 7,,,) and standard deviations (o,, o,_,) of the
initial isotopic composition, r, and chondritic-mantle model
age, tcy. We present two alternative methods to solve this
problem, each with its own advantages.

2.1. Method 1: Analytical Formulae

The first approach is to derive analytical formulae for the
means and standard deviations of the output variables, r and
tcy. From Eqn. 4 we can see that r depends on four variables
(ri, r2, \, t), while t¢,4 depends on five variables (ry, r;, 73,
rs, \). Because Eqns. 4 and 5 are nontrivial, the PDFs of r
and fcy are in general unknown, even if the PDFs of the
original variables are simple. However, estimates of their
means and standard deviations can be found without first
finding the PDFs.

To demonstrate the general procedure consider the simpler
case when an unknown g, is dependent on only two random
variables x and y, with mean values (7,, 7,) and standard
deviations (o, o,). In this case it can be shown (see, e.g.,
Papoulis, 1991) that if the function g(x, y) varies sufficiently
smoothly about the mean values (7,, n,), then estimates of
the mean, 7,, and standard deviation, o,, of g are given by
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where all derivatives are evaluated at (7,, 7,) and C is the
correlation coefficient of the variables x and y (see the Ap-
pendix). Equation 6 gives an estimate of how much the
mean of g varies from the ‘‘calculated value’” g(7n., 1,),
which indicates the degree of skewness of the PDF of g.
Equation 7 shows how errors propagate from the variables
x and y to the variable g.

The two variable cases can be extended to any number of
variables and applied to Eqns. 4 and 5. In the case of the
initial Os isotopic composition, r, we obtain

N, = 1o — h(nioX + niol)me™ (8)

oF = of + (1 = eW)’0} + (ot + niohmie™ (9)
where r, is the value of the initial isotopic composition found
from Eqn. 4, and we have assumed that all variables are
uncorrelated (so that all correlation coefficients are zero).
If any pair of the variables (r,, 72, \, ) are correlated, then
extra terms need to be added to Eqns. 8 and 9. Full details
of these extra terms are contained in the Appendix. Even
though the equations look complicated, they are easily evalu-
ated because all terms on the right-hand side are merely
functions of original variables and their estimated errors, all
of which are known in advance. If we apply the same ap-
proach to the chondritic-mantle model age in Eqn. 5 (again
assuming un-correlated errors), we obtain an estimate of the
mean value of t¢y
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In Eqn. 10 ¢, is the value of the chondritic-mantle model
age evaluated from Eqn. 5. If we extend Eqn. 7 to five
variables and apply it to Eqn. 5, we obtain an estimate for
the standard deviation of tqy

or, = (gt + (g1)’c; + (8503
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If the coefficient of correlation of any pair of variables is
nonzero, then extra terms must also be added to Eqns. 10
and 14; again, these are given in the Appendix. In practice,
Eqns. 9 and 14 will be easy to evaluate and provide a direct
estimate of how errors are propagated into r and fcy.

2.2. Method 2: Monte Carlo Simulation

Because the analytical approach described above uses ap-
proximations, we do not know how accurate the error esti-
mates are likely to be in practice. To gain some insight we
use a second method, known as a Monte Carlo simulation,
to estimate both the mean and standard deviation of the two
dependent variables, r and fcy. A Monte Carlo simulation
has ‘‘tunable’’ accuracy, which means that a more accurate
result can be achieved simply by increasing the number of
random trials used in the procedure. It may therefore be used
to test the accuracy of the analytical procedure.

Monte Carlo simulation is a well known, powerful tech-
nique for problems of this kind and is used in many areas
of statistics (see Press et al., 1992). In the case of the isotopic
ratio, r, we randomly generate errors for each of the input
variables (7, 7, N, t) according to their known PDF, add
these to the mean values (7,, 72, T, 7:), and evaluate the
output value using Eqn. 4. When this process is repeated
many times, a histogram of the output values will approxi-
mate its PDF, while the mean and standard deviation will
approximate the required mean and standard deviation, (o,
s,). A similar procedure can be applied to the model age,
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Icy, using Eqn. 5. The accuracy of this approach depends
on the number of times the process is repeated. Usually
many thousands of repeated trials are required, but the im-
portant point is that we can always increase the number of
trials if more accurate results are needed.

Standard numerical procedures exist for generating errors
according to a Gaussian, or any other known PDF (see Press
et al., 1992). For the particular case in which the errors on
input variables are Gaussian and uncorrelated, the errors on
each parameter may be generated independently. Techni-
cally, this is because the principal axes of the joint PDF are
aligned with the parameter space axes. The more general
correlated error case occurs when the principal axes of the
joint PDF (eigen-vectors of the covariance matrix) are in-
clined to the parameter space axes. Therefore, correlated
errors may be generated by first generating errors indepen-
dently and then rotating the parameter space axes. The level
of rotation determines the amount of correlation one may
wish to introduce. The analytical formulae can take account
of correlated errors using the extension described in the Ap-
pendix. In our illustration of the Monte Carlo procedure we
will assume uncorrelated errors and use the simple approach
in Press et al. (1992).

3. APPLICATION TO A SYNTHETIC RE-OS
ISOTOPIC DATASET

To test the two approaches we used the following typical
values for the input variables and errors: (*¥’0s/'®0s),
= (10, % 0.025), ("' Re/™80s),0a = (200, = 1.0), (**'Re/
O Y manse = (0.40076, = 0), ("¥0s/"®80s ) papie = (0.1271,
+ 0), decay constant A = (1.64 X 10~ "' yr™*, £2.46 x 107"
yr'), and age, t, = (2.7 X 10° yr, = 1.35 X 107 yr). Using
these values in Eqns. 4 and 5, we obtain a value of 0.945
for the initial isotopic ratio at 2.7 Ga, r, and 2.94 Ga for the
chondritic-mantle model age, tcy. For the analytical method,
we obtain (0.9450, = 0.1552) and (2.9446 Ga, = 0.047 Ga)
for these two parameters, while the Monte Carlo simulation
gave (0.9454 + 0.1555) and (2.9445 Ga, = 0.0475 Ga).
The latter was based on 10° repeated trials and took less
than 4 sec on a Sun Sparc 5 workstation. The two methods
are clearly in good agreement, which indicates that both the
number of trials in the Monte Carlo procedure are large
enough and that the approximate formulae given by Eqns.
8,9, 10, and 14 are sufficiently accurate. The Monte Carlo
simulations also showed a near perfect Gaussian distribution
of output values which indicates that the non-linearity of the
decay equations is not too severe for the error analysis.

Figure 1 illustrates how errors propagate through time in
the calculation of initial **’Os/"**Qs for rocks and minerals
with '%Re/!'®0s ratios of 1-200. Note that uncertainties are
large (>1%) for old samples (>1000 Ma) with high '*’Re/
8805 ratios (e.g., Archean crustal rocks). The figure thus
illustrates the need to analyze rocks or minerals with low
87Re /"8 0s in order to minimize the errors associated with
this calculation. High-degree partial melts of the mantle
(e.g., komatiites and picrites) and mineral separates with
low ¥’Re/'*¥Qs (e.g., chromite) are desirable materials in
this regard and have been used to trace mantle source charac-
teristics for Archean rocks (Bennett and Esat, 1995; Foster

g, / o
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Fig. 1. Error in initial Os isotopic composition (in %) vs. time
diagram, illustrating how errors propagate and expand as a function
of age of the sample and ""Re/!'®*Os ratio. The four curves corre-
spond to "*"Re/'®Os ratios of 1, 10, 100, and 200, appropriate for
high-degree mantle melts such as komatiites and chromite mineral
separates (1) to low-degree mantle melts such as basalts and crustal
materials such as sediments and granites (100~200). The curves
were calculated assuming constant uncertainty in measured '*’Os/
'80s (0.5% two-sigma) and measured '*’Re/'®0s (1% two-sigma),
a 1% uncertainty in age, and a 3% uncertainty in the '*’Re decay
constant. Note that uncertainties are large (>1%) for old samples
(>1000 Ma) with high '""Re/'®Os ratios (e.g., Archean crustal
rocks).

et al,, 1996; Lambert et al.,, 1994; Walker et al., 1988).
However, in practice, the error in measured '*’Os/'"**Os is
not constant at 0.5% (two-sigma), as was assumed in the
construction of Fig. 1, but can increase with increasing '*’Re/
'%0s due to lower Os abundances. Hence, lower precision
mass spectrometer data (usually limited by counting statis-
tics ) results in errors that are larger than would be predicted
by Fig. 1.

4. CONCLUSIONS

We have presented two methods for calculating how errors
propagate into the initial isotopic ratio, ('*’0s/'®Qs);, and
the chondritic-mantle model age, fcy, through the isotopic
decay Eqns. 1 and 2. The result is a set of analytical formulae
that provide error estimates on both variables, even for the
most general case where all dependent variables contain er-
ror and all pairs of variables are correlated. The expressions
may be easily and efficiently evaluated. The Monte Carlo
procedure was initially implemented merely to check the
accuracy of the analytical formulae, although in the cases
tested here it has also proved to be efficient and may even be
practical for routine use. The advantage of the error analysis

" methods derived in this paper is that we can assign a level

of confidence and thus significance to calculated initial Os
isotopic compositions and chondritic-mantle model ages, es-
pecially for Archean rocks.
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APPENDIX
A.1. The Effect of Correlated Variables

If any pair of input variables are correlated then extra
terms must be added to Eqns. 8, 9, 10, and 14. In the most
general case of all pairs of variables being correlated, the
extra terms which appear on the right-hand side of equation
(8) are

—[Copmioaoy + Coioao, + Cyaona,le™  (Al)

where C,, is the correlation coefficient between parameters
r, and \, and all other coefficients are expressed similarly.
(For details on how to calculate correlation coefficients, see
below.) For Eqn. 9, the extra terms on the right-hand side
are
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For Eqn. 10, the extra terms are
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In addition g7; = —g7 and g3, = —g’ can be evaluated

using Eqns. 11 and 12. For Eqn. 14, the extra terms are
2[Ci2010:8182 + Ci301038184
+ Ci4010:8184 + C1p010,818% + C23020:8385
+ Cr40:048284 + Copn0200828% + C3403048384
+ Cia0308381 + Capou0rgi8r] (A7)

where all first derivative terms, g/ etc, are given by Eqns.
15 to 17. Again, these extra terms are simply functions of
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the estimated value and standard deviation of each of the
original variables, and can be evaluated without difficulty.
The calculation of correlation coefficients is a standard
procedure in statistical analysis. A positive error correlation
between two parameters indicates that to the extent that the
measured value for one parameter is too high (or too low),
the measured value for the other parameter will also tend to
be too high (or too low). A negative error correlation implies
the opposite. Usually a correlation coefficient between any
two variables, say x and y, can be determined experimentally
from a set of ‘‘measurements’’ of the pair of variables. If
we assume that we have n measurements, [(x;, y;) i = 1,

..., n], then the correlation coefficient between the two is
defined as (see Papoulis, 1991),
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where, as above, (7., 7,) and (o,, 0,) are, respectively, the
means and standard deviations of the two sets of measure-
ments. This simple expression may be used to find correla-
tion coefficients for each pair of input variables. If C,, is
equal to zero, then the two parameters are completely uncor-
related. This is often assumed to be the case if no other
information is available.



