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Mohr circles drawn for magnetotelluric impedance data show particular patterns which
may be a guide in the choice of models taken for interpretation. Data affected hy local static
shift over a one-dimensional structure will generate circles which lie in distinctive envelopes,
indicating an anisotropy which is of two-dimensional appearance and which is constant for both
real and quadrature parts, at all frequencies.

For three-dimensional data, Mohr circles show the skew angles defined by Bahr, cnce
Bahr’s rotation angles are known. For strong distortion or high anisotropy, the 90° relationship
between Bahr’s skew angles is evident on a Mohr circle.

1. Introduction

This paper explores two different aspects of Mohr circles in magnetotelluric analysis, as an aid
to the recognition of particular geological circumstances. The two situations examined are one-
dimensional {1D) data distorted by simple “static-shift”; and, for three-dimensional (3D) data,
evidence given by the circles for the parameters which arise in the analysis described by Banr
{1988, 1991). The construction of such Mohy circles for magnetotelluric data is first described,
for reference.

Taking the real parts
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of a magnetotelluric impedance tensor
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axes are drawn for Z'ay, (abscissa) and Z'zw, (ordinate), the dash superscript indicating the
value of the appropriate tensor element after the observing axes have been rotated clockwise by
angle ¢,

A cirele is then drawn with its centre at the point
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and with radius
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The radius drawn from the centre to the originally observed point (Zxy,., Zzx,) then forms a
reference arm. Rotation of this arm anticlockwise by angle 28’ positions its outer end at the point
(Z'zyy, Z'xe,); that s, at the values given by rotation of the measuring axes clockwise by angle
8.

As shown in LILLEY (1976, 1993}, for one-dimensional data the circle is simply a point on
the Z'zy, axis; for two-dimensional data the circle has its centre on the Z’zy,. axis; and for
three-dimensional data the circle centre moves off the Z/ay,. axis.

In addition to the Z'2y,. and Z'zz,. axes as in Fig. 1 of this paper, it may also be informative
to include on a Mohr circle diagram the Z'yz, and Z'yy,. axes, as in Fig. 2 of this paper and as
used in the discussion of the BAHR analysis. The Z'yx,. and Z'yy. axes may be drawn on the
same figure as a consequence of the relationships given in LiLLey (1976} that

Z'yay = Z'ay. + (Zyz, — Zzy)

and
Ziyyy = ~Z'vxy + (Zxze + Zyyy)

where the terms (Zyx, — Zay,) and (Zzz, + Zyy.) are invariant under rotation.

The above description is for the real parts of tensor elements considered separately, and a
simniiar description applies to the quadrature parts of tensor elements considered separately. In
this paper, such quadrature parts will be denoted by subscript g.

Mohr circles enable an assessment of observed data. They are not in themselves a process
of data reduction or data inversion, and they do not rely on modelling. An example of their use
may be in the correction of observed data for distortion, when data which have been corrected to
be ideally 11D or 21 may be checked visually, using Mohr circles, to see how closely they conform
to such ideals. Otherwise, the parameters involved in magnetotelluric data may be so numerous
as to be difficult to assess together.

2. Simple Static Shift of 1D Data

A simple form of static shift is the local perturbation of 1D data to make it appear 21D, by
frequency-independent real factors ¢ and k. That is, for a 1D response Zay, static shift may take

the form
Fxy |g 0O 0 Zry | | Ha
[}?y] o [0 h} {MZ?cy 0 ] {Hy}

where here the measuring axes for the o and y components have heen taken as those of the
perturhing geology.

As shown in Fig. 1a, such a perturbation changes the single point on the Z'zy, axis at Zay,
to two points, at g2y, and hZxy,, which thus mark the diameter of what now hecomes a full
Mohr circle. Denoting angle A (as marked) the anisotropy angle, this angle is given hy

A = arctan %(g — h)/(ghy/?

and it is thus independent of the impedance and of frequency. Hence all real and quadrature
Mohr circles for such a site will lie within the envelopes defined by A, as shown for a hypothetical
data set in Fig. th.

Actual data giving the distinctive pattern of Fig. 1b should thus alert an interpreter to the
likelihood that the data are static-shifted 1D, Note that the pattern will still hold if data are
normalized by multiplication by 7%/2 (to balance a reduction with increasing period as occurs
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over a uniform half-space). Such scaling will have an effect similar to multiplying both ¢ and £
by T2, thus leaving the value of A unchanged.

The interpretation of such data in terms of 1D models is then based, in effect, on reducing
each circle in Fig. 1b to a single point on the Z'zy, or Z’zy, axis. Here procedures for the removal
of static shift must be addressed by methods as discussed, for example, by Jongs (1988). Note
that only if

g+h=2

will the circle centre be the correct point after correction for static shift. (Juite generally, the
point Zay, may lie outside the circle.
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Fig. 1.  {a) Effect of static shift changing a (1D} single point Zzy,- to two points ¢Zzy, and hZaye, which thus
mark the diameter of a [ull Mohr circle. Note the centre of the circle is not at the orviginal point Zuxy.-. A
similar effect will ocour for the quadrature value, Zzy,. (b) Envelopes of constant anisotropy A in which will
lie all 1D tensors affected by the same static shift. The patterns show a range of circles, corresponding to a
range of frequencies for which magnetotelluric impedance tensors have been determined,
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3. The Bahr Rotation and Skew Angles

BARR (1988, 1991) describes a method for decoupling local and regional anomalies, where
the local effect is frequency-independent distortion {that is, general static shift), and the regional
effect is regular 2D induction. The method is based on rotating a (general) complex impedance
tensor, to obtain fwo magnetic field directions for which the electric fields ave linearly polarized,;
Bahr calls these two electric fields the “telluric vectors”. In the general case, the magnetic fiekd
directions are not necessarily orthogonal to each other, and the electric field directions are not
orthogonal to each other or to the magnetic field directions.

For the particular case of local distortion of regional 2D induction, the two magnetic field
directions will be orthogonal (within some tolerance limit), and will be taken to define regional
geologic strike. One direction is taken as being along strike, and the other across strike. Baly
uses vertical component fluctuation information to distinguish which is which, and specifies a
regional skew parameter (n in BAHR, 1991) which, as a quantitative measure of the degree of
orthogonality of the two magnetic field directions, is also a quantitative measure of the degree of
regional two-dimensionality.

The two rotation angles () sought for the complex impedance tensor, to align the measuring
axes along and across regional strike, are determined by satisfaction of the condition (Banr, 1988)
that

A A
Zlyx, D'y,

(1}

At such rotations, the telluric vectors depart from orthogonality with their associated magnetic
field direction by angular deviations & and Fs given by {BAuR, 1991)

tans ez,  —Z'awy, )
anfl = — = ;
~l VASTH Zlyx,

Z'yye  Z'yyy

tanfFs = = -
anp Zay.  Zlay,

where & and 3 are also referved to as skew angles.

TFigure 2a shows how one of the two values of o will appear on a Mohr circle diagram, with
its related angles 8y and 8o, The rotation of the radial arm through 2¢ to the point & = 2« is
the same rotation which will bring the quadrature circle for the impedance tensor (not shown) to
the same value for the ratio - Z'2x, /2 yx,, giving also the same values of 8; and B, The angles
B: and fo are as specified in Eqgs. (2} and {3).

Circles for an actual impedance tensor are shown as an example in Fig. 2b. For clarity on
this figure, the @ = 0 radial arms have been omitted. The solid dots on the circles mark the
points appropriate for the two Bahr rotation angles oy and a4, and the Bahr skew angles 3;, s,
B3 and 3 are then as shown (where 3 and 8y for ap correspond to #y and fy for o). Numerical
details on the example of Fig. 2b are given in an Appendix below.

Note that deviation of the example from an ideal locally-distorted case of regional 2D indue-
tion is indicated by departure of the solid dots on the circles from forming diametrically opposite
pairs. For an ideal case where the dots do form diametrically opposite pairs, it can be seen that
Zer; and 2evp would differ by 180° and so ay and aq would differ by 90°. Then alzo it can be seen
that

B = g and Gy =

so that both o rotations of the impedance tensor produce measuring axes with the same align-
ments, and give the same results for the skew angles.
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(a} The Bahr rotation angle o and its related skew angles 81 and B2 as evident on a Mohr circle

diagram, There will also be a second rotation angle (not shown). (b) Real and quadrature circies for an
example impedance tensor. The solid dots on the circles mark Bahr's two rotation values oy and ap. The
Bahr skew angles, 81 and Bp for a1, and 83 and 34 for ag, are then as shown. Numerical data for this example
are given in an Appendix below, and a scale for both real and quadrature circles is given on the figure. (c)
The relationship 8z = B -+ 90° shown {or a case of strong 2D distortion or higl anisotropy, where the circle
goes through {or near) all the axis intersections.
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Special cases may be of interest. For example, if there is no lacal distortion of a regional 21
situation, the Z'zy, and Z'ye, axes {as in Fig. 2a) move to be co-linear, with the centre of the
cirele then situated on them. Then, as can be seen,

Bi=pFa=0

consistent with Balir’s analysis. The circle, with its centre on the horizontal axis, has a basic 2D
form.

If, in contrast, high anisotropy or strong 20} distortion occurs, this circumstance will be
apparent on the Mohr cirele diagram by the circle going through (or near} every intersection of
axes (LILLEY, 1993). Such a sitnation is shown in Fig. 2c. It follows immediately from the figure
that

Bz = By 4 90°

consistent with Bahr's analysis {class 6 of Baur, 1991).
4. Conclusions

The Mokr circle representation shows patterns and angles which may help an interpreter
recognize certain characteristics in magnetotelluric impedance data. For one-dimensional data
affected by simple static shift, circles for a range of frequencies will lie in a distinetive envelope.
Depicting observed data by Mohr circles may thus immediately enable the identification of such
static-shift problems. ,

More generally, in the analysis of a 3D impedance tensor the Bahr skew angles 57 and 3»
{also described as the angular deviations of the telluric vectors) are shown directly by Mohr circle
diagrams, once the Bahr rotation angles (@) are determined. Modern computer graphics also
allow the demonstration of the « angles graphically, by displaying real and quadrature circles
simultaneously and stepping out increments in the rotation angle dynamically.

The Bahr angles are important indicators of the dimensionality required to interpret data,
and the circles give a visual method for identifying certain classes of local distortion without
modelling or interpretation. Such graphical methods may add to the understanding which comes
from nmumerical solutions alone.

'The author acknowledges the benefit of discussion at the Eleventh Workshop on Electromagnetic
Induction in the Barth, held at the Victoria University of Wellington, New Zealand, in August-September
1892. He thanks Karsten Babr for discussion and correspondence, and the referees for valuable comments.

APPENDIX
Numerical Details of the Example in Fig. 2h.
The tensor given in IMig. 2b has numerical values {each having been multiplied by 7%/2 where
7" is in ) of

0.019,0.006  0.608, 0.661
—2.281,-2.988 0.853,1.141 |~

The real Mohr circle thus has centre at coordinates
(%' xye, Z'xa,) = (1.44,0.436)

and is of radius 0.936.
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The quadrature Mohr civcle has centre at coordinates
(Z'zy,, Z'xg) = (1.824,0.574)

and is of radius 1.286.
Bahr’s rotation angles, calculated using Fq. (11) of his 1988 paper, are

oy = —8° and ap = §7°
with agsociated skew angle values of

3] = 60, fp = 530, By = 13° and ,64 = 18°.

BanR’s {1991) regional skew value for the tensor is
1 =0.09

which is a small value by Bahr’s criteria, impiyving validity of interpretation by a model! of regional
2D induction, distorted locally.

A further point is that this example shows data for just one frequency for the purposes of
illustration. An important characteristic to be checked in the analysis of data over a frequency
range is that the angles obtained should be frequency-independent.
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