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81, INTRODUCTION

Because of the natural interest of howe sapiens in his surroundings, much of
what is now classified as geophysics formed the earliest science. For example,
the geometry theorems of the ancient Greeks contributed to fundamental geophysics
in the sense that they enabled the mensuration of areas of the earth's surface.
Within the last several hundred years, right up until moderr times, the progress
of science generally has been closely associated with progress in earth and plan-
etary physics: Gilbert's sixteenth century work on geomagnetism, and Newton's
seventeenth century work on planetary dynamics, are two examples which come to
mind. There has thus accumulated a considerable body of knowledge about the
earth, much of it cbtained in most significant experiments, such as the famous
Cavendish experiment (1798) of “weighing the earth". 1In this exercise the grave
itational constant G was determined, and thus knowing the radius of the earth
and the acceleration of a failing body near its surface it was possible to estim-
ate the mass of the earth, (a more recent determination of which is 5.98 x 10?7
gram).
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A large part of modern solid-earth geophysics is now concerned with the var-
jation and distribution of various physical parameters within the body of the
earth., For examplie, a very relevant problem concerns the internal distribution
of the earth's 5.98 x 10®7 gram of total mass, mentioned above. Here direct
observation is not possible, and the method of attack is to try to expleoit some
process which is in some way affected by the interior of the earth, to see if
this process can give the information required. Some particular physical data
are observed; and the problem is the inversion of these observations. A common
first-order approximaticn in geophysics, and one which has fortunately shown
itself to be reasonable in many instances, is that the interior of the earth is
essentially spherically symmetric. Were this not actually so, the more complic-

ated situaticn would have meant that much less progress would have been made.

This paper will largely be concerned with traditional studies of geophysics,
the physics of which are in principle well understood. To keep a correct pers-
pective however it should be mentioned that some of the most important medern
geophysical theories depend on physical processes not fully understood: an
example would be the long-term flow of rocks which on a shorter time scale behave
as if rigid. An equally fascinating case is the use of classical physics (e.q.
seismology) to probe the centre of the earth and in so doing to explore the
physical behaviour of material there, which is at temperatures and pressures not

at present within the range of laboratory apparatus.

2. THE PARTIAL DIFFERENTIAL EQUATIONS OF BASIC GEOPHYSICS

The question thus arises as to what physical phenomena can the geophysicist
observe on the surface of the earth, these phencmena to be dependent on scme
parameter or parameters inside the earth. In the analysis of such phenomena,
which will shortly be listed, it is necessary of course to understand the basic
physics involved. Fortunately most basic geophysical methods depend only on

well-understood “classical” physics of the nineteenth century, and in fact nearly
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all are covered by the partial differential equation
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whevre t denotes time, and the other symbols may vary with position in space;

D may vary also with time. Depending on the values taken by A, B and C it
is well known that this equation has three distinctive forms: <called "elliptic",
“parabolic" and "hyperbolic", in analogy with the three forms of the second order
algebraic equation which describes conic sections. It is thus possible to class-
ify the fields of basic geophysics according to which form of the differential
they obey:

I. Eitiptic; arising in the description of the gravity and magnetostatic pot-
ential fields.

(i) Laplace's equation, (homogeneous) ¥%u =0

{11} Poisson's equation, (inhomogeneous) iy = duGp

u denotes either the gravity or magnetic potential; p s the density distrib-
ution of mass in space for the gravity case. In the maghetostatic case Gp is
replaced by divM , where M is the magnetic dipole moment per unit volume.

I11. farabolicy arising in diffusion phenomena.

(i} Electromagnetic induction in the earth, (homogenecous)
z qu
V'u - ya T 0

U represents a component of magnetic or electric field; u denotes permeability

and o electrical conductivity.

(ii) The flow of heat in the earth, (inhomogeneous)
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u denotes local temperature, k thermal diffusivity, K thermal conductivity.,

and A the heat generated locally per unit time per unit volume.
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I1T. Hyperbolic; the wave equation of seismology, (homogeneous).

2

2
7°u - Q% i—% = 0
at

v
where u denotes dilatation (for example), and v then represents the speed of
propagation of a dilatational wave., 1t is important to note that although what
is actually measured or sensed will usually be u , what §s actually of interest
are the other parameters involved. Hence the u-observations in a way form
boundary conditions, which will give values {or restrict the ranges of the values
of the other parameters. Geophysical field work, and cbservatory practice, is
essentfally the business of collecting boundary conditions to be used when
attempting to soive or model the appropriate differential equation as it applies

within the earth.

The three types of partial differential eqguation given above may be sotuble,
that is, u expressed analytically as a function of space, time and the other
parameters, if appropriate boundary conditions are known: for the homogeneous
potentfal equation, the value of u around a closed edge; for the homegeneous
diffusion equatien, value cor slope at one boundary, to enable projection forward
in time; and for the homogeneous wave equation, value and slope at an open
boundary in time. It is also important, of course, that the boundary conditions
be given in some reasonable geometry. 1In basic geophysics the geometries taken
are usually those of spherical symmetry, (if comsidering the earth on a global
scale), or horizontal layering, {if considering the earth on a local scale).
Major difficulties arise when departures from these simple symmetries are allow-
ed. Given these two geometries, however, it is clearly possible for field geo-
physics to supply the boundary conditions needed at some points (but not all) of
the boundary of the earth. The consequences of the incompleteness of the meas-
urements of field geophysics will be discussed in §4, 1t is appropriate to first
discuss a more profound difficulty: the Jack of knowledge in some instances of

the source terms involved,.
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§3, THE FIRST LEVEL QF NOK-UNIQUENESS: UNKNOWN SQURCE FIELDS

The most fundamental difficulty in studying the geophysical phenomena given
in the previous section arises when the appropriate equations are inhomogereous,
ard the non-zero D term giving rise to the inhomogeneity is not known. For
example, while the gravitational potential above the earth may be measured and
expressed in terms of Laplace’s equation, when it comes to geophysics u {35 not
an end in itself: what s of interest is the term controlling the potential

field within the earth according to Poisson's equation
iy = GnGp .

In fact, it is a result of potential theory (for example, Kellogg [1)) that the
interpretation of observed wu to give a p-distribution is fundamentally non-
unique: a factor which affects every aspect of gravity and magnétic interpretat-
jon. The non~uniqueness can be reduced 1f the density distribution {s restricted
to some particular model, such as a buried sphere, for example. But such models
have to be justified on other grounds, and may bey the geophysical question.
Thevre are, however, certain reasonable ranges of models, the interpretation of
data within which gives maxima or minima that are geologically useful {for
example, Grant and West [23}. In practical geophysics the horizontal resolutton
of gravity surveys can also be very usefutl, their lack of vertical resolution

notwithstanding.

The heat flow equation alsc contafns an inhomogeneous source term; that
allowing for the generation of heat within the earth. Only if this distribution
and those of thermal conductivity and diffusivity are assumed can the profile of
temperature with depth (the "geotherm") be estimated from measurements of the
surface heat flow. The electromagnetic induction equation, from the point of
view of the solid-earth geophysicist, avoids this dilemma; for its source term is
external to the earth, arising from electric currents flowing in the ionosphere,
{(Matsushita and Campbell [31}. It is possible for the “primary" fields to be

separated out, and the ambiguity in what may have caused them ignored.
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The wave equation alsoc avoids the source trouble, in that a seismological
scurce, be it earthquake or explosion, can usually be regarded as instantaneous,
and ended before the wave has travelled a significant distance. Thus seismic
signals travel “source-free®. The consequent aveidance of complication, and the
possibilities of unique interpretation which result, have always appealed (and
rightly so} to many geophysicists frustrated by the non-uniqueness of Poisson's
equation. In the ranks of seismologists one finds many defaulted "potential-

field" men.

§4, THE SECOND LEVEL OF NON-UNJIQUENESS: INCOMPLETE AND IMPRECISE DATA

The previous two sections, in discussing under what circumstances a partic-
ular partial differential eguation may have been soluble, were not considering
any Himitations in the data cther than that they were restricted to observations
on the surface of the earth. In practice, however, observed data will be both
incomplete and imprecise; and in consequence interpretations made using them will
be non-unique: even for phenomena which escape the unknown-source trouble of the

previous section. No geophysical method escapes the difficulty of imperfect data

It becomes of paramount importance then to know how wide is the uncertainty
of a result obtained by the interpretation of certain data. This perhaps obvious
statement deserves emphasis because in geophysics there has been a tendency to
overlook it. Given measurements of u for any equation in §2, it is anything
but straightforward toc invert the data to give, (say} distributions of p , o ,
or v . As has been mentioned, only ir certain cases can an analytic expression

be given for u 1n terms of the other parameters involved.

A certain tradition has therefore become estabiished of "model fitting“. A
particular model of the earth will be chosen, perhaps arbitrarily, and its
perhaps arbitrary parameters adjusted until the response of the model to the
physical phenomenon agrees tolerably well with the response cbserved for the real

earth, Thus the adjusted model is a “possible” earth; but nothing is %nown of
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all the other pdssib]e earths, or even how wide & range they may cover,

During the last decade a movement has started in an attempt to remedy this
situation. It appears to have been commenced by Backus and Gilbert [4], and
applies to geophysical phenomena which are Fréchet differentiable, and for which
the Fréchet derivatives are known. In essence this restricts the method to
those phenomena already mentioned for which u may be expressed analytically in
terms of the other parameters, for the Fréchet derivatives are essentially
derivatives of u (or whatever is the data parameter) in terms of the other
parameters. The Backus-Bilbert formalism does not therefore apply to the many
model-fitting procedures in geophysics which are more complicated, and which
proceed by numerical methods simply because analytic solutions for u in terms
of the various parameters of the mocdel have never been obtained; {an example
would be the electromagnetic response of an irreguiar-shaped three-dimensional

body).

This is not, however, to underscore the Backus-Gilbert formalism, which s
undoubtedly of great significance, It will new be outlined with reference to 2

simple hypothetical example.

Note. Other methods (than the approach of Backus and Gilbert) for the inversion
of geophysical data, which take the preblem of non-uniqueness directly inte
account, have been proposed. They include the use of Monte Carle and linear
programming procedures. The former have been examined by Press [5] and Ander-

ssen, Cleary and Worthington {6], and the latter by Johnson [7].

§5, A SIMPLE EXAMPLE

Consider a simple earth model, specified by four parameters, as shown in
Figure 1.  An inner core of radius r transmits seismic signals with speed v,

the outer part of the sphere, of radius R , transmits seismic signals with speed
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v, . Assume for the sake of this example that r and R are known, so that
there are two unknown parameters of gecphysical interest: v, and v_ . Censid-
er one observational datum to be known: the travel time 7T of a seismic signal

between points an angular distance & apart, (as shown).

FIG. |
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In such a case, T may be expressed analyticaily in terms of r , R, v, s

v, and & , (see, for example, Bullen [8]) and so it is possible to imagine a

surface in T , v, and v, space (for given r , R and @) as in Figure 2.

surface

starting
point

>V2

FI1G. 2

Thus any one cbservation of T will define a plane which will generally cut the
surface in a curve. Any point along this curve is an acceptable "earin", and so

the existence of the curve represents the ill-posed non-unigue nature of the
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problem. The Backus-Gilbert method does net remove this non-uniqueness; but if
for some reason an approximate model of what is expected is known, then the

method finds the point on the curve nearest the "expected" model.

It is not necessary to compute the whole surface. Rather, the T for the

TEX

expected medel is computed: say this is . Then the discrepancy between the

expected T°* and the observed Tob may be expressed
b 3T - 3T A - o
TO _ Tex = §T = (W v, + W vz).(évlvl + 5\/2\!2) (5.1)
where évl = v?b - v?x . sz = ng - vfx , that is, the 6vi represent the ad-

Justments necessary to the “"expected" vfx to produce the acceptable

voP
(The relation as just expressed implies that the surface is essentially planar
between the “expected"” peint and the curve; if this is not so a number of iterat-

ions following this procedure may be necessary}

The term (EVW .

0L G o+ g%L V,} s the Frachet derivative of the observable
1 2

datum T with respect to the parameters of the model, and the model has been
chosen so that this is known. fquation {5.1) as it stands can be satisfied by a
wide range of (Gv],avz} values, each pair representing a different position
along the curve of acceptable models. The criterion that the final model should
be closest to the "expected" model is now inveoked, and by a variational technique
the particular (6v1,6v2) pair satisfying equation (5.1) is found subject to
(6\.'12 + 6v22) befng a minimum, Starting from & given model, it is thus possibfe
to move ontc the curve from a starting point off the curve, given only that there
are no local maxima or minima in between. The procedure has not removed the non-
uniqueness represented by the curve; but it has produced the acceptable model

closest to the starting medel, and the necessity of computing the whole surface

{or representative parts of it) has been avoided.

The next reward of the procedure is the rather more subtle gne of resolution

In the example just given, the fréchet derivative expresses the all-important in-



28

formation on how sensitive is the parameter being observed to changes in the
physical parameters inside the earth. Clearly if T 1is a 1ittle sensitive to
{say) Vs then v, may be expectéd to be poorly resclved: a small change in
év, would allow a great change in &v , and in Figure 2 this would be apparent
by the surface being rather flat in the v, direction. If, on the other hand,
T was highiy sensitive to L but not sensitive to v, at all, then it woyld

be reasonable to expect v = to be resolved nesr-perfectiy, and v, not resclved

at all.

To take this point of resolution further, consider now many travel-time data
Ti , at different distances ei . {Lonsider the earth model to consist of many
(radially symmetric) layers, so that the speed at radius r dis v{r) . Then, by
extension of the procedure already followed foy the simple case given above,
after choosing a starting model and computing its response times the discrepancy

in the <-th time may be written
1
8T, = é Ki(r)6v(r} dr (5.2)

where Ki(r) is the Fréchet derivative, a function of radius just as the speed
now is. (The radius of the surface, R , has been normalized to unity.} The

extension of the previous examplie is now to satisfy equation (5.2), subject fo

1

[[6v(r}]2 dr being a minimum, But consider, next, arbitrary multiplying funct-
0

ions ai{ro) , where Y is some particular point along the radius r , employed

to give:

If it so happened that
= g
% ai(ro)Ki(r) = §{r - r ) (5.3)

where &{x) is the Kronecker delta function, then
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) aﬂ(rU)ST{ = dv(ro} ;

which would give the adjustment 5v(ro) to be made to the speed distribution at
the L radial point to bring the model into exact agreement with the data, (as
far as the r  radizl point was concerned), and would mean, in effect, that the
observed data were such that a combination of them had been found which was sens-
itive only to the speed at radiusg r, - In cther words, the resclutien at the
radial point r would be near-perfect, and there would be no necessity to re-
sort to any critericen, like minimizing any integral, to remove the ambiguity at

that point.

Usually, of course, equation (5.3) will not hold even given the freedom of
choice of the aj(ro) functions, and the best that can be done is to {say) min-
imize

[5(r - ru) - A(r,r°}32 dr

[ e

where
Alr,r, ) = Z ai(ro)Ki(r)
z

The A{r,ro) function is thus a type ¢f “resclution function", indicating how
sensitive the phenomenon is to changes in the parameter at and arcund the T
radial position. The closer A(r,rc) can be made to approach the delta function
§{r - ro) » the more precise is the possible resolution of the speed patameter at
r{)

This section has attempted to give an introduction to the Backus-Gilbert
formalism in only the simplest terms. Altogether the relevant papers on the sub-
ject form a formidable series: Backus and Gilbert ([4], (9] and [10]). There

arg valuable introductions to the method alsoc in the papers of Parker [11],
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Jackson [12] and Johnson and Gilbert [13], Wiggins [14) examines the structure
of the general linear inverse problem and a method for its solution, and shows
how they relate to the work of Backus and Gilbert, For an introduction to the
mathematical language in which the whole matter is couched, an excellent refer-

ence is Lanczos [15].

§6. LONCLUSIONS

Non-uniqueness in basic geophysics arises at two levels, The first level is
a consequence of unkrown source terms in the partial differential equations gov-
erning certain geophysical phenomena, and cannot be avoided, no matter how accur-
ate and complete are the observational data. The second level affects all geo-
physical inversion interpretations, no matter what the partial differential
equations involved, and is a consequence of the fact that cohserved geophysical

data are never either perfectly accurate or complete,
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