Professor Meghan S. Miller

Professor
ARC Future Fellow

My research focuses on observational seismology in order to understand the structural and dynamical evolution of the Earth.  I combine the use of novel seismological techniques, including the collection of new data in regions where none are available, integrated with other, sometimes disparate, geologic and geophysical data, to solve outstanding questions in plate tectonics.  Currently I have seismic deployments out in Alaska and Western Australia, but continue to work on data from previous experiments in Morocco, Spain, Timor Leste and Indonesia, along with other open access data such as USArray and those archived at AusPass and IRIS.

I am the Program Director for AuScope Earth Imaging and starting in 2022, I began my Australian Research Council (ARC) Future Fellowship working on the use of Distributed Acoustic Sensing (DAS) in seismic imaging.

I have moved back and forth between Australia and North America throughout my career, mostly between Los Angeles and Canberra.  

APPOINTMENTS:

The Australian National University – Professor, January 2021 –  
The Australian National University – Associate Professor, January 2017 – December 2020 
California Institute of Technology – Visiting Academic, June 2015 – December 2016
University of Southern California – Associate Professor, February 2015 – May 2018
University of Southern California – Assistant Professor, March 2009 – February 2015
University of Calgary – Research Associate, November 2008 – March 2009  
Rice University and University of British Columbia – Postdoctoral Research Fellow, August 2006 – March 2009

EDUCATION:
Ph.D., 2006, The Australian National University
M.Eng., 2000, Cornell University
M.S., 1999, Columbia University
B.A., 1997, Whittier College

 

SISSLE: South Island Seismology at the Speed of Light Experiment, Haast New Zealand - 2023

ALiRT DAS Experiment, Melbourne - 2021

ICED, Alaska Range seismic deployment - 2019

PICASSO Experiment - Morocco, 2013

Research interests

Most of my research is based at poorly understood but critical tectonic plate boundaries, in particular subduction zones where oceanic plates are descending into the Earth’s deep interior. These are regions where tectonic activity, as observed in seismicity and volcanism, is localized, making them natural targets of high scientific and societal relevance. As a complement to the dynamic plate boundary research, the structure of stable continental interiors provides the best long-term record of plate tectonic processes. Research questions that illustrate how those two objectives are related include: How has the outermost layer of the Earth evolved?  How do the stable continents affect the evolution of subduction zones?  How do processes and structures deep within the Earth control the geology we can observe at the surface?

My ARC Future Fellowship will advance cutting-edge Distributed Acoustic Sensing (DAS) technology and big data processing to develop unprecedented high-resolution images of the Earth’s subsurface, detect micro-seismicity, and thereby relate geological observations to Earth processes.

Research Group

Postdocs & Fellows

  • Dr. Chengxin Jiang
  • Dr. Voon Hui Lai
  • Dr. Sima Mousavi
  • Dr. Robert Pickle
  • Dr. Ping Zhang

PhD Students

  • Miracle Egbo
  • Hendro Nugroho
  • Nova Roosmawati

Undergraduate Students

  • Solomon Jones
  • Jack Dent

Recent Science Communication Videos:

Building Australia's Downward Looking Telescope Mini-Documentary:

Recent Science Communication Articles:

Miller, M.S., J. Townend, J. & V.H. Lai (2023). Seismology at light speed: how fibre-optic telecommunications cables deliver a close-up view of NZ's Alpine FaultThe Conversation. Published on 16 June 2023.

Eakin, C.M. & M.S. Miller (2021), Australia surprised by moderate quake, but rumbling is not unusual, Temblor, http://doi.org/10.32858/temblor.208. Published on 26 September 2021

Boone, S., M. Quigley, P. Betts, M.S. Miller & T. Rawling (2021), Australia’s unfolding geoscience malady, EOS, 102, https://doi.org/10.1029/2021EO163702. Published on 27 September 2021

Miller, M.S. & L. Moresi (2020),  Australian cities are quiet during lockdown. Earthquake scientists are making the most of itThe Conversation. Published on 17 July 2020

Current Research Projects:

ARC Future Fellowship: Lighting Up Dark Fibre for Seismic Imaging - ARC Future Fellowship Project that focused on using Distributed acoustic sensing (DAS) technology.  DAS is an emerging passive seismic technique that converts telecommunication fibre-optic cables (dark fibres) into thousands of ground motion sensors, which can then repurpose long sections (1-10s of kilometres) of cable.  This project aims to harness DAS and the big data arising from it to develop unprecedented high-resolution images of the Earth's structure through field-based observations in locations within Australia and in New Zealand.

Enhanded 3-D seismic structure of Southwest Australia (SWAN) - ARC Linkage Project led by Prof Miller and Prof Kennett in collaboration with GSWA (Dr. Gessner and Dr. Murdie), Geoscience Australia (Dr. Allen), and Macquarie Uni (Dr. Yuan).  The project aims to produce new 3-D seismic velocity structure models of the southwest region of Australia with new data collected by a two-year deployment of 25 passive seismic recorders, coupled to two targeted deployments of 10 instruments, each for one year. In conjunction with previously collected geophysical datasets by our partners this project will allow the determination of structure in 3-D to lithospheric depths. The objective of this work is to provide a compilation of 3-D models of the crust and lithosphere, which will be an effective characterisation of the 3-D structure of the craton and its margins.

ICED (Imaged Crust Denali Exhumation) Project:  National Science Foundation funded project led by S. Roeske, T. Waldien, J. Benowitz and M.S. Miller. "A four-dimensional view of deformation in the Eastern Alaska Range - Where did the slip on the Denali fault go?". The Denali fault in south-central Alaska ruptured in a 7.9 magnitude earthquake in 2002, one of the largest continental strike-slip (horizontal motion of blocks of rocks past each other) earthquakes ever recorded. The event brought attention to this little-studied but major fault, which crosses the trans-Alaska oil pipeline as well as the two main highways in Alaska. Scientists predicted Denali fault earthquakes to have only strike-slip motion, but instead, the 2002 quake started as a thrust (putting one block of rock over another) earthquake and uplifted rocks in the Alaska Range along a previously unknown thrust fault. The unexpected earthquake uplift pattern provided the scientific community additional evidence that thrust faults can siphon lateral motion from the strike-slip Denali fault. If these types of fault interactions persist for millions of years, then determining the amount of thrust faulting next to the Denali fault could help solve a long- lived controversy of how much total displacement has taken place across the Denali fault and explain why the Denali fault is surrounded by large mountains on all sides (forming the Alaska Range). Unraveling the history of thrust faulting and uplift next to the Denali fault will not only help us chip away at these intriguing scientific questions but will also inform us on how significant these faults have been in the past and where the greatest seismic hazards in the Alaska Range are today.

Large-N seismology - A new development in seismology over the past few years, “large-N” arrays, use new nodal-type seismic instrumentation. Large-N refers to 1-2 orders of magnitude more instruments per experiment and nodal refers to the small (paint can size), much less expensive, simplicity and ease of use. This new technology is transforming how seismologists acquire data and will end spatial aliasing, providing much higher resolution and a broad range of applications. We will be able to answer questions about Earth’s structure on a ~1-10 meter scale rather than >~2-5 kilometres from the most densely spaced experiments! We will no longer use waveforms (one time-series recording at each seismometer), but will be able to utilise the entire wavefield recorded at the entire array of instruments. We are collecting data and developing new techniques to utilise these large-N data to produce true high-resolution image volumes of the 3D Earth structure.

AusPass Project (auspass.edu.au): AuScope and ANU funded Australian Passive Seismic Server.  AusPass is a service dedicated to the acquisition, management, and distribution of passive seismological data in Australia. Extensive fieldwork projects are conducted across the country, organized in seismic arrays.  Collaboration with Dr. Robert Pickle and Dr. Michelle Salmon at the ANU.

Recent Projects:

Banda Arc Project  Eastern Indonesia is one of the least well-understood geological domains of our planet, and yet the region provides a truly remarkable location for unraveling some of the major puzzles of plate tectonics. The recent collision of the Australian continent with the active volcanic arc in the Banda region effectively captures the initiation of continental mountain building and the cessation of island arc volcanism, offering a rare glimpse into a set of processes that have shaped Earth’s evolution over geologic time.  Since oceanic subduction and subsequent continental collision have occurred in different stages along the Banda arc, we plan to use the region to study and assess the spatio-temporal evolution of this transition using a variety of methods: seismology, geodyanmics, tectonics, low-temperature geochemistry, and geomorphology.  We installed 30 broadband seismometers, including the first broadband seismometer on Timor Leste, across the archipelago of eastern Indonesia (NTT) in 2014.   The project is co-funded by the NSF Geophysics and Tectonics Programs, and the Office of International Science and Engineering (OISE) – Global Venture Fund (GVF) and led by Profs M.S. Miller, T.W. Becker, and A.J. West.

Congested Subduction:  ARC Discovery Project led by L. Moresi, P. Betts, J. Whittaker and M.S. Miller. The project addresses the geodynamics of congested subduction zones and their impacts on the convergent margins.  We are using a combination of 3D geodynamic modelling, plate kinematic reconstruction and geological and geophysical synthesis to determine how congested subduction zones influence plate kinematics, subduction dynamics, and tectonic evolution at orogen and global scales. We aim to deliver a transformation change in understanding the links between congested subduction, mantle flow, trench migration, crustal growth, transitions between stable convergent margin configurations, and deformation in the overriding plates of subduction zones. Determining these relationships is significant because it will provide dynamic context to interpret the geological record of ancient convergent margins, which host a large percentage of Earth's metal resources. 

Former Graduate Students:

  • Lisa Alpert (Ph.D. 2012, USC)
  • Amber Butcher (2014, USC)
  • Mélanie Gérault (Ph.D. 2014, USC) 
  • Cooper Harris (Ph.D. 2019, USC)
  • Adam Holt (Ph.D. 2016, USC)
  • Yuwei Li (Ph.D. 2021, ANU)
  • Yilei Rong (2011, USC)
  • Panxu Zhang (M.Sc. 2012, USC)
  • Ping Zhang (Ph.D. 2023, ANU)

Former Postdoctoral Scholars & Research Fellows:

  • Dr. Iain W. Bailey  – seismologist at Swiss RE
  • Dr. Babak Hejrani – seismologist at Geoscience Australia
  • Dr. Leland J. O’Driscoll – earthquake early warning project manager at University of Oregon
  • Dr. Robert W. Porritt  – research seismologist at Sandia National Lab
  • Dr. Daoyuan Sun – professor at University of Science and Technology China, Hefei

Former Honours Student

  • Xulu Lin (B.Sc. 2022, ANU)

Groups

Many of these publications require an academic library subscription to read the full content. Please email me if you would like me to send you a pdf copy of any of these papers. You can also access my publication history through Google Scholar.

Note: Supervised °Student and *Postdoc/Fellow

In Review:

S-1. °Zhao, S., McClusky, S., Cummins, P.R., & Miller, M.S. (2023). Interseismic coupling along the Java-Timor subduction-collision zone in East Indonesia, Geophysical Research Letters, in review.

S-2. °Makushkina, A., Tauzin, B., Miller, M.S., Tkalcic, H., & Thybo, H. (2023). Opening of the North Atlantic Ocean and the Rise of Scandinavian Mountains, Geology, in revision.

In Press:

100. °Zhao, S., McClusky, S., Cummins, P.R., & Miller, M.S. (2024). Co-seismic and Post-seismic Deformation Associated with the 2018 Lombok, Indonesia, Earthquake Sequence, Inferred from InSAR and Seismic Data Analysis, Remote Sensing of Environment, 304, accepted February 2024, 11406.

99. Kennett, B.L.N., *Lai, V.H., Miller, M.S., Bowden, D., & Fichtner, A. (2024). Near-source effects on DAS recording: implications for tap tests, Geophysical Journal International, accepted February 2024.

98. Sun. D. & Miller, M.S. (2024). Revealing the secrets of the Western Mediterranean: a deep earthquake and the overturned slab, The Seismic Record, accepted February 2024.

97. Cooper, C.M. & Miller, M.S. (2024). Embracing the complexity at depth: exploring the heterogeneity within cratonic lithosphere and what it might inform us about the past and present Earth's interior, Elements, accepted December 2023.

96. Waldien, T., Miller, M.S., & Roeske, S.M. (2024). Geologic evolution of the Denali fault system and associated crustal structure, AGU Monograph, accepted August 2023.

Published:

95. Bi, H., Fang, H., *Zhang, P., Sudholz, Z., Miller, M.S., Yu, G., & Gao, R. (2024). Seismic evidence for a transcrustal magmatic pathway contributing to critical metal deposits, Geophysical Research Letters, 51, e2023GL104935, doi:10.1029/2023GL104935.

94.°Nugroho, H., Hejrani, B., *Mousavi, S. & Miller, M.S. (2024). Rupture pattern of the 2015 Alor earthquake sequence, Indonesia, Seismological Research Letters, doi:10.1785/0220230185.

93. Wuestefeld, A. et al. (48 co-authors). (2023). The Global DAS Campaign of February 2023, Seismological Research Letters, doi.org/10.1785/0220230180.

92. *Mousavi, S., Hejrani, B., Miller, M.S., & Salmon, M. (2023). Fault plane identification of Australian earthquakes: Application to the September 2021 Mw 5.9 Woods Point earthquake, Seismological Research Letters, doi.org/10.1785/0220220348.

91. *Jiang, C., Schmandt, B., Abers, G., Kiser, E., & Miller, M.S. (2023). Segmentation and radial anisotropy of the deep crustal magmatic system beneath the Cascades arc, Geochemistry, Geophysics, Geosystems, 24, e2022GC010738. doi:10.1029/2022GC010738.

90. °Zhao, S., McClusky, S., Cummins, P., Miller, M.S., & °Nugroho, H. (2023). New insights into surface deformation of the Indonesia-Australian-New Guinea collision zone from a broad-scale synthetic kinematic model, Journal of Geophysical Research, 128, e2022JB024810, doi:10.1029/2022JB024810.

89. Kennett, B.L.N., Gorbatov, A., Yuan, H., Agrawal, S., Murdie, R., Doublier, M., Eakin, C.M., Miller, M.S., Zhao, L., Czarnota, K., O'Donnell, J., Denith, M., & Gessner, K. (2023). Refining the Moho across the Australian continent, Geophysical Journal International, 233, 1863–1877, doi:10.1093/gji/ggad035.

88. Miller, M.S., *Pickle, R., Murdie, R., Yuan, H., Allen, T.I., Gessner, K., Kennett, B.L.N., & Whitney, J. (2023). Southwest Australia Seismic Network (SWAN): recording earthquakes in Australia’s most active seismic zone, Seismological Research Letters, doi:10.1785/0220220323.

87. Wehner, D., Rawlinson, N. Greenfield, T., Daryano, D., Miller, M.S., Supendi, P., Lü, C., & Widiyantoro, S. (2022). SASSIER22: Full-waveform tomography of the eastern Indonesian region that includes surface topography and the fluid ocean, Geochemistry, Geophysics, Geosystems, 23, e2022GC010563,  doi:10.1029/2022GC010563.

86. °Zhang, P., Miller, M.S., & Eakin, C.M. (2022). Unravelling an enigmatic boundary along the Sunda-Banda volcanic arc, Earth and Planetary Science Letters, 599, 117860, doi:10.1016/j.epsl.2022.117860.

85.°Zhang, P., Miller, M.S., & Schulte-Pelkum, V. (2022). Tectonic fabric in the Banda Arc-Australian continent collisional zone imaged by teleseismic receiver functions, Geochemistry, Geophysics, Geosystems, doi:10.1029.2021GC010262.

84. °Harris, C.W. & Miller, M.S. (2022). Mantle flow deflected by arc-continent collision and continental subduction in eastern Indonesia, Seismological Research Letters, doi:10.1785/0220210281.

83. Wehner, D., Blom, N., Rawlinson, N. Daryano, Bohm, C., Miller, M.S., Supendi, P., & Widiyantoro, S. (2022). SASSY21: A 3-D seismic structural model of the lithosphere and underlying mantle beneath Southeast Asia from multi-scale adjoint waveform tomography, Journal of Geophysical Research, 127(3). doi:10.1029.2021JB022930.

82.  *Jiang, C., °Zhang, P., White, M.C.A., *Pickle, R., & Miller, M.S. (2022). A detailed earthquake catalogue for Banda arc – Australian plate collision zone using machine-learning phase picker and an automated workflow, The Seismic Record, 2, 1-10. doi:10.1785/0320210041

81.  Schulte-Pelkum, V., Becker, T.W., Behr, W., & Miller, M.S. (2021)Tectonic inheritance during plate boundary evolution in southern California constrained from seismic anisotropy, Geochemistry, Geophysics, Geosystems, 22, e2021GC010099, doi: 10.1029/2021GC010099.

80. *Lai, V.H., Zhan, Z., Sandanbata, O., Brissaud, Q., & Miller, M.S. (2021). Inflation and asymmetric collapse at Kīlauea summit during the 2018 eruption from seismic and infrasound analyses, Journal of Geophysical Research, 126, e2021JB022139, doi:10.1029/2021JB022139.

79. Boone, S., Quigley, M., Betts, P., Miller, M.S., & Rawling, T. (2021). Australia’s unfolding geoscience malady may serve as a warning sign abroad, EOS, 102, doi:10.1029/2021EO163702.

78. °Li, Y. & Miller, M.S. (2021). Seismic evidence for thermal and chemical heterogeneities in D" region beneath Central America from grid search modelling, Geophysical Research Letters, 48, e2021GL092493doi:10.1029/2021GL092493.

77. °Zhang, P. & Miller, M.S. (2021). Seismic Imaging of the subducted Australian continental margin beneath Timor and the Banda Arc collision zone, Geophysical Research Letters, 48, e2020GL089632, doi:10.1029/2020GL089632.

76. Miller, M.S., °Zhang, P., °Dahlquist, M., West, A.J., Becker, T.W., & °Harris, C.W. (2021). Inherited lithospheric structures control arc-continent collisional heterogeneity, Geology, 49, doi:10.1130/G48246.1.

75. °Li, Y., Miller, M. S., Tkalčić, H., & Sambridge, M. (2021). Small-scale heterogeneity in the lowermost mantle beneath Alaska and northern Pacific revealed from shear-wave triplications, Earth and Planetary Science Letters, 559, doi:10.1016/j.epsl.2021.116768.

74. Cooper, C.M., Farrington, R.J., & Miller, M.S. (2021). On the destructive tendencies of cratons. Geology, 49 (2): 195–200, doi: https://doi.org/10.1130/G48111.1

73.  Fischer, K. M., Rychert, C. A., Dalton, C. A., Miller, M.S., Beghein, C., & Schutt, D. L. (2020). A comparison of oceanic and continental mantle lithosphere, Physics of the Earth and Planetary Interiors, 309, doi:10.1016/j.pepi.2020.106600.

72.  Miller, M.S., Ruppert, N.A., & Abers, G. (2020). Introduction to Focus Section on EarthScope Alaska and Canada, Seismological Research Letters, 91(6), doi:10.1785/0220200307.

71.  Waldien, T.S., Roeske, S.M., Benowitz, J.A., Twelker, E., & Miller, M.S. (2020), Ogliocene-Neogene lithospheric-scale reactivation of Mesozoic terrane accretionary structure in the Alaska Range suture zone, southern Alaska, USA, GSA Bulletin, 133(3-4), 691-714, doi:10.1130/B35665.1.

70. Lecocq, T. et al (76 authors), (2020). Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures, Science, 369 (6509): 1338-1343, doi:10.1126/science.abd2438.

69. Miller, M.S. (2020). Mapping Earth's deepest secrets, Science, 368 (6496): 1183-1184, doi:10.1126/science.abc3134.

68. °Harris, C.W., Miller, M.S., Supendi, P., & Widiyantoro, S. (2020). Subducted lithospheric boundary tomographically imaged beneath arc-continent collision in eastern Indonesia, Journal of Geophysical Research, 125(8), e2019JB018854doi:10.1029/2019JB018854.

67. Supendi, P., Nugraha, A.D., Widiyantoro, S., Abdullah, C.I., Rawlinson, N., Cummins, P.R., °Harris, C.W., °Roosmawati, N., & Miller, M.S. (2020). Fate of forearc lithosphere at arc-continent collision zones: evidence from local earthquake tomography of the Sunda-Banda arc transition, Indonesia, Geophysical Research Letters, 47, doi:10.1029/2019GL086472.

66. °Li, Y., Miller, M.S., & Sun, D. (2019), Seismic Imaging the D’’ Region beneath the Central Atlantic, Physics of the Earth and Planetary Interior, 292, 76-86, doi:10.1016/j.pepi.2019.05.005.

65. Boneh, Y., Schottenfels, E., Kwong, K., van Zelst, I., Tong, X., Eimer, M., Miller, M.S., Moresi, L., Warren, J.M., Wiens, D.A., Billen, M., Naliboff, J., & Zhan, Z., (2019), Intermediate-depth earthquakes controlled by incoming plate hydration along bending-related faults, Geophysical Research Letters, 46: 3688-3697, doi:10.1029/2018GL081585.

64. Toy, V., Manatschal, G. Rosenbaum, G., Miller, M.S., & Carosi, R. (2019), Introduction to “Orogenic Cycles: From Field Observations to Global Geodynamics”, Tectonics, 38(1): 3-6, doi:10.1029/2018TC005376.

63. Martin-Short, R., Allen, R., Bastow, I., *Porritt, R.W., & Miller, M.S. (2018), Seismic imaging of the Alaska subduction zone: implications for slab geometry and volcanism, Geochemistry, Geophysics, Geosystems, 19(11). https://doi.org/10.1029/2018GC007962.

62. Miller, M.S. & L. Moresi (2018), Mapping the Alaskan Moho, Seismological Research Letters, 89(6): 2430–2436. doi:10.1785/0220180222.

61. Attanayake, J., Thomas, C., Cormier, V.F., Miller, M.S., & Koper, K.D. (2018),  Irregular Transition Layer Beneath the Earth's Inner Core Boundary from Observations of Antipodal PKIKP and PKIIKP Waves, Geochemistry, Geophysics, Geosystems, 19(10)https://doi.org/10.1029/2018GC007562.

60. °Harris, C.W., Miller, M.S., & *Porritt, R.W. (2018), Tomographic Imaging of Slab Segmentation and Deformation in the Greater Antilles, Geochemistry, Geophysics, Geosystems, 19(8), https://doi.org/10.1029/2018GC007603.

59. Miller, M.S., *O'Driscoll, L.J., *Porritt, R.W., & Roeske, S.M. (2018), Multiscale crustal architecture of Alaska inferred from P reciever functions, Lithosphere, 10(2): 267-278, https://doi.org/10.1130/L701.1.

58. *Porritt, R. W. & Miller, M.S. (2018), Updates to FuncLab, a Matlab based GUI for handling receiver functions, Computers & Geosciences, 111: 260-271, doi:10.1016/j.cageo.2017.11.022.

57. Ebinger, C., Keir, D., Bastow, I., Whaler, K., Hammond, J., Ayele, A., Miller, M.S., Tiberi, C., & Haurot, S., (2017), Crustal structure of active deformation zones in Africa: Implications for global crustal processes, Tectonics, 36(12), doi:10.1002/2017TC004526.

56. Cooper, C.M. Miller, M.S. & L.N. Moresi, (2017), Structural evolution of the deep continental lithosphere, Tectonophysics, 695, 100-121 doi:10.1016/j.tecto.2016.12.004.

55.  Miller, M.S., *O'Driscoll, L.J., Roosmawati, N., °Harris, C.W., *Porritt, R.W., Teofilo de Costa, L., Soares, E., Widiyantoro, S., Becker, T.W., & West, A.J. (2016), The Banda Arc experiment: Transitions in the Banda Arc - Australian continent collision, Seismological Research Letters, 87(5), doi:10.1785/0220160124.

54. *Porritt, R.W., Miller, M.S., *O’Driscoll, L.J., °Harris, C.W., & Roosmawati, N. (2016) Continent-arc collision in the Banda Arc imaged by ambient noise tomography, for Earth and Planetary Science Letters, 449: 246-258, doi:10.1016.j.epsl.2016.06.011.

53.   Sun, D., Helmberger, D., Miller, M.S., &Jackson, J.M. (2016), Major disruption of D” beneath Alaska, Journal of Geophysical Research, 121(5): 3534-3556, doi:10.1002/2015JB012534.

52.   Jessell, M., Begg, G. & Miller, M.S. (2016), The geophysical signatures of the West African Craton, Precambrian Research, 274: 3-24, doi:10.1016/j.precamres.2015.08.010.

51.   Miller, M.S., *O’Driscoll, L., °Butcher, A.J., and Thomas, C. (2015), Imaging Canary Island hotspot material beneath the lithosphere of Morocco and southern Spain, Earth and Planetary Science Letters, 431, 186-194, doi:10.1016/j.epsl.2015.09.026

49. °Gerault, M., Husson, L. Miller, M.S., and Humphreys, E. (2015), Topography, flat-slab subduction, and mantle dynamics in southwestern Mexico, Tectonics, 34(9), 1892-1909, doi:10.1002/2015TC003908.

48.  *Porritt, R.W., Miller, M.S., and Darbyshire, F.A. (2015), Lithospheric architecture beneath the Hudson Bay, Geochemistry, Geophysics, Geosystems, 16(7), 2262-2275, doi:10.1002/ 2015GC005845.

47. Hodges, M. and Miller, M.S. (2015), Mantle flow at the highly arcuate northeast corner of the Lesser Antilles subduction zone: constraints from shear-wave splitting analyses, Lithosphere, 7, 579-587, doi:10.1130/L440.1.

46.   *O’Driscoll, L.J. and Miller, M.S. (2015), Lithospheric thickness in Alaska determined by Sp receiver functions, Tectonics, 34(4), 694-714, doi:10.002/2014TC003669.

45.   van Hunen, J. and Miller, M.S. (2015), Collisional processes and links to episodic changes in subduction zones, Elements, 11(2), 119-124.

44.   Betts, P.G., Moresi, L., Miller, M.S., and °Willis, D. (2015), Geodynamics of oceanic plateau and plume head accretion and their role in Phanerozoic orogenic systems of China, Geoscience Frontiers, 6(1), 49-59.

43.   *Sun, D., Miller, M.S., °Holt, A., and Becker, T.W. (2014), Hot upwelling conduit beneath the Atlas Mountains, Morocco, Geophysical Research Letters, 41, 8037-8044.

42.   Levander, A., Bezada, M., Thurner, S., Palomeras, I., Masi, J., Humphreys, E.D., Schmitz, M., Gallart, J., Carbonell, R., and Miller, M.S. (2014), Subduction-driven recycling of continental margin lithosphere, Nature, 515, 253-256.

41.   Piana Agostinetti, N. and Miller, M.S. (2014), The fate of the downgoing oceanic plate: insight from the Northern Cascadia subduction zone, Earth and Planetary Science Letters, 408, 237-251.

40.   Faccenna, C., Becker, T.W., Miller, M.S., Serpelloni, E., and Willett, S. (2014), Isostasy, dynamic topography, and the elevation of the Apennines of Italy, Earth and Planetary Science Letters, 407, 163-174.

39.  Kim, Y., Lim, H., Miller, M.S., Pearce, F., and Clayton, R. (2014), Evidence of an upper mantle seismic anomaly opposing the Cocos slab beneath the Isthmus of Tehuantepec, Mexico, Geochemistry, Geophysics, Geosystems, doi:10.1002/2014GC005320, 15(7), 3021-3034.

38.   Bianchi, I., Miller, M.S., and Bokelmann, G. (2014). Insights on the upper mantle beneath the Eastern Alps, Earth and Planetary Science Letters, 403, 199-209.

37.   Miller, M.S. and Becker, T.W. (2014). Reactivated lithospheric-scale discontinuities localize dynamic uplift of the Moroccan Atlas Mountains: Comment – Reply, Geology, 42(6), doi:10.1130/G35715Y.1, 338.

36.   Moresi, L., Betts, P., Miller, M.S., Cayley, R. (2014). Dynamics of continental accretion, Nature, doi:10.1038/nature13033, 508 (7495), 245-248.

35.   *Sun, D., Miller, M.S., Piana Agostinetti, N., Asimow, P., Li, D. (2014). High frequency waves and slab structures beneath Italy, Earth and Planetary Science Letters, 391, 212-223.

34.  Cooper, C.M. and Miller, M.S. (2014). Craton formation: what happens after the early oceans closed, Lithosphere, 6 (1), 35-42.

33.   Miller, M.S., °Zhang, P., and Dolan, J.F. (2014). Moho structure across the San Jacinto fault zone: insights into strain localization at depth, Lithosphere, 6 (1), 43-47.

32.   Miller, M.S. and Becker, T.W. (2014), Reactivated lithospheric-scale discontinuities localize dynamic uplift of the Moroccan Atlas Mountains, Geology, doi:10.1130/G34959, 42, 35-38.

31.   Becker, T.W., Faccenna, C., Humphreys, E.D., Lowry, A., and Miller, M.S. (2014). Static and dynamic support of western U.S. topography, Earth and Planetary Science Letters, 402, 234-246, doi:10.1016/j.epsl.2013.10.012.

30.   Miller, M.S., Niu, F., and Vanacore, E. (2013). Aspherical structural heterogeneity within the uppermost inner core: insights into the hemispherical boundaries and core formation, Physics of the Earth and Planetary Interiors, 223, 8-20.

29.   *Sun, D. and Miller, M.S. (2013). Study of the western edge of African large low shear velocity province, Geochemistry, Geophysics, Geosystems, doi:10.1002/ggge/20185, 17pp.

28.   °Alpert, L.A., Miller, M.S., Becker, T.W., and °Allam, A.A. (2013). Structure beneath the Alboran from geodynamic mantle models of seismic anisotropy, Journal of Geophysical Research, 118(8) doi:10.1002/jgrb.50309, 4265-4277.

27.   Miller, M.S., °Allam, A.A., Becker, T.W., Di Leo, J. and Wookey, J. (2013). Constraints on geodynamic evolution of the westernmost Mediterranean and northwest Africa from shear wave splitting analysis, Earth and Planetary Sciences Letters, 375, 234-343.

26.   Miller, M.S. and Becker, T.W. (2012). Mantle flow deflected by interactions between subducted slabs and cratonic keels, Nature Geoscience, 10, 726-730.

25.   Miller, M.S. and Piana Agostinetti, N. (2012). Insights into the evolution of the Italian lithospheric structure from S receiver functions, Earth and Planetary Science Letters, 345, 49-59.

24.   Levander, A. and Miller, M.S. (2012). Evolutionary aspects of lithosphere discontinuity structure in the Western U.S., Geochemistry, Geophysics, Geosystems, 13, doi:10.1029/2012GC004056, 22pp.

23.  Kim, Y., Miller, M.S., Pearce, F., and Clayton, R.W. (2012). Seismic imaging of the Cocos plate subduction zone system in central Mexico, Geochemistry, Geophysics, Geosystems, 13, doi:10.1029/2012GC004033, 16pp.

22.   Reid, M. R., Bouchet, R. A., Blichert-Toft, J., Levander, A., °Liu, K., Miller, M.S., and Ramos, F. C. (2012). Melting under the Colorado Plateau, USA. Geology, 40, 387-390.

21.   *Bailey, I.W., °Alpert, L.A., Becker, T.W., and Miller, M.S. (2012). Co-seismic deformation of slabs based on summed CMT data, Journal of Geophysical Research, 117, doi:10.1029/2011JB008943, 19pp.

20. *Bailey, I.W., Miller, M.S., Levander, A., and °Liu, K. (2012). VS and density structure beneath the Colorado Plateau constrained by gravity anomalies and joint inversions of receiver function and phase velocity data. Journal of Geophysical Research, 17, doi:10.1029/2011JB008522.

19.   Miller, M.S. and Piana Agostinetti, N. (2011). Erosion of the continental lithosphere at the cusps of the Calabrian arc: evidence from S receiver functions analysis. Geophysical Research Letters, 38, doi:10.1029/2011GL049455.

18. Levander, A., Schmandt, B., Miller, M.S., Liu, K., Karlstom, K.E., Crow, R.S., and Humphreys, E.D., (2011), Continuing Colorado Plateau uplift by delamination-style convective lithospheric downwelling, Nature, 472, 461-465. doi:10.1038/nature10001.

17. °Liu, K., Levander, A., Niu, F., and Miller, M.S. (2011). Imaging crustal and upper mantle structure beneath the Colorado Plateau using finite-frequency Rayleigh wave tomography, Geophysics, Geochemistry, Geosystems, 12, doi:10.1029/2011GC003611.

16.   Miller, M.S. and Eaton, D.W. (2010). Formation of cratonic mantle keels by arc accretion: evidence from S-receiver functions, Geophysical Research Letters, 37, doi:10.1029/2010GL044366.

15.   Mason, W.G., Moresi, L., Betts, P.G., and Miller, M.S. (2010). Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones, Tectonophysics, 483, 71-79.

14.  Miller, M.S., Levander, A., Niu, F., and Li, A. (2009). Upper mantle structure beneath the Caribbean – South American plate boundary from surface wave tomography. Journal of Geophysical Research, 114, B01312, doi:10.1029/2007JB005507.

13. Miller, M.S. (2008), News and Views on Seismology: Breaking the slab? Nature Geoscience, 1 (11), 730-731.

12.  Miller, M.S. and Lee, C.-T.A. (2008). Possible chemical modification of oceanic lithosphere by hotspot magmatism: seismic evidence from the junction of Ninety-east Ridge and the Sumatra-Andaman arc, Earth and Planetary Science Letters, 265 (3-4), 386-395.

11. Clark, S.A., Sobiasiek, M., Zelt, C.A., Magnani, M.B., Miller, M.S., Bezada, M.J., and Levander, A. (2008). Identification and tectonic implications of a tear in the South American plate at the southern end of the Lesser Antilles, Geochemistry, Geophysics, Geosystems, 9 (11), doi:10.1029/2008GC002084.

10. Rosenbaum, G., Gasparon, M., Lucente, F.P., Peccerillo, A., and Miller, M.S. (2008), Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism, Tectonics, 27,  TC2008, doi:10.1029/2007TC002143.

9.     Miller, M.S. and Niu, F. (2008), Bulldozing the core-mantle boundary: localized seismic scatterers beneath the Caribbean, Physics of the Earth and Planetary Interiors, 70, 89-94.

8.     Miller, M.S. and Kennett, B.L.N. (2006), Evolution of mantle structure beneath the Northwest Pacific: evidence from seismic tomography and paleogeographic reconstructions. Tectonics, 25, doi:10.1029/2005TC001909.

7.     Miller, M.S., Kennett, B.L.N., and Toy, V. (2006), Spatial and temporal evolution of the subducting Pacific Plate structure along the Western Pacific margin. Journal of Geophysical Research, 111, doi:10.1029/2005JB003705.

6.     Miller, M.S., Kennett, B.L.N., and Gorbatov, A. (2006), Morphology of the distorted subducted Pacific slab beneath the Hokkaido corner, Japan, Physics of the Earth and Planetary Interiors, 56, 1-11.

5.     Miller, M.S., Gorbatov, A., and Kennett, B.L.N. (2006), Three-dimensional visualization of a near vertical slab tear beneath the southern Mariana Arc. Geochemistry, Geophysics, Geosystems, 7, Q06012, doi:10.1029/2005GC001110.

4.     Miller, M.S., Gorbatov, A., and Kennett, B.L.N. (2005), Heterogeneity within the subducting Pacific slab beneath the Izu-Bonin-Mariana arc: evidence from tomography using 3D ray-tracing inversion techniques. Earth and Planetary Science Letters, 235 (1-2), 331-342.

3.     Miller, M.S. (2005), Active seismicity in the Flinders Ranges. in: Aikman, A., Lilly, K., Celerier, J., Kovacs, I., and Estermann, G. (eds). An excursion guide to the Flinders Ranges, South Australia. Journal of the Virtual Explorer, Electronic Edition, ISSN 1441-8142, 20, Paper 18.

2.     Miller, M.S., Kennett, B.L.N., and Lister, G.S. (2004), Imaging changes in morphology, geometry, and physical properties of the subducting Pacific plate along the Izu-Bonin-Mariana arc. Earth and Planetary Science Letters. 224 (3-4), 363-370.

1.     Miller, M.S., and Powell, K. (2001), Seismic Interpretation and Processing Applications, in M. Poulton (ed) Computational Neural Networks for Geophysical Data Processing:  Pergamon, p. 101-118.

*postdoc, °graduate student, undergraduate student

EMSC2022:  Introduction to Global Geophysics

EMSC3033: Applied Geophysics

Deployment of nodal seismometers at ANU's Mt Stromlo seismic observatory - August 2020.

Field course in Morocco - May 2014

Auturo Island, Timor-Leste March 2015