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ABSTRACT

SaMBRIDGE, M.S., TARANTOLA, A. and KENNETT, B.L.N. 1991. An alternative strategy for non-
linear inversion of seismic waveforms. Geophysical Prospecting 39, 723-736.

A common example of a large-scale non-linear inverse problem is the inversion of seismic
waveforms. Techniques used to solve this type of problem usually involve finding the
minimum of some misfit function between observations and theoretical predictions. As the
size of the problem increases, techniques requiring the inversion of large matrices become
very cumbersome. Considerable storage and computational effort are required to perform the
inversion and to avoid stability problems. Consequently methods which do not require any
large-scale matrix inversion have proved to be very popular. Currently, descent type algo-
rithms are in widespread use. Usually at each iteration a descent direction is derived from the
gradient of the misfit function and an improvement is made to an existing model based on
this, and perhaps previous descent directions.

A common feature in nearly all geophysically relevant problems is the existence of
separate parameter types in the inversion, i.e. unknowns of different dimension and character.
However, this fundamental difference in parameter types is not reflected in the inversion
algorithms used. Usually gradient methods either mix parameter types together and take little
notice of the individual character or assume some knowledge of their relative importance
within the inversion process.

We propose a new strategy for the non-linear inversion of multi-offset reflection data.
The paper is entirely theoretical and its aim is to show how a technique which has been
applied in reflection tomography and to the inversion of arrival times for 3D structure, may
be used in the waveform case. Specifically we show how to extend the algorithm presented by
Tarantola to incorporate the subspace scheme. The proposed strategy involves no large-scale
matrix inversion but pays particular attention to different parameter types in the inversion.
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We use the formulae of Tarantola to state the problem as one of optimization and derive the
same descent vectors. The new technique splits the descent vector so that each part depends
on a different parameter type, and proceeds to minimize the misfit function within the sub-
space defined by these individual descent vectors. In this way, optimal use is made of the
descent vector components, i.e. one finds the combination which produces the greatest
reduction in the misfit function based on a local linearization of the problem within the
subspace. This is not the case with other gradient methods. By solving a linearized problem in
the chosen subspace, at each iteration one need only invert a small well-conditioned matrix
(the projection of the full Hessian on to the subspace). The method is a hybrid between
gradient and matrix inversion methods. The proposed algorithm requires the same gradient
vectors to be determined as in the algorithm of Tarantola, although its primary aim is to
make better use of those calculations in minimizing the objective function.

INTRODUCTION

In the non-linear inversion of seismic waveform data, one attempts to obtain an
earth model for which the predicted seismogram most closely resembles the
observed seismogram. This process presents two problems. Firstly, given an earth
model we must solve the forward problem of generating the predicted seismogram,
and secondly, we must solve the inverse problem of obtaining the optimum earth
model. This paper is concerned only with the inverse problem and not the forward
one, which requires the numerical solution of the elastic wave equation. We describe
an alternative strategy for the non-linear inversion of seismic waveforms which
represents a natural extension to the technique used by Tarantola (1986) in the
inversion of multi-offset seismic reflection data.

A convenient way of dealing with the inverse problem is to state it in terms of a
large-scale optimization problem in a functional space. One usually defines some
misfit function which describes quantitatively the discrepancy between observed and
predicted seismograms, and then attempts to find the earth model for which this
function is minimized. Numerical methods currently available to solve this type of
problem are limited by computational resources. In non-linear inverse problems,
involving only a few degrees of freedom, one may employ a systematic search within
a predetermined range of models, e.g. in the earthquake location problem
(Sambridge and Kennett 1986). However, as both the size and complexity of the
problem increase, random (Monte Carlo) searching for an optimal earth model
proves to be too expensive and therefore unfeasible. In such cases one usually
employs an iterative method which is computationally less expensive. Of these,
gradient methods form the only practical approach for very large scale problems.
Consequently they are used extensively in waveform inversion.

In most waveform inversion studies one usually attempts to invert for more than
one parameter type, e.g. P- and S-wave velocity (or impedance) and density
(Tarantola 1986; Mora 1987), or possibly density, elastic coefficients and some
source function or surface traction as in Tarantola (Lecture at Majorana Interna-
tional School of Applied Geophysics. Erice, Sicily. 1987). The inclusion of funda-
mentally different parameter types, which may be of different dimension or even
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constrained by different data types, changes the nature of the inverse problem.
Usually each parameter type affects the data by different amounts and so the level
of constraint imposed on each may vary significantly. This aspect is well known.
Most gradient methods deal with it either by iterating to convergence, in the hope
that once the more dominant parameters have converged the data will effectively
contain more constraint on the others, or by inverting for different parameter types
sequentially, i.e. one at a time while keeping all other types fixed. In fact the use of a
simple gradient technique may significantly bias the inversion in favour of one
parameter type at the expense of the others.

Mora (1987) uses a simple preconditioned conjugate gradient method which
attempts to invert for all parameter types simultaneously. Tarantola (1986) suggests
a similar technique using a sequential type inversion. In his method a hierarchy is
introduced between different parameter types by the choice of model parametriza-
tion. Each type is then optimized in turn using a gradient method. This assumes
that the parameter types are effectively decoupled by the parametrization and so
may be determined independently. Our objective is to demonstrate how a
‘subspace’ scheme (a technique previously applied to other non-linear inverse prob-
lems by Kennett, Sambridge and Williamson (1988), Williamson (1986, 1990) and
Sambridge (1990)) may be applied to a non-linear waveform problem. The subspace
scheme deals with the same multiparameter type problem but it neither optimizes
each parameter type sequentially whilst constraining all others, nor does it combine
all parameter types into a single gradient. Instead it allows all parameter types to be
adjusted simultaneously and also removes the possibility of artificially biasing the
inversion towards the more dominant parameter types, e.g. by excessive iterations
for a single parameter type or by using some unrealistic weighting scheme. This is
demonstrated by an example which shows how, in a simple problem involving two
parameter classes, both the two previous algorithms lead to a non-optimal improve-
ment in the model, whereas the new procedure results in the best combination
adjustments to each parameter type and in this sense achieves the most unbiased
step. The new scheme makes use of exactly the same gradients calculated in the
original method and is therefore no more computationally expensive in this respect.
Furthermore it has been found to improve convergence rates over that of simple
gradient techniques in the inversion of seismic reflection data (Williamson 1986).

The proposed strategy is in fact only one particular application of a subspace
method, a general class of methods which have recently been found to be very useful
in large-scale non-linear optimization problems involving multiparameter classes
(Kennett and Williamson 1987; Sambridge 1988, 1990). Since the alternative strat-
egy applies only to the optimization problem, it has applications in many non-linear
inverse problems. We will not describe in detail the theoretical background required
for the non-linear inversion of seismic waveforms since it is not essential for an
understanding of the inversion strategy proposed. In order to demonstrate the tech-
nique applied to waveform inversion, we consider the non-linear inversion of multi-
offset seismic reflection data, using much of the formalism developed by Tarantola
(1986, lecture at Majorana International School of Applied Geophysics, Erice, Sicily
1987). We show how the subspace method may be used to extend the algorithm of



Tarantola (1986) without significant reorganization. In addition to the parameter
types considered by Tarantola (1986), i.e. P- and S-wave impedances and density.
variations, we also include source characteristics as inversion parameters. This is
necessary in some cases of waveform inversion where the source function is not fully
known. It also provides a useful demonstration of how the new strategy may be
extended to include any number of parameter types.

We compare the proposed technique with the existing single and conjugate gra-
dient methods currently in use in waveform inversion and suggest that it would be
superior in terms of efficiently minimizing a non-quadratic misfit function. The
method separates each parameter type, reducing bias, without introducing artificial
constraints, i.e. holding parameters fixed while allowing others to vary. For this
reason we suggest that it results in a more natural and less-biased solution to the
non-linear inverse problem.

NON-LINEAR INVERSION

Most non-linear inverse problems may be stated in terms of an optimization
problem. Usually one is faced with a general problem of the form: find the vector m
which minimizes the functional F(m) given by

F(m}=12'{“dohs_'d:a|]|z+ "m_mq”:}} (“

where d,,, is a vector representing the observed data set, m is a vector representing
an earth model, m, is some reference a priori model, | .| is an L,-norm defined
through a covariance operator C such that ||| ={(C '@ @), and (.,.D> is a
duality product (see Tarantola 1987). The precise definition of the duality product
will depend on the nature of the data and the model parametrization involved (for
the seismic reflection problem discussed below an explicit definition is given for
each). Introducing Cp, as the covariance operator describing data uncertainties, Cy,
as the covariance operator describing uncertainties in m,, we write

F(m) = %[(CI; 1(dehs = dcaIJ' [dobs = dcnl)> + <CG l[m e mo)' (m — mn»l

In general the relationship between m and d is non-linear. We assume that, given
any model m, we can calculate the corresponding data d and represent it by

dcal = g( m)-:

where g is a non-linear operator describing the forward modelling,

The general formulation above may be applied to many inverse problems. In
seismic experiments the vector m describes a model of the real earth. Usually this
consists of a set of functions describing some physical properties of the earth. All
vectors m belong to a functional space known as the “model * space M. Similarly we
call the space containing all data vectors d, the data space D. In the inversion of
multi-offset seismic reflection data, one is usually presented with a series of shots at
X, and a series of receivers at x,. For each shot the data may be represented by a set
of seismograms, usually representing surface displacements u'(x,. t),i =1, ...3.
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Tarantola (1986) uses three functions to describe an earth model, namely P-wave
impedance [P(x), S-wave impedance [S(x) and density p(x). In addition we include
here the source function ¢(x, ¢), i = 1, 3, as parameters in the inversion. For alge-
braic simplicity we consider only a single source and use a vector ¢(x, t) to represent
the three components when convenient, but the treatment given here may easily be
generalized to several sources. We may now write the model vector explicitly in
terms of its components

m = {¢(x, 1), IP(x), IS(x), p(x)} )

If we ignore the possibility of cross-variances between model parameter types, i.e.

0 C;
then (1) may be rewritten as
F(m) = 3{ll ugp — ueqy || + || IP(x) = IP,(%) [|* + || IS(x) — IS,(x) |2
+ 1p(x) = poX) 17 + | dx, 1) — bl £) |2}, (3)
where the duality products in this case are written:

for the observations,

T T
i Upps — Uy ” ? = z J de J' d:‘[ui{x” r]f.ul:us =4 ui[xv r)cal]
r JO ]

x Wi, t', x,)[W(x,, 1) — w(X,, )],

and for the model functions,

I IP(x) — IPy(x) |* = j dV(x) J dV(X)[IP(x) — IP(x)]
v ¥V

x Wy(x, X)[1P(x) — IP,(x)],

with similar expressions for 15(x), p(x) and ¢(x, t) (the last of which involves inte-
grals over space and time). The weighting functions W*(z, r’, x,) and W(x, X) etc.
are the integral kernels of the inverse of the covariance operators Cp and C,p respec-
tively. For instance if one has a known covariance function C(x, x’), the correspond-
ing weighting function W(x, x’) is determined by the equation

JC‘(x. xX)Wi(x, x") dV(x") = d(x — x").
L
(Tarantola (1987, ch. 7) gives several examples of common covariance functions and

the corresponding weighting functions.) The functions dl(x, ¢), [P(x), IS(x), p(x) are
related to the observed data through the elastic wave equation. Given any model of
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the medium we determine the corresponding surface displacements at the receivers
by some numerical solution of the elastic wave equation (e.g. Vireux 1986). This
constitutes the forward problem and will not be dealt with here. This paper is con-
cerned only with the solution of the optimization of F given by (3). We attempt to
find the set of functions {@(x, t), IP(x), IS(x), p(x)} such that the functional F is
minimized.

Although we have represented the earth by a set of functions, ultimately the
problem is discretized so that it is suitable for numerical computations. In practice
we are faced with a very large scale problem (~ 10°-10° degrees of freedom). Since
the functional F(m) is in general non-quadratic, any techniques based on a local
quadratic approximation of the objective functional F must be iterated. The second-
order expansion of the misfit functional F about an a priori model m, defines the
gradient vector ¥ and the Hessian H,

F(m + om) = F(m) + {(f, 6m) + £(H om, dm) + O(|| m ). (4)

The gradient ¥ is an element of the dual of the model space, where dual and model
space elements are related through the model covariance operator Cy by

¥ =CyuY, (3)

where v is the direction of steepest ascent in model space (we denote all elements of
the dual by a hat °). We are not concerned with the details of calculating y for any
particular problem. Tarantola (1986) shows how it may be determined for each
parameter type in the reflection problem. We merely summarized the formulae here
for completeness.

Essentially it requires the solution of two problems. First we take a model m and
solve the forward problem, i.e. through some numerical solution of the elastic wave
equation, to obtain the predicted surface displacements at the receiver positions X, .
which we write as

ai(x,, o), [=1,...3

This field is labelled the *current’ field. We then use the weighted residuals between
observed and predicted displacements as sources for a second field

u:al(xrv t) . u:;bs(xr' I)

Sii(x,, 1) =
W) a¥(x,, 1)

(6)
where we have assumed for ease of notation that errors are uncorrelated in the data
set, which is represented by choosing the weighting functions

Wie, t, x,) = o3(x,, t)095(t — 1).

These sources are then back-propagated in time through the medium to produce the
*missing " field

af(x, 1), i=1,...3

A time correlation between current and missing field yields the required gradient.
(For a detailed description of this procedure see Tarantola (1986).) We obtain for
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2ach parameter type:
¢: 5i(x, 1) = afx, 0);

r
P:  SIP(x) = — 2x(x) j deid(x, o)idi(x, t);
0
o~~~ T s s
5 SIS(x) = — 4f(x) J de{@*(x, OiE*™(x, 1) — @'(x, ai(x, 1)} ;
0

T
p: Ip(x) = J de{ii(x, Dir(x, t) + [23(x) — 2B*(x)]i(x, Hui(x, 1)
0

+ 283 (x)E*m(x, )E*™(x, 1), (6A)

vhere it = ¢u/ét, u’ = 6u'/éx’ and «(x) and B(x) are the compressional P-wave and
»-wave velocities respectively. From here on we shall assume that the parts of the
rradient vector, i.e. d¢(x), S P(x), 515(x), dp(x), may be determined without difficulty
\nd for ease of notation we shall rewrite this vector below as ¥ = (¥,,, ¥ip. ¥is. 7,)-

INVERSION ALGORITHMS USING GRADIENT METHODS

{aving determined the gradient ¥ of the misfit function, the steepest ascent direction
3 given by (5). A steepest descent algorithm is of the form

m,., =m, — ’:'n Y {?)

émﬂ' = = ;'H‘YH‘

‘here 4, is a scalar chosen so that F(m) is minimized along the step direction (see
elow). At each iteration the model is updated by taking a step in the steepest
escent direction. Iterations are halted when some convergence criterion is satisfied.
‘his type of method is notoriously slow in converging. A more practical approach is
> employ some kind of conjugate gradient method. Mora (1987) uses a precondi-
oned conjugate gradient technique to minimize F(m). In this type of method the
rst iteration is exactly as above (n = 1). Thereafter the descent direction is modified
» incorporate each of the previous directions, i.e. to y, one adds a vector pro-
ortional to dm,_,. In this way after n iterations y, has contributions from all
revious n descent directions. Conjugate gradient methods have been found to
seed convergence at practically no extra computational cost.

All these methods introduce only one new descent direction at each iteration
ven by (5). Therefore they essentially group together all components of vy, ie. y,,
o Vis+ 7, iNto a single direction. Introducing the components of m into (7) gives

éqbn == )-nfcwdén + ¢n - ¢o}-
8IP, = — i,{CpbiP, + IP, —IP,},
8IS, = — i,{CisdiP, + IS, — IS,},

Ovl‘)n= _;'n:Cp()l.[)n+pn_pu:" {8}
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where the second terms on the r.h.s. of (8) are due to the quadratic model term in
the definition of F(m) in (3). The algorithm given by (8) may be thought of as a 1D
subspace scheme, i.e. the optimization of F(m) in the complete model space has been
replaced by a 1D optimization of F down the direction of steepest descent. The
single free parameter 4, is a constant for each parameter type and so the adjustment
0¢,,d0IP,, dIS,, dp,, to each model parameter type at the nth iteration is governed
by the properties of the overall descent direction and not by its individual direction.
This feature is quite common. Many gradient algorithms actually ignore the differ-
ences between fundamentally different parameter types and simply treat them
equally.

Tarantola (1986) suggests an algorithm which does make explicit use of the indi-
vidual gradients, but in a rather coarse manner. He defines a hierarchy between
parameter types and then inverts for each one in turn using a preconditioned
steepest descent algorithm similar to (7). Usually when we include source terms, as
in our example, we must invert for these first, then for P-wave impedance, S-wave
impedance and finally density. This produces an algorithm of the form:

1: invert for the source function ¢(x) until convergence using
00X, 1) = — A2{C,88,(x, t) + (X, t) — (X, 1)} ;
: invert for P-wave impedance I P(x) using
SIP{x) = — AP{Cp8IP(x) + IP{x) — IP(X)};
3: invert for S-wave impedance IS(x) using
SISyX) = — AS{Cis618,(x) + IS(x) — IS (X)};
4: invert for the density p(x) using
Opdx) = — A{C,p(x, 1) + p(x) — p(x)}, (9)

where the free parameters A2, A, A, 42 are found such that the functional F is
minimized along each individual descent direction.

In this algorithm each parameter type is adjusted while keeping the others fixed
either at their a priori values or their updated values. Although this does allow the
update to each parameter type to be determined by its own gradient, it essentially
assumes independence between parameter types, which is never really the case. The
user must decide, usually without much guidance, when to stop iterations on one
parameter type and move on to the next. Ideally when inverting for one parameter
type we should not neglect all others even if the problem does contain some natural
hierarchy, and certainly not if it contains none.

We claim that neither of the two approaches described above is optimal. Both
require the calculation of the individual gradient components, ¥,. ¥, ¥is. ¥, but
neither make the most efficient use of them. The subspace approach, on the other
hand, makes optimal use of the gradient components, and is therefore more efficient
than either of the other two methods. The differences are especially noticeable in
cases where the contours of the objective function are strongly aligned along one of
the axes. Returning to the full problem, we must find the optimal combination of

(397
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gradient vector components. This may be achieved quite easily using a quadratic
approximation to the misfit function within the subspace defined by the descent
directions 7,, Ve, Yis» 7,- We proceed as follows. Given the misfit F at a point m in
model space, we approximate its value at a point (m + ém) using the second-order
expansion shown in (4). If we restrict the movement in model space to our chosen
subspace, 1.e.

k
om= ) 2" (10)

i=1

where k is the number of subspace directions and the vectors a'” are given by

Yo 0 0 0
: 0 . Yip 0
(i _ (2 ¥ (3) — ; 4 — i 11
a o @ 0 a Ve a 0 (11)
0 0 0 Yo
then we have, using (4),
k 1 k k .
F(m +6m) = F(m) + Y a<¥, 2" +5 ¥ ¥ «2<KHa? a®) + - (12)
i=1 <i=1 j=1
To find the optimal coefficients x; we set ¢F/éx, = 0,for i = 1, .... k, and obtain
» k 21
2" + Y a(Ha®, aP» 20, i=1,...k (13)
j=1

Since the duality product (Ha'?, a9} is a scalar we may define the k x k matrix H
such that

(H),; = (Ha®, a?) (14)
and the k-dimensional vector 8 where

8; = <{¥, a'). (15)
Rearranging (13) gives

g=—MH);0, i=1L..k (16)
or if & is the vector of k dimensions with components #; then

a=—H™'0. (17)

The update to the model is then given by (10). The k x k matrix H is determined
using (14). Since k is the number of subspace directions which is usually quite small
(4 x 4 in our case) then H is simple to invert. In general the coefficients x; may be
found without difficulty.



To demonstrate that the subspace approach makes optimal use of the gradient
partition vectors and in this sense results in a less-biased step at each iteration, we
consider a simple example problem where the model vector may be divided into two
parameter types or classes (not two dimensions).

[px)
m= l:s(x}]’

where p(x) and s(x) are vectors of some dimensions N, and N, respectively, and m
has dimension (N, + N,). The steepest descent direction is then given by

- "fv]
! [Ys ’
where

%w=Cl¥t L=C%:

If we project the contours of the misfit function on to the subspace defined by the
steepest descent vector components —y, and —v,, then within this subspace, y is in
general non-optimal, i.e. does not pass through the minimum of the projected con-
tours. This will still be the case, even in a linear problem where the contours are by
definition elliptical. Figure 1 shows this more clearly, where the perpendicular axes
represent the vectors [—y,, 0]T and [0, —7,]7 and the steepest descent vector is
given by their sum. A single iteration of a steepest descent algorithm seeks the
minimum value of the objective function along the dotted line at 45° to the axis and
arrives at the point Py while a sequential method arrives at P, (taking the P-
parameter type first and then the S-parameter type). The subspace approach on the
other hand performs a quadratic optimization of the objective function in this plane
and therefore by definition will arive at P,,.

By using the subspace technique we take a much better step at each iteration
than those given by the single descent algorithm or the sequential type algorithm.
Furthermore, the direction of the single descent term y is dependent on the a priori
choice of the covariance operators C,, Cp, Cs, C, through (5). So the relative
adjustments of each parameter type will also be influenced by this choice. Using the
above approach we essentially perform a least-squares inversion within the sub-
space, i.e. we project the full Hessian on to the subspace and solve the least-squares
problem. In this case the chosen descent direction is independent of the relative
“sizes’ of the subspace vectors. In the analogous discrete inverse problem this effect
is described well by Williamson (1986).) So it may be seen that the subspace tech-
nique to a certain extent removes the implicit biasing which occurs from grouping
each model parameter type into a single gradient vector. Conjugate gradient
methods, which employ the overall descent direction y, will suffer from similar
down-weighting problems as in the single gradient method. Additionally conjugate
gradient methods work by making use of previous descent directions and so retain
old information on the curvature of the misfit function. Subspace methods, on the
other hand, always use current information and so, one presumes, will be more
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Steepest descent direction

S partition ol steepest descent vector

-

P partition of steepest descent vector

FiG. 1. Elliptical contours projected on to the 2D subspace formed by partition of the gra-
dient vector. N.B. The overall steepest descent direction given by P, is non-optimal within
the subspace.

useful in strongly non-linear problems where previous descent directions quickly
become obsolete. Several numerical examples of subspace schemes applied to multi-
parameter type optimization problems are available. Kennett et al. (1988) give
examples of a non-linear traveltime reflection problem involving P-velocity and
reflector depth parameters and a linear inversion of earthquake arrival times for P-
and S-velocities and hypocentral location parameters. Williamson (1990) also gives
examples of the reflection problem and Sambridge (1990) uses the subspace scheme
in a non-linear inversion for 3D velocity fields and earthquake parameters. In each
of these studies the subspace scheme is a useful tool in dealing with several param-
eter types simultaneously without the need of a sequential or single gradient
method. Kennett et al. (1988) also compare a subspace algorithm with a standard
steepest descent scheme and find it makes optimal use of the gradient vector
partitions.

COMPUTATIONAL ASPECTS

In general, if we have a steepest descent algorithm of the form (7), then the ‘optimal’
step length is usually defined as the one which gives the greatest reduction in the
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misfit S. If the problem is linear, i.e. F(m) is quadratic in m then it is easy to show
that

_— 3 Va2
- ® A

where H is the Hessian of the misfit functional F(m). Since the problem is non-
linear, this value is only an approximation. If F(m) is given by (3) then it may be
shown that

(18)

H,~ Gl C5'G, + Cg!, (19)

where G, is the functional derivative of the non-linear operator g at the point m,
and G is the transpose operator (Morse and Feshbach 1953). In practice the
explicit calculation of G, is avoided. To show how this is done we rewrite the
denominator in (18) as

CH, T3 Yo = <61 C5 G ¥us Yo) + (Cia* Yus 1o
=<{Cp'G¥n» Gu¥w> + {Cxt* Yus To)- (20)

The second term may be calculated easily. For the first we require only the oper-
ation of the derivative operator on the descent direction. In the steepest descent
algorithm we need to calculate the vector G,y,. This may be done with explicit
determination of G by solving the forward problem, i.e. we perturb the model by
some small amount eédm and determine the new predicted data set g(m + edm), then
use the expression

g(m + edm) — g(m)
: .

Gém ~

(21)

In the sequential inversion of Tarantola this process is repeated for each parameter
type in order to calculate the step lengths 42, A, etc. In the subspace scheme
described above we perform exactly the same calculations. To demonstrate this we
rewrite (14) using the Hessian approximation (20) and obtain

[H)ij = <GTC6]‘G2“), aUl> L (C;‘a“’, alﬁ})
=, <C5 I.Gali}‘ Gal‘j]> + <C; lali}‘ am]>
={Cp'b", b + (Cy'a?, a)), (20)

where we have introduced the vectors b such that b’ = Ga'”, each of which requires
the solution of the forward problem. (In fact in calculating the vectors b we
perturb only part of the model each time we solve the forward problem as each
subspace direction depends on only one parameter type.) It is thought that in most
problems the computation required to solve this series of partial forward problems
would be comparable to that required by a single complete forward modelling. In
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ase a partial forward solving is required to determine each of the step lengths
F, etc, in the Tarantola algorithm (9).

y substituting the vectors a'”! from above into (20), the contribution to H from
:cond term becomes

), =4Cs e, 14 fori,j=1,
= {Cp' Ve Yie) fori,j=2,
={Cis' Yis> Y1s) fori, j=3,
=<C; o 1,y forij=4,

by substituting (11) into (15) we see that these terms are also the components of
ector (8); (i=1, ..., 4). So having determined the vectors b, i = 1, ..., 4) (by
al forward solving) we can evaluate all terms in H and 6 by evaluating the
opriate duality products. Note for our earth model given by the set of functions
t), IP(x), I18(x), p(x)} the duality products become integrals over time (for the
:e) and earth volume.

SUMMARY OF PROPOSED INVERSION ALGORITHM

key features of one iteration of the proposed algorithm may be summarized as
WS,

. From some a priori model {¢(x, t), IP(x), IS(x), p(x)} solve the forward
lem to find the predicted surface displacements at the receiver positions ul,(x,,
en calculate the weighted residuals as given by (6).

. Back-propagate the weighted residuals to determine the missing field.

. Time-correlate the current and missing field to find the descent vectors with
:ct to each parameter type 4, Yie, Yis» ¥, @5 in (5) and (6A).

. Solve the forward problem after perturbing each parameter type and calculate
ectors b (i = 1, ... 4) given by (21).

. Determine the components of the 4 x 4 Hessian using the vectors b and
Hence calculate the subspace coefficients «; given by (17).

. Update all model parameters using (10).

CONCLUSION

paper demonstrates how the previously proposed subspace scheme may be
ied to the non-linear inversion of multi-offset seismic reflection waveforms. It
not make claims based on an actual application of this technique to a real data
out instead restricts itself to a comparison with two previously used techniques
demonstrates, using a simple example, how the subspace technique is superior
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in this case. The application of the gradient subspace technique to the inversion of
seismic reflection waveforms produces a simple algorithm which requires the same
gradient vector calculations as the algorithm of Tarantola (1986) devised for the
same problem (without sources as parameters). Dividing the steepest descent vector
into its components and minimizing the misfit function within this 4D subspace
produces optimal use of the individual descent directions (based on a local lineariza-
tion of the problem within that subspace). This is the most important feature of the
proposed scheme and it alone makes it preferable to single gradient methods. The
algorithm uses only up-to-date local information at each iteration and does not
retain previous descent directions. Finally it provides a natural way of incorporating
the subspace strategy into the inversion of seismic reflection waveforms.
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