Electromagnetic damping of elastic waves: a simple theory
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An order-of-magnitude estimate is made (o check the effect observed in previcusty deseribed
experiments in which vibrations in a metal bar were damped by an applied magnetic field that
was strongly non-uniform. Though the awkward geometry of the experiment has prevented an
accurate analytical solution of the problem, some reasonable assumptions allow a simple
expression for the effect to be obtained directly, This expression is in agreement with the
experimental resuits regarding the dependence of the effect upon frequency, bar dimensions,
density, electrical conductivity, and magnetic field gradient,

Introduction

This note refers to a set of experiments, re-
ported previously by the authors, in which the
natural vibrations excited in a metal bar were
attenuated by the application of a strongly non-
uniform, but steady, magnetic field (Lilley and
Carmichael 1968). The mechanism of attenua-
tion is the common onc of eclectrical eddy-
current damping. As the part of the bar in the
region of the magnetic field gradient vibrates,
it expericnces a changing applied magnetic
field which induces a secondary field in the
opposite sense. The secondary field is supported
by electrical eddy currents in the bar, These
interact with the applied magnetic field to give
a Lorentz force opposing, and thus damping,
the motion, The encrgy lost by the bar is dis-
sipated as heat due to the resistive component
of the eddy currents,

Although well-established laws of classical
physics govern the effect. the geometry of the
apparatus and of the upplicd magnetic field
used in the experiments in question has proved
o awkwurd for an anadytical solution of the
problem to be obtained, Some simplifications
of the problem, however, which are reasonable
upon  physical  grounds, cnable w practical
order-of-magnitude estimale of the cffect to be
made directly.

The problem is essentially concerned with a
boundary layer effect. An allied problem, deal-
ing with the same phenomenon taking place
remate from boundaries, has been treated by
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Lilley (1967) and Lilley and Smylie (1968).
The interest to geophysics of this physical pro-
cess is ils possible relevance to interaction be-
tween magnetic fields in the core of the earth
and the {ree modes of clastic vibration of the
carih.

The Problem Simplified

The complete problem requires finding solu-
tions of the electromagnetic induction equation,
and the equation of motion of the bar, for an
applied magnetic field as generated between the
poles of a “horse-shoe™ electromagnet.

The first simplification derives from the fact
that the magnetic non-uniformity is short com-
pared to the wave-length of the vibrations of
the bar. Thus the dominant energy loss occurs
in those sections of the bar situated in the
regions of magnetic field gradient; and, in
these, the effect of strain can be neglected.
This is equivalent to ignering (B.V)uv relative
to (. 7)8 in the expansion of curl (v X B) in
the induction equation (Roberts 1967, p. 35,
m.k.s. units),
aB I

C=curl (v x B) + — VB
it Mo

L1)

where ¢ orepresents velocity, 8 magnetic field,
p permeability, o clectrical conductivity, and
¢ is time. These points are demonstrated by the
first two experiments described in Lilley and
Carmichael (1968).

To cstimate the energy loss, therefore, a
model is taken of a rigid section of bar oscil-
lating in a region of non-uniform field. The
non-uniformity is idealized as one of uniform
gradient, as shown in Fig. 1. For a bar that
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Fig. 1. Diagram showing the idealized applied

magnetic field profile, (top), and the eddy current
channel regions, (bottom}.

maintains its harmonic motion during the at-
tenuation of its vibrations, the attenuation time
constant is given by {Knopoff 1964),

[2] Yo = wAlE/4=E

where Al is the energy lost by the bar per
cycle of vibration, E the total mechanical
energy of the bar, » the frequency of vibration,
and y,, the attenuation coefficient.

The bar is of length L, width W, thickness +,
and density ¢. The uniform magnetic gradient
is applied across it for a distance C, as shown
in Fig. 1. The section of the bar to which the
gradient is applied oscillates with velocity o,

v =g Sin wf

Consider the particular rectangular section
of bar, of dimensions W by C, to which the
gradient is applied. Within the rectangle, every
point experiences & simultancous change of ap-
plied magnetic induction given by vop sin wt,
where p is the measure of the magnetic gra-
dient, This is an important step. Because the
currents flow in the bar, a transformation must
be made to a coordinate system moving with
the bar, and relative to this the applied field is
not seen to move. What is observed at any
point is the variation of the strength of the
applied field with time. The time rate of change
of applied flux through the rectangle is thus

d¢

& CWuogp sin wt

which is the same effect as if the bar were

1305

stationary, and an alternating field, uniform in
space, were applicd. Outside the rectangle,
there is no change in applied flux sensed at any
point in the bar.

The changing applied flux will induce an
opposing secondary flux in the bar, supported
by eddy currents, and the dissipation of
encrgy by these eddy currents represents the
energy loss by the bar as the vibrations are
damped. The crucial problem is to find the
eddy current distribution, and the accurate
solution of this for the geometry in question has
proved to be too difficult. However, from the
variety of more simple problems in electro-
magnetic theory that have been solved rigor-
ously, such as the incidence of an electromag-
netic wave upon a plane conductor, and the
flow of an alternating current in a wire, it is
reasonable to predict that the eddy currents
will flow around the perimeter of the rectangu-
lar section of bar, largely restricted to two
paths, one on each side. The paths extend one
clectromagnetic  “skin-depth” in from the
boundary edges of the section, as shown in
Fig. 1. The assumption is implied here that the
skin-depth is small compared to the bar dimen-
sions i.e.

3] s<W, s8<C, <+
where the skin-depth § is given by
5= 4/ 2
MTwW

In like manner, an order-of-magnitude esti-
mate of the energy dissipation of the eddy
currents may be made, by calculating the
energy which would be lost were the electro-
motive force causing the eddy currents to be
applied steadily to the loops in which the eddy
currents are channelled. By Faraday’s law, the
electromotive force causing the eddy currents
around the perimeter will be of the same order
as the change in flux through the area enclosed.
Each loop, as drawn in Fig. 1, has resistance R,

20C + W)
~ —
od

R

The pOWEI‘ loss is then

do\? ad? Az a2, 2 il
(d)/R»vWCvaO 1% ¢t
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TABLE T

Comparison of experintent and theory for the atlenuation of standing waves by an applied field gradient, as
characterized by the dependence of the altenuation constant, v, upon the parameters listed

Theoretical dependence

Parameter Dependence observed

Local velocity Power of 2

Freguency Power of —1.0 {brass)
—§.1 (A1)
—1.2 (Cu)

Length of bar Power of —1

Thickness 1:0.84:0,5%

(3 different bars)
Bensity 1:0.23:0.31

(Al:Cu:brass)
Eiectrical conductivity

condition fails. (See text.)

Field gradient Power of 2

No dependence; brass shows anomalous
behavior when conductivity

Power of 2
Power of —1

Power of —1
1:0.71:0.52

(inverse dependence)
1:0.30:0, 3%

No dependence, under the conduetivity
conditions of the theory.

Power of 2

and the energy dissipation over one cycle is
2a(v,pCW)?
TH{CF Wi
The total mechanical energy in the bar is
E=3WLV

for a bar hanging freely and vibrating in a
longitudinal mode with maximum velocity V.
Then, using [2]},

[4]

AE

Y
YL~

where

¢ =2C*WHC + W)

& function of apparatus geometry only. If, in
particular, the magnetic gradient is applied
across an antinode of the bar,

Uy = Vo
and
2
o~ 2T
H IuprL

An interesting feature of this equation is its
independence of electrical conductivity, once
the conditions {3], which involve conductivity,
are satisfied.

Comparison with Experimental Results

The results of the experimental investigation
of the effect are campared in Table I with the
expression for the effect as obtained in the
previous scction of this note. That the agree-

ment is quite good to some extent justifies the
order-of-magnitude approach taken in deriving
the expression [4]. The most interesting and
diagnostic result is related to electrical con-
ductivity, as restricted by the inequalities [3].
Of the lengths W, C, and 7 the last is the least
for the experiments described in Lilley and
Carmichael (1968), The most restrictive con-
dition is therefore

§< 7

Experiment 3 of Lilley and Carmichael (1968)
was carried out using aluminum, brass, and
copper bars 3.2 X 10=*m (% in.) in thickness,
in the frequency range 700 to 10000 H=.
Some appropriate skin-depths are given in
Tabie 11 The table shows that the inequality
is satisfied except for brass at frequencies below
1750 Hz. Iaspection of Fig. 4 of Lilley and
Carmichael (1968) shows quite clearly the
different frequency dependence of the decay
constant for brass in this range, where the
inequatity, involving clectrical conductivity, is
no longer satisfied.

Finally it should be noted that the uneven
power {of minus one) by which the attenuation
constant depends upon frequency, indicates that
the damping is caused by a non-linear mecha-
nism (Knopeff and MacDonald 1958). The
damping mechanism in this case is the Lorentz
force, F, opposing the motion. It is given, at
any point, by

F=JXxB£H

where [ is the local current density. Now J is
related to B by
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TABLE 11

Some values of the electromagnetic skin-depth in the frequency

range of the experiments

Skin-depth (m)

Frequency
(Hz) copper aluminum brass
700 2.5 x [0-3 3.2 % 1073 5.1 x 1073
1750 1.6 % 1073 2.0 x 10-3 3.2 x 1073
9.5 x 10-% 1.2 x 1073 1.9 x 103

5000

J=1/pcurl B

and B is refaled to v by the induction eq. [1].
The dependence of F upon v may therefore be
expected to be more complicated than that of
simple linearity.
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